Proceedings, Eleventh International Conference on Principles of Knowledge Representation and Reasoning (2008)

Taming the Infinite Chase:
Query Answering under Expressive Relational Constraints

Andrea Cali?! Georg Gottlob'? Michael Kifer 3
LComputing Laboratory 20xford-Man Inst. of Quantitative Finance *Dept. of Computer Science
University of Oxford, UK University of Oxford, UK SUNY Stony Brook, USA

{andrea. cal i, georg. gottlob}@oni ab. ox. ac. uk, kifer@s. sunysb. edu

Abstract and Wu 1995), called F-logic Lite. (Simkus and Eiter 2007)
)) o . deals with expressive constraints based on Answer Set Pro-
A crucial task in Knowledge Representation is answering gramming

queries posed over a knowledge base, represented as a set
of facts plus a set of rules. In this paper we address the prob- In this paper, rather than focusing on specific logical
lem of answering conjunctive queries posed over knowledge ~ theories, we analyze the fundamental difficulty that under-

bases where rules are an extension of Datalog rules, called lies earlier approaches, such as (Johnson and Klug 1984;

Datalog rules, that may have existentially quantified vari- Cali 2007; Cal and Kifer 2006). They all considered special
ables in the head; this kind of rules are traditionally called classes of so-calletliple-generating dependencies (TGDs)
tuple-generating dependencies (TGIrsthe database liter- andequality-generating dependencies (EGDs), all used the

ature, but they are broadly used in description logics and in technique calle¢thase, and all faced the problem that the
i‘;”g’rlloi?r']cagrtraegts?&')??ér '”ug‘r's ;ﬁgwggirfhbagﬁa:g:’rﬂgt of Chase generates infinite relations, and, in general, query an-
P query 9 ‘ swering and containment are undecidable. In our work, we

the research has concentrated on cases where the chase ter- tackle th bl . h | b
minates. We define and study large classes of TGDs under ~ @CKI€ IN€ probleém in a much more general way, Dy carv-

which the query evaluation problems remain decidable even NG out a very large class of constraints for which the infi-
in case the chase does not terminate. We provide tight com- Nite chase can be tamed. The class of constraints we deal

plexity bounds for such cases. Our results immediately ex- with is an extension of Datalog rules, that we denote with
tend to query containment. Datalog’; such rules are known aaple-generating depen-
dencies (TGDsin the database literature; a TGD is an im-
Introduction plication between two c_on_junc_tion of atoms (calketlyand
]]] head, where the head is implied by the body), where some
Answering queries posed over knowledge bases is a cen- of the variables in the head can be existentially quantified.
tral problem in knowledge representation and database the- A wel|-known procedure that enforces the validity of a set
ory. In the database area, checking query containment is ¢ TGDs is the chase (Maier, Mendelzon, and Sagiv 1979:
one of the important query optimization and schema inte- jonnson and Klug 1984). Intuitively, the chase “repairs”
gration techniques (Aho, Sagiv, and Ullman 1979; Johnson ;s|ations of TGDs by repeatedly adding atoms, until a
and Klug 1984; Millstein, Levy, and Friedman 2000), and fiyad-point is reached that satisfies all TGDs; the result
in knowledge representation it has been used for object clas- 4¢ the chase may be infinite. The chase has been inten-

sification, schema integration, service discovery, and more gj ey ysed in the area of data exchange (Fagin et al. 2005;
(Calvanese, De Giacomo, and Lenzerini. 2002). In the pres- qioh and Nash 2006; Nash, Deutsch, and Remmel 20086).
ence of a knowledge base, the problem of query containment z|sq note that the chase is a formtableau, and it has suc-
is strictly related to that of query answering; indeed, the tWo cegsfylly been applied in terminological reasoning based on
are reducible to each other; we focus on the former, and our descripfion logics (Calvanese et al. 2007; Rosati 2007).
results immediately extend to the latter. '
A practically relevant instance of the query containment
problem was first studied by Johnson and Klug in (John-
son and Klug 1984) for functional and inclusion depen-
dencies and later in (Calvanese, De Giacomo, and Lenz-
erini 1998). Several additional decidability results were ob-
tained by focusing on concrete applications. For instance
in (Cali 2007), constraints specific to the entity-relationship
diagrams were considered, and (iCatd Kifer 2006) used
constraints derived from a subset of F-logic (Kifer, Lausen,

Several authors have recently studied data exchange and
query evaluation problems for settings where the chase al-
ways terminates and thus produces a finite solution (Fagin
et al. 2005). To this aim, restrictions for sets of TGDs, such
asweak acyclicity(first introduced in (Deutsch and Tannen
2003) and heavily utilized, e.g., in (Fagin et al. 2005)), have
' been defined that guarantee termination for whatever input

database. However, little was known about decidable query

evaluation and query containment in case of non-terminating

chases that produce an infinite result, with the notable excep-
Copyright(© 2008, Association for the Advancement of Artificial tion of the classical work of Johnson and Klug (Johnson and
Intelligence (www.aaai.org). All rights reserved. Klug 1984), that shows by a very involved proof that query

70

containment is decidable in case constraints are eitier:
inclusion dependencies (IDajone, i.e., TGDs whose body
and head consist both of a single atom or{li); a special
class of IDs andkey dependencies (KDs).

The topic of the present paper is to consider significantly
larger classes of TGDs. In particular, we define the notions
of sets ofguarded TGDs (GTGDsand ofweakly guarded
TGDs (WGTGDs). A TGD is guarded if its body contains an
atom calledguard that covers all variables occurring in the
body. Weakly guarded TGDs are a generalization of guarded
TGDs that only require guards to cover all variables occur-
ring ataffectedpositions only, where affected positions are
positions in predicates that may contain some fresh labelled
nulls generated during the chase. The notion of guard is
crucial, since query evaluation becomes undecidable once
we allow the presence of a single non-guarded TGD. In-
stead, under WGTGDs, the (possibly infinite) result of the

chase has bounded treewidth (Theorem 23), and we use this®

fact together with well-known results about the generalized
tree-model property (Courcelle 1990; Goncalves arabiér
2000) for a short proof that Boolean query evaluation and
guery containment are decidable under WGTGDs (and thus
also with GTGDs). Unfortunately, this decidability result
does not allow us to derive useful complexity bounds.

Our main contribution lies in the complexity bound for
query evaluation under WGTGDs and GTGDs. We show
that the complexity of query evaluation (and equivalently,
qguery containment) under WGTGDs i&xPTIME-hard, in
case of a fixed set of TGDS, andexrTIME-hard in case
the TGDs are part of the input.

As for upper bounds, let us first remark that we can-
not (as one may think at the first glance) directly or eas-
ily use known results on guarded logics (Goncalves and
Gradel 2000) to derive complexity results for query evalua-
tion, since queries are in general non-guarded. We therefore
develop new algorithms, and prove that query answering is
EXPTIME-complete in case of bounded predicate arities, and
even in case the set of constraints is fixed, andexTIME
complete in general. The proof of the upper bound is based
on an alternating algorithm that mimicks the chase by using
a finite number of configurations. Each of them corresponds
to thecloud of one atom, i.e. the set of atoms in the chase
whose arguments either appeat ior in the “active domain”
of the input database instance.

Then, we derive complexity results for query answering
under GTGDs. While in the general case the complexity
is the same as for WGTGDs, interestingly, when consider-
ing afixedset of dependencies (which is the usual setting in
data exchange and in description logics), we get much better
results: evaluating Boolean queriesNgs-complete (same
complexity of answering without constraints (Chandra and
Merlin 1977)), and inPTIME in case the query is atomic.

GTGDs WGTGDs | GTGDs | WGTGDs
CQ type variableX variableX fixed & fixed &
general 2-EXPTIME | 2-EXPTIME NP EXPTIME
bounded Wldth'- 2-EXPTIME | 2-EXPTIME PTIME EXPTIME
fixed, and atomic

Figure 1: Summary of complexity results

(Gottlob, Leone, and Scarcello 2002). Notice that complex-
ity in the case of fixed queries and fixed TGDs is the so-
calleddata complexity, i.e. the complexity wrt the data only,
which is of particular interest in database applications. With
such results, we subsume both the main decidability and
complexity result in (Johnson and Klug 1984), and decid-
ability and complexity results on F-logic lite (Gand Kifer
2006) as special cases, and we are actually way more gen-
ral.

A relevant application. F-logic (Kifer, Lausen, and
Wu 1995) is a formalism for object-oriented deductive
databases. For a smaller but still powerful version of F-logic,
called F-logic Lite (Caland Kifer 2006), we show how to
encode F-logic Lite using TGDs and a single EGD, which
can be ignored wrt query answering. The results of our
paper apply to obtained set of constraints, since the TGDs
are WGTGDs. We should note, however, that our results
cover a much larger set of F-logic queries than {Gald
Kifer 2006); in particular, we can consider queries defined
with recursive Datalogrules by encoding them into TGDs,
as long as such TGDs are WGTGDs. Also, we prove that
query answering under F-logic Lite can be decidedvin
and combining this with a hardness result (reduction from 3-
COLORABILITY), we prove that query answering (and query
containment) in F-logic Lite isiP-complete.

Further results. We mention some relevant results that
will be published elsewher&quality generating dependen-
cies (EGDs)re a generalization of functional dependencies
in relational databases. An EGD, like a TGD, is an im-
plication between a head and a body, where the body is a
conjunction of atoms, and the head is an equality atom that
equates two variables appearing in the body. Query answer-
ing becomes easily undecidable in the presence of EGDs and
TGDs, even when TGDs are simple IDs. In particular, in
(Cali, Lembo, and Rosati 2003) it is shown that query an-
swering is undecidable under IDs afuthctional dependen-
cies (FDs), where a FD is a special case of EGD. We define
a class ofnnocuousEGDs, that enjoy the property that they
can be ignored in the query answering phase, since they do
not actually interact with TGDs.

We also describe a semantic condition, cafetynomial
Clouds Criterion (PCC), imposing that the number of clouds

Our results subsume the results of (Johnson and Klug 1984) generated during a chase is polynomial in the size of the in-
on IDs alone as a special case. put database instance, and the cloud of each generated atom

The complexity results in this paper, together with some ¢ can be obtained in polynomial time from the parent @f
additional ones that are immediate consequence of them, arethe chase. Whenever a set of WGTDs fulfills the PCC, then
summarized in Figure 1, where all complexity bounds are answering Boolean queries is ip, and answering atomic
tight, andY® denotes the set of Dataldgules. By “bounded queries, as well as queries of bounded hypertree width, is in
width” we intend bounded treewidth or even hypertree width PTIME.

71

Preliminaries

In this section we define the basic notions that we shall use
throughout the paper. More details can be found ini(Cal
Gottlob, and Kifer 2008).

We introduce the following pairwise disjoint sets of sym-
bols: (i) an infinite setA of constants, which constitute the
“normal” domain of a database schef@a(ii) an infinite set
Ay of labeled nulls, which will be used as “fresh” Skolem
terms; (iii) an infinite setAy, of variables, which are used
in queries. Intuitively, a null is a placeholder for an un-
known value; two distinct nulls may denote the same Value

therefore, a null can be seen as a variable. We assume a

lexicographic order om\ and Ay, with every symbol in
A following all symbols inA. Sets of variables (or se-
guences, with a slight abuse of notation) are denotell ,as
with X = X4, ..., X, for somek.

We will refer to a relational schem®&, assuming that

denote the set of atomg{¢1,..., o, }).

The notion of a homomorphism serves to define the an-
swers to conjunctive queries. The answers to a conjunc-
tive query@ of the formQ(X1,...,X,,) «— ®(X) over a
database instande, denoted) (D), are defined as follows:
an atonmt € A" isin Q(D) iff there exists a homomorphism
w that maps®(X) to atoms ofD, and (X,...,X,) to¢
(notice that only tuples made of constantsrare allowed
to be in the answer).

A major issue in this work are database dependencies,
which are defined over a relational schema. In the relational
model, one of the most important classes of dependencies
aretuple-generating dependencies (TGDs), which are a gen-
eralization of inclusion dependencies.

Definition 1. Given a relational schem&, a TGD o
is a first-order formula of the forrVXvVY®(X,Y) —
7Y (X, Z), where®(X,Y) and ¥(X,7) are conjunc-

database instances (also called databases), queries and deions of atoms oveR, called body and headof the TGD,

pendencies use predicates™ We assume the reader is
familiar with the relational model and conjunctive queries.
As mentioned, we denote relational schemaghygueries

by @, database instances Iy, and the answers to a query
@, evaluated on the database instafiteby Q(D). In the
following, we shall considezonjunctive queries (CQs), with
which we assume the reader is familiadrs (@) denotes the
set of variables appearing in a Q) Database instances,
or simply databases, will be constructed with values from
A U Ay, and they will be possibly infinite.

By an atom we mean an atomic formula of the form
P(ay,...,a,), whereP is ann-ary predicate (also called re-
lation name). The constants and labeled nulls appearing in
an atoma are denoted bylom(a). This notation extends to
sets and conjunctions of atoms. pdsition P[] in a rela-
tional schema is identified by a relational predicZend
its 7-th attribute, identified by the integeér

We now come to the notion of homomorphism. nfap-
ping from one set of symbolsy;, to another set of symbols,
Ss, is a functiony : S; — S5 defined as follows:(i) 0
(empty mapping) is a mappingi) if 1o is @ mapping, then
o U{X — Y}, whereX € S; andY € S5 is a mapping
if 1o does not already contain some— Y’ with Y # Y.

If X — Y isin a mappingu, we writeu(X) = Y. A ho-
momorphisnirom a set of atom®, to another set of atoms
D5, both over the same relational scheRais a mapping:
from AUANUAy to AUA vy UAy such that the following
conditions hold:(1) if ¢ € A thenu(c) = ¢; (2)if c € An
thenu(c) € AUAN; (3)ifthe atomR(cy, ..., ¢,)isin Dy,
then the atonR(p(cy), . .., pu(cy)) is in Do, The notion of
homomorphism is naturally extended to atoms as follows.
If f = R(ci,...,c,) IS an atom angk a homomorphism,
we defineu(f) = R(p(c1), ..., pu(ey)). For asetof atoms,
F={f1...., fm}, we defingu(F) = {u(f1), ... p(fm)}.
The set of atom$p(f1),. .., u(fm)} is also calledmageof
F wrt p. In this case, we say that mapsF to u(F'). For
aconjunctionof atoms® = ¢ A ... A ¢, we useu(P) to

Notice that this does not hold for constantsnwe adopt the

uniqgue name assumption, imposing that different constants in
denote different objects.

72

and denotedody (o) and head (o) respectively. Such a de-
pendency is satisfied in a databasefor R if, whenever
there is a homomorphismthat maps the atoms @f(X, Y")

to atoms ofD, there exists an extensiégnof & (i.e.,h’ 2 h)
that maps the atoms @f(X, Z) to atoms ofD.

To simplify the notation, we will usually omit the quanti-
fiers in TGDs.

We now define the notion ofjuery answeringunder
TGDs. A similar notion is used in data exchange (Fagin
et al. 2005; Gottlob and Nash 2006) and in query answering
over incomplete data (Gal.embo, and Rosati 2003). Given
an incomplete database, i.e., a database that does not satisfy
all the constraints ifx, we first define the set of completions
(akarepairs) of that database, which we cadilutions.

Definition 2. Consider a relational schem®, a set of
TGDsY, and a database instande for R. The set of in-
stances3 such thatB = DUY., is called the set ofolutions
of D given, and is denoted byol (%, D).

Definition 3. Consider a relational schem®&, a set of
TGDs %, and a database instanc® for R. The an-
swersto a conjunctive query) on D given X, denoted
ans(Q, X, D), is the set of ground atoms such that for
every B € sol(X, D), it holdsa € Q(B).

The chaseprocess was introduced in order to enable
checking implication of dependencies (Maier, Mendelzon,
and Sagiv 1979), and later also for checking query con-
tainment (Johnson and Klug 1984). Informally, the chase
procedure is a process of repairing a database with respect
to a set of database dependencies, so that the result of the
chase satisfies the dependencies. By abuse of terminology,
by “chase” we referboth to the chase procedure and to its
output. Chase works on a database through so-called TGD
and EGDchase rules. TGD rules come in two flavoatliv-
ious andrestricted, where the restricted one repairs TGDs
only when they are not satisfied. We focus our attention to
the oblivious one, since it makes proofs technically simpler.
The TGD chase rulalefined below is the building block of
the construction of the chase.

(OBLIVIOUS) TGD CHASE RULE. Consider a relational
databaseD for a schemaR, and a TGDo on R of the

form ®(X,Y) — ¥(X,Z). The TGDo is applicableto

D if there is a homomorphism that maps the atoms of
®(X,Y) to atoms ofD. Leto be applicable and, be a
homomorphism that extendsas follows: for each; € X,
hi(X;) = h(X;); foreachZ; € Z, h1(Z;) = z;, wherez;

is a“fresh” null,i.e..z; € Ay, z; € D, andz; lexicograph-
ically follows all other labeled nulls already introduced, and
it is different from them. The result of the application of the
TGD o is the addition toD of all the atomic formulas in
h1(¥(X, 7)) that are not already ifV. m

The chase algorithm consists of an exhaustive application
of the TGD chase rule, that may lead to an infinite result.
The chase rule is applied in a breadth-first fashion, as de-
scribed below.

We first give an important notion in the chase, namely the
levelof an atom. LetD theinitial database from which the
chase is constructed. Thelfl) The atoms inD are said
to have leveld. (2) Suppose a TGD rule fob(X,Y) —
U(X, Z) is applied at some point in the construction of the
chase, and léf, b, be asin the TGD chase rule. If the atom
with highest level among those in (®(X,Y)) has levelk,
then every atom ik (¥ (X, 7)) that is actually added has
level k + 1.

Let D be a database and a set of TGDs Then, the
chase ofD with respect ta®, denotedchase(X, D), is the
database constructed by an iterative application of the TGD
chase rules as follows: lef, ..., I, be all possible im-
ages of bodies of TGDs iR wrt some homomorphism, and
let ¢, be the atom with highest level ify; let M be such
that level(a;;) = ming<;<x{level(a;)}: among the possi-
ble applications of TGDs, choose the lexicographically first
among those that utilize a homomorphism from the body of
aTGD tol,,.

Containment of queries over relational databases has long
been considered a fundamental problem in query optimiza-
tion — especially query containment under constraints such
as TGDs.

Definition 4. Consider a relational schem®&, a setX of
TGDs onR, and two conjunctive querigd;, Q> expressed
overR. We say thaf); is contained inQ- underX, denoted
Q1 Cx Qo, if for every database instande for R such that
D = Y we haveR (D) C Q2(D).

Query containment and answering under TGDs as defined
above are tightly connected, as we explain in the following.

Theorem 5. (Johnson and Klug 1984; Fagin et al. 2005;
Nash, Deutsch, and Remmel 2006). Consider a relational
schemaR, a set> of TGDs onR, a conjunctive queryy,

and a ground atonu; we have thate € ans(Q, %, D) iff

a € Q(chase(X, D)). As a special case, @ is Boolean,

This result is important, and it holds because the (possibly
infinite) chase is aniversal solutior{Fagin et al. 2005), i.e.,
for everyB € sol(3, D), there exists a homomorphism that
mapschase(3, D) onto B. In (Nash, Deutsch, and Remmel
2006) it is shown that the chase constructed with respect to
TGDs is defined also when it is infinite, and it is a universal
solution.

The following is straightforwardly obtainable from (John-
son and Klug 1984; Nash, Deutsch, and Remmel 2006).

73

Theorem 6. Consider a relational schem®, a setX of
TGDs onR, and two querie®);, Q> on R. We have that
Q1 Cs Q2 iff AM(head(Q1)) € Q2(chase(X, A(body(Q1))),
where)\ is a freezing homomorphism f@yy, i.e., a homo-
morphism that maps every distinct variable@n, into a
distinct fresh constant.

We now define three relevant decision problems, and
prove their equivalence.

Definition 7.

The conjunctive query evaluation decision problem CQ-
Evalis defined as follows. Given a conjunctive quéry

a set of TGDsY, a databaseD and a ground atona,
decide whethet € ans(Q, %, D).

TheBoolean conjunctive query evaluation problem BCQ-
Eval is defined as follows. Given a Boolean conjunctive
query @, a set of TGDs:, and a databasdD, decide
whether() € ans(Q, %, D), i.e.,Q has a positive answer
(also writtenX U D = Q).

Theconjunctive query containment decision problem CQ-
Contis defined as follows. Given two C@% and Q)-,
and a set of TGDs, decide whether for every database
instanceD it holds Q1 (D) C Q2(D).

The following result is folklore, and implicit in (Chandra
and Merlin 1977).

Lemma 8. The problems CQ-Eval and BCQ-Eval are
LOGSPACEequivalent.

Proof. Notice that BCQ-Eval can be trivially made into a
special instance of CQ-Eval, e.g., by adding a propositional
atom as head atom. It thus suffices to show that CQ-eval
polynomially reduces to BCQ-eval. L&), D,¥,a) be

an instance of CQ-Eval. Assume the head atont)ois
Rp(Xy,...,X;)anda = Ry(cy,...,c). Then, defing)’

to be the Boolean conjunctive query whose atoms are those
in body(Q) plusR; (X1, ..., Xy), whereR; is a fresh pred-
icate symbol not occurring iy and@ (and therefore not in

3], since the TGDs irt are on the same relational schema).
Moreover, leta’ = Rj(ci,...,cx). Itis easy to see that

a € Q(chase(X, D)) iff chase(X,DUd) = Q. dJ

The following corollary descends from Theorems 6 and 5.

Corollary 9. Under TGDs, the problems CQ-eval and CQ-
Cont are mutuallyrTiME-reducible.

By Lemma 8 and by Corollary 9, we can conclude that
the three following problems areGspACEequivalent:(1)
CQ-eval under TGDg(2) BCQ-eval under TGDg3) CQ-
Cont under TGDs. Henceforth, we will concentrate on only
one of these problems, namely the BCQ-eval problem. All
complexity results carry over to the other problems.

The following lemma allows us to restrict our attention on
a restricted class of TGDs.

Lemma 10. Let) be a Boolean conjunctive query over a
schemaR, and letX be a set of TGDs o®. Then, from2
we can construct inoGsPACEa set of TGDS such that
each TGD inX’ has only one atom in its head and for each
instanceD, X U D = Qiff 'UD E Q.

Proof. To obtain ¥’ from X is sufficient to re-
place each rule of the formr body(X) —
head,(Y), heads(Y), ..., headr(Y), where k> 1

and Y is the set of aII the variables that appear in the
head (that may include part oK), with the following
set of rules: body(X) — V(Y), V(Y) — head; (Y),
V(Y) — heads(Y), ..., V(Y) — headi,(Y) whereV is a

fresh predicate symbol, having the same arity as the number

of variables inY’; notice also that in general not all the
variables inY” also appear irX. It is straightforward to see
that, except for the atoms of the fori(Y"), chase(X, D)
and chase(¥’, D) coincide. The atoms of the forii(Y"),
being introduced only in the transformation above, do not
match any predicate symbol @), hencechase(X, D) | Q

iff chase(X', D) E Q.

Henceforth, we shall always assume without loss of gen-
erality that every TGD has a singleton atom in its head.

We now come to the notions of treewidth, tree de-
compositions and bounded-treewidth model property (see,
e.g., (Goncalves and @del 2000)). Roughly, the treewidth
of a database instand@ (or of an arbitrary set of atoms
whose arguments may contain labeled nulls) is the treewidth
of the Gaifman graph ob.

Consider a graplt: = (V, E); atree decomposition of
G consists of a tred’ = (N, A) and a labeling function
X : N — 2V with the following properties:

(i) foreveryv € V, there exists. € N such thab € A(N);

(i) for every arc(vy,v2) € E, there existse € N such that
{v1,v2} C© A(n);

(i) foreveryv € V,thesetfn € N | v € A(n)} induces a
(connected) subtree ifi.

The Gaifman graphof a relational instancé (or of a

generic set of atoms) is a nondirected graph defined as fol-

lows:

e the nodes are the symbols itorn (D) (in general, con-
stants inA and nulls inA y);

e there exists an ane;, c2) betweer; ande, if there exist
some atom inD that has botlr; andc, as arguments.

The witth of a tree decompositiofT, \), with T =
(N, A), of graphG = (V, E) is the integetnax,c x |A(n)].
The treewidthof a graphG = (V, E), denotediw(G), is
the minimum width among all tree decompositions. Given
a relational instancé (or an arbitrary set of atoms), its
treewidthtw (D) is defined as the treewidth of its Gaifman
graph.

A classC of formulae has the bounded treewidth model
property if for eachp € C, whenevery is satisfiable, then
it is possible to compute a numbg(¢) such thatp has a
model of treewidth< f(¢).

The following straightforwardly follows from (Courcelle
1990); see also (Goncalves anda@el 2000).

Theorem 11. If a set of first-order formulae has the
bounded-treewidth model property, then checking satisfia-
bility for it is decidable.

74

(Weakly) Guarded TGDs

This section introduces the special classegudrdedand
weakly guardedTGDs , which have a number of useful
properties.

We first give the notion o&ffectedposition of a relational
schema, given a set of TGD%&

Definition 12. Given a relational schem& and a set of
TGDsY overR, anaffected positionn R wrt ¥ is defined
inductively as follows (here we use lowercase Greek letters
to denote positions). Let;, be a position in the head of a
TGDo in 3.

(a) if an existentially quantified variable appears in,
thenm,, is affected wr;

(b) if the same universally quantified variahlé appears
both in positionr;,, and in the body of in affected posi-
tionsonly, thenr;, is affected wrt.

Example 1. Consider the following set of TGDs:

P(X.Y),P(X,Y) — 3ZPyY,Z)
PQ(XY)7P2(VV7X) - Pl(Y7X)

Notice thatP, 2] is affected sinceZ in o, is existentially
quantified inoy. Considering agair, the variableY” ap-
pears inP»[2] but also inP; [2], therefore it does not make
the position where it appears in the head affected. Variable
X in o9 appears in the affected positidn,[2] but also in
P,[1], which is not affected; therefore, it does not make
the position where it appears in the head affected. On the
contrary,Y” appears in[2] and nowhere else, thus causing
Py[1] to be affected. O

Definition 13. Given a TGDo of the form®(X,Y) —

U (X, Z), we say that is a (fully) guarded TGD (GTGD)

if there exists an atom in the body, calledjaard, that con-
tains all the universally quantified variables®fi.e., all the
variablesX, Y that occur in®(X,Y), the body ob.

Example 2. The TGD Ry (X,Y,a), R3(Y), R3(X,b) —
R4(Z,X) is guarded; in particular, the guard is the atom
R (X,Y,a), since it contains all the universally quantified
variables of the TGD. O

Definition 14. Given a TGDo of the form®(X,Y) —
U (X, Z), belonging to a set of TGDE on a scheméRr,
we say that is aweakly guarded TGD (WGTGDrt X if
there exists an atom in the body, calledvaak guard, that
contains all the universally quantified variablesoothat ap-
pearonly in positions that are affected wkt.

Example 3. Consider again the two TGDs in Example 1.
In o1 both atoms are obviously guards (and weak guards of
course), since they contain all the universally quantified vari-
ables. Inos, Y is the only variable that appears in affected
positions only isY’; therefore, the first atom is a weak guard.

g1t
o9 .

It is important to realize that the transformation described
in the proof of Lemma 10 preserves the guardedness and
weak guardedness properties. Therefore, we can stillassume
that TGDs have singleton heads.

The following theorem shows that evensingle un-
guarded rule can destroy the decidability of simplest reason-
ing tasks under TGDs (CalGottlob, and Kifer 2008).

Theorem 15. There is a fixed set of TGDS, such that

all but one TGDs of¥, are guarded and it is undecid-
able whetherD U ¥, E @, or, equivalently, whether
Q € chase(Xy, D).

Proof (sketch). The theorem is proved by simulating a
Turing machine (TM) with TGDs, making use of a single
non-guarded TGD. Note that, by using two guarded rules
and a single unguarded rule, we can define an infinite grid
as follows. LetD contain (among other atoms) the atom
indez(0). Consider the following TGDs:

index(x) — Jy next(z,y)
next(z,y) — indezx(y)
next(z,z'), next(y,y') — grid(x,y, ', y")

These rules, the third of which is unguarded, define an infi-
nite grid whose points have co-ordinateandy (represent-

ing tape position and time, respectively), and where for each
point (z, y) its tape successdr’, y) and its time successor
(z,v') is also encoded. Note that only the last of the TGDs
is non-guarded.

It is not hard to see that we can simulate the progress
of a TM using suitable initialization atoms i and
guarded TGDs. To this aim, we need additional predi-
catescursor(Y, X) (the cursor is in positiotX” at timeY’),
state(Y,S) (M is in stateS at timeY’), content(X,Y, A)

(at timeY’, the content of positioX in the tape isd), plus
some auxiliary predicates. The following rule encodes the
behaviour of the TM on all transition rules that move the
cursor to the right:

grid(ShAl; 523 A27 Tlght, X17Y17X2u }/2)7
cursor(Yy, X1),

state(Yy, S1), content(X4,Y1, A1) —
cursor(Ya, Xo), content (X1, Ya, As),
state(Ys, So), mark(Yy, X1)

Such a rule has also obvious sibling rules for “left” and
“stay” moves. Additional “inertia” rules are needed, that
make use of thenark predicate; these rules ensure that all
non-marked positions in the tape are not modified. Itis a
straightforward exercise to findfixednumber of such rules.
Notice that the fact that the rules have multiple atoms in the
head is not a loss of generality by virtue of Lemma 10. Fi-
nally, we assume without loss of generality that our Turing
machine has a single halting statgwhich is encoded by
the atomhalt(so) in D. We add a guarded rule

state(Y, S), halt(S) — stop(S)

It is now clear that the machine halts fhase(X,, D) =

3X stop(X),i.e., iff £, UD E 3X stop(X). We have thus
reduced the halting problem to the problem of answering
atomic queries to a database unélgr. The latter problem

is thus undecidable. O

Definition 16. Let X be a set of WGTGDsD be a
database, and/ = chase(X, D). Theguarded chase graph
GCG(%, D) is defined as follows. The set of vertices is
constituted by the atoms @&f, and there are two kind of
arcs: normaland dotted. Consider a TGD with a weak
guardy € body(p), which was used in an application of

75

a TGD rule using a homomorphismthat maps the body
and head of to chase(3, D). Then (i) there is alottedarc
from every atom irk(body(p)) — {h(~)}) to every atom in
h(head(p)); (ii) there is a normalarc from h(~) to every
atom ofh(head(p)). B

Itis easily seen that the graph obtained fr6f6'G (%, D)
by omitting all dotted arcs is a forest.

Definition 17. The forest obtained fron&7CG (X, D) by
dropping all dotted arcs is called thguarded chase forest
and is denoted b7 CF (X, D).

Definition 18. Let D be a possibly infinite relational in-
stance for a schem®&, and letS be a set. We are mainly
interested in set§' such thatS C dom (D), but for the sake
of generality, we do not exclude other sets here.

e An[S]-join forest ofD is an undirected labeled fore%t =
(V, E, \), whose labeling function : V' — D is such
that :

(i) DCA(V),and

(i) T is[S]-connected, i.e., for each€ dom(D) — S,
the set{v € V' | ¢ occursin\(v)} induces a con-
nected subtree iff".

e We say thaD is [S]-acyclic iff D has an[S]-join forest.

The above definition generalizes the classical notion of
hypergraph acyclicity (Beeri et al. 1981) of an instance (or,
equivalently, of a query). In fact, an instance or a query (seen
as an instance) is hypergraph-acyclic iff if$-acyclic.

The following Lemma follows straightforwardly from the
definitions of{S]-acyclicity.

Lemma 19. Given a database instande for a schemaR,
and a setS, if D is [S]-acyclic, thentw(D) < |S| + w,
wherew is the maximum arity of any predicate symboRn
Proof (sketch). A tree decompositiofT” = (V, E), x) of
width < |S| + w can be obtained from di$]-join tree(T =
(V,E), \) of B by definingvv € V, x(v) = SUA(v). O
Definition 20. Let D be an instance for a schenfa. Let
dom(D) be theactive domairof D, i.e., dom(D) contains
all constants and labeled nulls that occur in. The Her-
brand BaseHB(D) of D is the set of all atoms that can be
formed using the predicate symbols/fand arguments in
dom(D). We define:

e chase™ (2, D) = chase(X, D) N HB(D), and
e chase™ (X, D) = chase(X, D) — chase™ (%, D)

Notice that chase™(%,D) U chase™(2,D) =
chase(X, D) and chaseL(E,D) N chase™ (3, D) = 0.
Moreover, if D is null-free (which will be the case in many
applications), thenchaseJ‘(E,D) is the finite set of all
null-free atoms inchase(X, D), while chase™ (, D) may
be infinite.

Lemma 21. If ¥ is a set of WGTGDs and an instance,
thenchase™ (X, D) is [dom(D)]-acyclic.

Lemma 22. If 3 is a set of WGTGDs and an instance of
a schemaRr, thentw(chase(X, D)) < |D| 4+ w, wherew is
the maximum arity of a predicate .

Proof. Follows easily from Lemmata 19 and 21. O

Theorem 23. Given a relational schem®, a set of WGT-
GDs?Y, a Boolean conjunctive query, and a database in-
stance forRk, the problem of checking whethEru D = @
(or, equivalentlychase(X, D) = Q) is decidable.

Proof. Here we consider the query as an existentially-
guantified logical sentence. We rely on the fact that both
chase(3, D) A Q and chase(3, D) A —=Q have a (possibly
infinite) model of bounded treewidth, when they are satisfi-
able. This follows from the fact thathase(3, D) is univer-

sal for D under> and has bounded treewidth. Our claim
now follows by a well-known result of Courcelle (Cour-
celle 1990), also found in (Goncalves anda@el 2000), that
generalizes an earlier result of Rabin (Rabin 1969). This
result (Theorem 11) states that classes of first-order logic
(more generally, monadic second-order logic) that enjoy the
bounded treewidth model property are decidable. [

The above theorem establishes decidability of query an-
swering under WGTGDs, but it tells little about the com-
plexity. This is the subject of the next section.

Complexity
In this section we present several complexity results about

query answering under guarded and weakly-guarded TGDs.

EXPTIME Hardness

Theorem 24. Given a relational schem®&, a set of WGT-
GDs ¥, a Boolean conjunctive quer®, and a database
instance D for R, the problem of determining whether
chase(X, D) | @ is EXPTIME-hard. In the case where
the arity of predicates irR is not fixed, the same problem
is 2XPTIME hard. The same results hold in case of atomic
gueries and even fixed queries.

Proof (sketch). The proof is by simulation of @SPACE
Alternating Turing Machine (ATM); in the case of unlimited
arity of the predicates ifR, we can simulate aBXPSPACE
ATM. A detailed proof can be found in the full version of
this paper (CaJ Gottlob, and Kifer 2008). 0

Squid Decompositions

In this section we define notion sfjuid decomposition, and
prove alemma called “Squid Lemma” which will be a useful
tool for proving the upper complexity bound of the query
answering problem.

Definition 25. A squid decompositiod = (h, H,T') of

a Boolean conjunctive query consists of a mapping :
vars(Q) — vars(Q) of @ and a partition ofh(Q) into two
setsH andT such thatl’ = h(Q) — H and such thafl" is
[vars(H)]-acyclic. We refer td1 as theheadof §, and toT'

as thetentaclesof . The set of all squid decompositions of
Q is referred to asquidd (Q).

One may imagine the séf in a squid decomposition as
the head of a squid, and the sétas a forest of tentacles
attached to that head, in a way similar to what is done in

76

(Glimm et al. 2008). Note that a squid decomposition of
Q@ is not necessarily a query folding (Chandra and Merlin
1977; Qian 1996) of), becausé, does not need to be an

endomorphism o), in other terms, we do not require that
h(Q) C Q. Of course/ is a homomorphism.

Example 4. Consider the following Boolean conjunctive
query (the schema is obvious):

Q() — R(X,Y),R(X, Z),R(Y, Z),

R(Z7 V1)7 R(V17 ‘/'2)’ R(‘/Qv V3)7 R(V37 V4)7 R(V47 ‘/5)7
R(‘/lv ‘/6)7 R(V67 V’S)a R(V57 V7)7

R(Z,U1), S(Uy,Us, Us), S(Us, Uy, Us)

A possible squid decomposition is the following homomor-
phism i defined as:h(V6) = V2, h(V4) = h(V5) =
h(V'7) = V3, and as the identity on the other variables. The
result of the decomposition is the query shown in Figure 2,
where its join graph is depicted, in order to distinguish the
head from the tentacles. [

R(X,Y)
/ head

R(X, z)
R(Z, vl) R(Z, U1)
R(V1, Va2) S(U1, U2 Us)

‘ tentacles
R(VQ‘ V3) S(Us, U4 Us)
R(V3, V3)

Figure 2: Squid decomposition from Example 4

The following Lemma, whose proof can be found in the
full paper (Cai, Gottlob, and Kifer 2008), will be used as a
main tool in the subsequent complexity analysis.

Lemma 26 (Squid Lemma).LetY: be a set of WGTGDs on
a schemaR, D a (ground) database instance f@&, and
@ a conjunctive query, thenhase(X, D) = Q iff there is
a squid decomposition = (h, H,T) € squidd(Q) and
a homomorphisnd : dom(h(Q)) — dom(chase(3, D))
such that: ()0(H) C chase™ (%, D), and (i) 0(T) C
chase™ (3, D).

Clouds and the complexity of query answering
under WGTGDs

To study the complexity of query answering under WGT-
GDs, we introduce the notion ofoud.

Definition 27. Let X be a set of WGTGDs on a schema
R and D an instance forR. For every atoma of
chase(X, D) the cloud of @ with respect toX and D, de-
notedcloud (X, D, a), is the set of all atoms inhase(X, D)
whose arguments are idom(a) U dom(D). More for-
mally, cloud (X, D,a) = {b € chase(X, D) | dom(b) C
dom(a) U dom(D)}. Notice that for every atom ¢

chase(3, D) we haveD C cloud(X, D,a). Moreover, we
define

CZOUdS(Z? D) = {CZOUd(Za Da Q)}QEChase(E,D)
clouds™ (%, D) = {(a, cloud(3, D,a)) | a € chase(X, D)}

A setS C cloud(%, D, a) is called asubcloudof a (with
respect toX and D). The set of all subclouds of an atom
a is denoted bysubclouds(¥, D,a). Finally, we define
subclouds™ (X, D) = {(a,C) | a € chase(X,D) AN C C
cloud(Z, D, a)}

Definition 28. Let D be an instance for a schenfa. Let

« and 8 be two constructs consisting each of one atom of
HB(D), or a set of atoms of{B(D), or an atom paired
with a set of atoms offB(D). We say thatx and 3 are
D-isomorphic, denoted: ~p (3, or simplya ~ (3 in case

D is understood, iff there exists a bijection (i.e., a bijective
homomorphismY : dom(«) — dom(3) such thatf («) =
f(B) (notice thatf is the identity ondom/(D)).

Example 5. If a,b € dom(D) and ¢1,(2,(3,{4 &

dom(D), we have: P(a7<17<2) = P(a7<37<4)

and (P(aaC3)7{Q(a7<3)7Q(C37C3)7R(<3)}) . =

(P(aagl)a {Q(a‘a€1)7Q(a‘acl)7R(<1)})' Dlﬁ:erentlyv

P(G‘vClaCQ) ¢ P(‘LClaCl) and P(aaChCZ) C#

P((3,¢1,61), @« # (8 meaninga ~ (does not hold.
(|

Theorem 29. Let > be a set of WGTGDSY) an instance,
and @@ a Boolean conjunctive query. Determining whether
DUY E Q, or, equivalently, whethethase(X, D) = Q,

is decidable inEXPTIME in case of bounded arities, and in
2-EXPTIME in general.

Proof (sketch). This proof sketch is a short version of the
proof that can be found in the report (GaGottlob, and
Kifer 2008). We first give some preliminary definitions.

Definition 30. Leta be an atom. Theanonical renaming
cang = dom(a) U dom(D) — A, U dom(D), whereA,

is a set{&,...,&,} of labelled nulls, disjunct from y, is

a substitution that maps each elementlofn (D) into itself
and maps the-th argument value in lexicographic order of
awhichis notindom (D) to¢;, forall i such thatl <i < h,
whereh is the number of values imthat are not indom (D).

If S C cloud(X,D,a) (i.e., if S € subclouds(3, D, a)),
then can,(S) is well-defined and we denote byn(a, S)

the pair (can,(a), can,(S)).

Example 6. If « = G(d,a1,09,1) Where d €
dom(D) and aj,as ¢ dom(D), and if S =
{P(o1), R(ag, o), S(aq,0,b)}, whereb € dom(D),
then can.(c) = G(d,&1,62,61), and can.(S) =
{P(&), R(&2, &), 5(61, 6,0} O

We now list a number of important results regarding
clouds. Let|R| be the number of predicates of the schema
R, andw the maximum arity of a predicate R.

Fact 1. |cloud(X, D, a)| <|R|- (Jdom(D)|+w)™, hence
cloud (X%, D, a) is polynomial in size in case the arityis
fixed, and exponential otherwise.

Fact 2. Let ¢ be an atom in the guarded join forest
GCF(%,D). Then each atond of the subtreela of

77

GCF(X, D) rooted ata is obtained by a sequence of
(l:hase steps that involve only atomsaddud (X, D, a) and
a.

Fact 3. If D is an instance for a schenfa, ¥ a set of
WGTDs,a, b € chase(X, D), and(a, cloud (%, D, a)) ~
(b, cloud(X, D, b)), then ta U cloud (%, D,a) ~ ‘b U
cloud(%, D, b).

Fact 4. The quotient seZ = {(a, cloud(%, D,a)) | a €
chase(3, D)}/ ~ isfinite. Its size is at most doubly expo-
nential in| DUX| in case of unbounded arities and at most
singly exponential inD U | in case of bounded arities.

The above facts allow us to design alternating algo-
rithms for query answering, by simulating the infinite
chase by operating on the finite quotient sétrather
than on an infinite number of atoms and their associated
clouds. In particular, the equivalence class of each pair
(a, cloud(X, D, a)) will be represented by the canonized
pair cang (a, cloud(3, D, a)).

First, we describe an alternating algorithm
Acheck(X, D, @), which is executed given the following:
(1) a set> of WGTGDs; (2) an instanceD; (3) an atomic
query@ of the form3yy, ...,y P(t1,t2,...,t,.) whereP
is a predicate symbol, and the, ... ¢, with» > ¢, are
terms (constants or variables)dam (D) U{y1,yz2, ..., ye}-
Acheck decides whetherhase(X, D) = @Q, or, equiva-
lently, DUY = Q.

Alternating Algorithm Acheck. The alternating algorithm
uses existential moves in order to successively guess the
vertices of a path iGCF(X, D) from some atom irD to
some atond which is a homomorphic instance of the query
atom P(ty,ts,...,t.) to b (and fails if such a guess can-
not be made). For each intermediate atarof this path,

a subclouds$ of g is guessed as well as a linear ordering
s; < sy < .-+ < s, on the elements of. To prove
that all atoms of the guessed subclofidare effectively

in chase(X, D), in universal movesk auxiliary configura-
tions are generated, where th¢h auxiliary configuration
assumes; ...s; ; is already derived and starts an alter-
nating subroutine deriving;. The details of these auxil-
iary computation are tricky and are described in more detail
in (Cali, Gottlob, and Kifer 2008). Whenever an atam
and its cloudC are generated, instead of usifig C), the al-
gorithm works withcan, (a,C) = (cany(a), cang(C)) and
appliescan, also to the linear order and all other data struc-
tures used with each configuration.

In case of bounded arities, canonized clouds are of poly-
nomial size, and thus each configuration uses polynomial
space only. Given thakPSPACE = EXPTIME, answering
atomic queries is iIrExXPTIME. In case the arity is un-
bounded, each configuration requires at most exponential
space: the problem is then feasible in Alternating-
PSPACE which is equal to double exponential time, or 2-
EXPTIME.

From this complexity bound, we easily derive :

Fact 5. Let 3 be a set of WGTGDs, and léd be an in-
stance for a schenid. Then, computing:haseL(Z,D)
can be done in exponential time in case of bounded arity,
and in double exponential time otherwise.

We now show that answering general conjunctive queries
is of the same complexity. To this end, we design a non-
deterministic algorithnQcheck such thaQcheck(X, D, Q)
outputs “true” iff D U X Q, or, equivalently, iff
chase(X, D) = Q. The algorithm heavily relies on the con-
cept of squid decompositions, and on Lemma 26.

Nondeterministic Algorithm Qcheck. Qcheck first com-
puteSchaseL(E, D). Then it nondeterministically guesses
a squid decompositiod = (h,H,T) of @, and a sub-
stitution 6y : dom(H) — dom(chase(X, D)), such that
00(H) C chase™(%, D). Next Qcheck tests whetheb,
can be extended to a homomorphignsuch thatd(T)) C
chase™ (X, D). Note that, by Lemma 26, this is equiva-
lent to chase(3, D) = Q. Such af exists iff for each
connected subgraphof 0(T), there is a homomorphism
0, that leaves all elements dbm(D) unaltered such that
0:(t) C chase™ (%, D). The Qcheck algorithm thus iden-
tifies the connected componentsdgfl’). Each such com-
ponent is an acyclic conjunctive query that can be written
as a join treet. For each such join treg Qcheck now
tests whether there exists a homomorphisifwhich, we re-
mind, is the identity orD) such thab, (t) C chase™t (2, D).
This is done by the subroutinkcheck, which takes as argu-
ments the TGDs, the database instance, and the subgraph
of T'; how Tcheck(X, D, t) is executed is described below.
Qcheck succeeds iff the exit is positive for each component.

The correctness oficheck follows from Lemma 26.
Given the nondeterministic guess of a squid decomposition,
the complexity ofQcheck is in NPX | i.e., NP with an ora-
cle in X, whereX is a complexity class that is sufficiently
powerful for computingchaseL(E, D), and performing the
testsTcheck(X, D, t). We finally describél check.

Nondeterministic Algorithm Tcheck. Tcheck works es-
sentially like Acheck, but instead of nondeterministically
constructing a main configuration path of the configuration
tree such that eventually some atom matches the unique
guery atom,Tcheck nondeterministically constructs a main
configuration subtree of the configuration tree, such that
eventually all atoms of the join treewill be consistently
translated into some vertices of In addition to the data
structures ofAcheck, the main configurations of check
maintain a pointerr and a substitutiod. In the initial main
configuration,r points to the root of and6 is empty. In
general, the pointer of each main configuratiof’ points
to some atomx! of ¢, which has not yet been matched. The
algorithm attempts to expand this configuration by succes-
sively guessing a subtree of configurations mimicking a suit-
able subtree of? CF (3, D) that satisfies the subquery of
rooted atr!. If Tcheck gets to an atora such that there is
ahomomorphismy such thatr (9(z')) = a', then, in case
«! has no children, the current configuration turns into an
accepting one. Otherwise, (via a universal move) for each
child atomd of ! int, Tcheck creates a separate configura-
tion with valuesu! = d andf = o 0 6.

For the complexity ofdcheck, note that in case the arity is
bounded;T check runs inAPSPACE= EXPTIME, and comput-
ing chase™ (X, D) is in EXPTIME (Cali, Gottlob, and Kifer
2008). ThusQcheck runs in timeNpPE*PTME — EXPTIME. In

78

case of unbounded arities, both computitigise™ (3, D)
and runningTcheck are in 2EXPTIME, thereforeQcheck
runs in timeNp? XPTIME — 2_EXPTIME. O

By combining Theorems 24 and 29 we get the following
complexity characterization for reasoning under WGTGDs.

Theorem 31. Let X be a set of WGTGDs, leb be an
instance, and let) be a Boolean conjunctive query. De-
termining whetherD U ¥ | @, or, equivalently, whether
chase(3, D) | Q, iSEXPTIME complete in case of bounded
predicate arities, and even in case is fixed; it is 2-
EXPTIME complete in general. The same completeness re-
sults hold for query containment under WGTGDs.

Guarded TGDs

Theorem 32. Let X be a set of GTGDs over a scheRa
and letD be an instance foR. Let, moreoverw denote the
maximum arity of any predicate appearingf) and let|R |
denote the total number of predicate symbols. Then:

Q) Computingchasel(E,D) can be done irPTIME if
both w and |R| are bounded, and thus also in case of
a fixed se®.. This problem is irEXPTIME in casew is
bounded, and in ZxPTIME otherwise.

(2) If @ is an atomic (Boolean) query, then checking
whether® U D = @ or, equivalentlychase(X, D) = @Q,
is PTIME-complete in case botlr and |R| are bounded,
and remain®TIME-complete even in caseis fixed. This
problem isexpTIME-complete ifw is bounded and 2-
EXPTIME-complete in general. It remains 2xPTIME-
complete even whef| is bounded.

(3) If @ is a general Boolean conjunctive query, checking
whetherX U D = @ or, equivalentlychase(X, D) = Q
is NP-complete in case botlr and |R| are bounded, and
thus also in case of a fixed s&t Checking whether
chase(3, D) = @Q is EXPTIME-complete ifw is bounded
and 2-ExPTIME-complete in general. It remaing-
EXPTIME-complete even whef | is bounded.

(4) Query containment under GTGDs ng>-complete if
both w and |R| are bounded, and even in case the set
> of GTGDs is fixed.

(5) Query containment under GTGDs IEXPTIME-
complete ifw is bounded and ZxpPTIME-complete in
general. It remain2-EXPTIME-complete even whefk |
is bounded.

Proof (sketch). The hardness results are obtained with a
straightforward modification of the proof of Theorem 24.
The membership results are proved exactly as those for
WGTGDs (Theorem 29), except that, instead of using the
notion of cloud, we use the similar notion oéstricted
cloud. Therestricted cloudrcloud(%, D, a) of an atom
a € chase(X, D) is the set of all atomg € chase(X, D)
such thatdom(b) C dom(a). We thus use algorithms that
differ from the respective original algorithms only in that
they use restricted clouds instead of clouds. A more detailed
proof is given in (Cal Gottlob, and Kifer 2008). O
Note that one of the main results of Johnson and
Klug (Johnson and Klug 1984), namely, that query contain-
ment under inclusion dependencies of bounded arities-is
complete, is a special case of It¢8) of Theorem 32.

Application

In this section we show the application of our subset of
Datalog to a formalism called F-logic Lite; we show that

guery answering and containment under F-logic Lite rules

areNP-complete.
F-logic Lite is a smaller but expressive version of F-logic,
a well-known formalism introduced for object-oriented de-

ductive databases. We refer the reader to refer the reader

to (Cal and Kifer 2006) for details about F-logic Lite.
Roughly, with respect to F-Logic, F-logic Lite] excludes
negation and default inheritance, and allows only a limited
form of cardinality constraints.

We now briefly show how to encode F-logic Lite using
Datalog’ rules that we denote witll;;, with Xy, =
{Pi}lgiglz-

(1) member(V,T) « type(O, A, T),data(O, A, V).

(2) sub(Ch CQ) — sub(C’l, 03), SLIb(Cg, CQ)

(3) member(O, Cy) « member(O, C),sub(C, Cy).

(4) V=W « data(0, A,V),data(O, A, W), funct(4, O).

Note that this is the only EGD in this axiomatization.

(5) data(O, A, V) « mandatory(A, O).
Note that this is a TGD with an existential variable in the
head (variabld’; quantifiers are omitted).
(6) type(O, A, T) — member(O,C), type(C, A, T).
(7) type(ca A7 T) — SUb(Ca Cl)v type(017 A7 T)
(8) type(cv A, T) — type(C, Av Tl)a SUb(Tlv T)
(9) mandatory(A, C') < sub(C, C1), mandatory(A, C1).
(10) mandatory(A,O) «
member(O, C'), mandatory(A4, C).
(11) funct(A, C) « sub(C, Cy), funct(A, Ch).
(12) funct(A4, O) < member(O, C), funct(A4, C).

It can be easlity shown that the only EGD in the above
Datalog rules does not actually interact with the TGDs, and
therefore we can ignore it (QaGottlob, and Kifer 2008).

We now prove the complexity results.

Theorem 33. Conjunctive query answering under F-logic
Lite rules isNnP-hard.

Proof (sketch). The proof is by reduction from tha-
COLORABILITY problem. Encode a grapf = (V,E)
as a conjunctive query) which, for each edgév;,v;)
in E, has two atomslata(X,V;,V;) anddata(X,V;,V;),
where X is a unique, fixed variable. LeD be the
instanceD = {data(o,r,g), data(o,g,r), data(o,r,b),
data(o, b, r), data(o, g,b), data(o,b, g)}. Then,G is three-
colorable iff D |= @, which is the case ifD U X5, = Q.
The transformation frond= to (@, D) is obviously polyno-
mial. This proves the claim.

Theorem 34. Conjunctive query answering under F-logic
Lite rules is inNP.

Proof (sketch). As mentioned before, we can ignore the
only EGD in Xy, since it does not interfere with query
answering; details are found in the full version (C&ot-
tlob, and Kifer 2008). Let us denote witfi,,, , the set of
Datalog resulting fromX ., by eliminating rulep,, i.e.,
let X%, = Zrrr — {pa}. To establish membership P,

it is sufficient to show that:

79

(1) X% is weakly guarded.

(2) ¥, is such that, for every instande, there are, up to
D-isomorphisms, polynomially many clouds; more pre-
cisely, for every instanc® there exists a polynomialo!
such thatclouds(X, D)/~ | < pol(|D]).

(3) There is a polynomiapol’(-) such that for each in-
stanceD and for each atomu: (3.1)if « € D, then
cloud(X, D,a) can be computed in timgol’(|D|), and
(3.2)if a ¢ D, thencloud(X, D, a) can be computed in
time pol(|D|) from D, a, andcloud(%, D, b), whereb is
the predecessor afin GCF (X, D).

(1) is readily seeen: the affected positions are the follow-
ing: data[3], member|[1], type[1], mandatory[2], funct[2],
data[l]. Itis easy to see that every rule B, ; is weakly
guarded, and thus gy, ;, is weakly guarded.

Now let us sketcH2). LetX/! = v — {ps}, i.e.,
the set of all TGDs ofY’,; but ps. These are all full
TGDs and their application does not alter the domain. We
have chase(Ypy ., D) = chase(Xy;, chase(S5 D)),
Let us now have a closer look & = chase(S/! D).
Clearly, dom(D") = dom(D). For each predicate sym-
bol P, let Rel(P) denote the relation consisting of &f-
tuples inD™. LetQ be the family of all relations that can
be obtained from any of the relatiorf#&!(P) by perform-
ing an arbitrary selection followed by some projection (we
forbid disjunctions in the selection predicate). For example,
assume:, d € dom(D); then,Rel(data) will give rise to re-
lationsmy 2 (0{1 = c} Rel(data)), and tomz(c{1 = d A3 =
¢} Rel(data)), and so on, where the numbers are attribute
identifiers (the notation here should be self-explanatory).
Given thatD is of size polynomial inD and that the max-
imum arity of any relationRel(p) is 3, the set(2 is of size
polynomial in D+ and thus polynomial irD. It can now
be shown thaf) is preserved in a precise sense, when going
to the final resulchase (X', ., DT). In particular, for each
relation Rel’(P) corresponding to predicatg in the final
chase result, when performing a selectioniwi’(P) that
assigns fixed valueg dom(D) to one or more attributes,
and projecting on the other columns, the set of all tuples of
dom(D)-elements in the result is a relation{h For exam-
ple, assume that; is a specific labeled null, then the set of
all T € dom(D) such thatnember(vs, T) is an element of
the final result is a set i; similarily, if v; andvg are new
values, the set of all value$ such thaidata(v;, A, vg) is a
relation inQ2. It is easy to see that from this it follows that
Yep o satisfieq2). In fact, all possible clouds are determined
by the polynomially many ways of choosing at most three
elements of) for each predicate. The proof of the preser-
vation property can be done by induction on thiéh new
labeled null added. Roughly, for each such labeled null, cre-
ated by ruleps, we just analyze which sets of values (or tu-
ples) are attached to it via rules, thenpg, p7, ps, p10, and
so on, and conclude that these sets were all already present
at the next lower level, and thus, by induction hypothesis,
are in<Q.

Condition(3) can straightforwardly proved by similar ar-
guments. |

From Theorems 33 and 34 we immediately get:

Corollary 35. Conjunctive query answering under F-logic
Lite rules isnP-complete.

Conclusions

In this paper we identified a large and non-trivial class of re-
lational constraints, namelyple- and equality-generating
dependencies, for which the problems of conjunctive query
answering and containment are decidable, and provided the
relevant complexity results. Applications of our results in-
clude databases and Knowledge Representation. For in-
stance, our results subsume the classical work of Johnson
and Klug (Johnson and Klug 1984) as well as {@ald Kifer
2006).

Future work. We intend to investigate query answer-
ing (and containment) under WGTGDs in the case of finite
models (finite implication problem). Some interesting re-
sults (Rosati 2006) exist in this respect, and they may carry
over to GTGDs or WGTGDs,

A related previous approach to guarded logic program-
ming is guarded open answer set programmifiieymans,
Nieuwenborgh, and Vermeir 2005). Itis easy to see that a set
of GTGDs can be interpreted as a guarded answer set pro-
gram as defined in (Heymans, Nieuwenborgh, and Vermeir

2005), but that guarded answer set programs are, in general,

more expressive than GTGDs, for example, because they al-
low for negation. Investigating the decidability and com-
plexity of query answering (and containment) under more

expressive classes of constraints, capable of subsuming, for

instance, the results of (G&007) and (Heymans, Nieuwen-
borgh, and Vermeir 2005), is the subject of our future work.
We also plan to investigate the same problem in the case of
finite models.

References

Aho, A.; Sagiv, Y.; and Ullman, J. D. 1979. Equivalence
of relational expressionSIAM J. of Computing(2):218—
246.

Beeri, C.; Fagin, R.; Maier, D.; Mendelzon, A. O.; Ullman,
J. D.; and Yannakakis, M. 1981. Properties of acyclic
database schemes. $TOC, 355-362.

Cali, A., and Kifer, M. 2006. Containment of conjunctive
object meta-queries. MLDB 2006, 942-952.

Cali, A.; Gottlob, G.; and Kifer, M. 2008. Extending data-
log for terminological reasoning. Unpublished technical re-
port, available fromht t p: / / ww. andr eacal i . com

Cali, A.; Lembo, D.; and Rosati, R. 2003. On the decid-
ability and complexity of query answering over inconsis-
tent and incomplete databasesP@DS 2003, 260-271.

Cali, A. 2007. Querying incomplete data with logic pro-
grams: ER strikes back. ER 2007, 245-260.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; and Rosati, R. 2007. Tractable reasoning and efficient
query answering in description logics: The DL-lite family.
J. Autom. Reasoning9(3):385-429.

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998.
On the decidability of query containment under constraints.
In PODS 1998, 149-158.

80

Calvanese, D.; De Giacomo, G.; and Lenzerini., M. 2002.
Description logics for information integration. Bompu-
tational Logic: Logic Programming and Beyond, volume
2408 ofLNCS. Springer. 41-60.

Chandra, A., and Merlin, P. 1977. Optimal implemen-
tation of conjunctive queries in relational data bases. In
STOC 1977, 77-90.

Courcelle, B. 1990. The monadic second-order logic of
graphs. |. recognizable sets of finite graphsformation
and Computatior85(1):12—75.

Deutsch, A., and Tannen, V. 2003. Reformulation of xml
gueries and constraints. 1I6DT, 225-241.

Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answerifigeor.
Comput. Sci336(1):89-124.

Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2008.
Conjunctive query answering for the description logic
SHIQ. J. of Artificial Intelligence Researcdil:151-198.
Goncalves, M. E., and @del, E. 2000. Decidability issues
for action guarded logics. IDescription Logics, 123-132.
Gottlob, G., and Nash, A. 2006. Data exchange: computing
cores in polynomial time. I?PODS, 40—49.

Gottlob, G.; Leone, N.; and Scarcello, F. 2002. Hypertree
decompositions and tractable queri@ésComput. Syst. Sci.
64(3):579-627.

Heymans, S.; Nieuwenborgh, D. V.; and Vermeir, D. 2005.
Guarded open answer set programmingLRNMR 2005,
92-104.

Johnson, D., and Klug, A. 1984. Testing containment of
conjunctive queries under functional and inclusion depen-
dencies.JCSS28:167-189.

Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical founda-
tions of object-oriented and frame-based languagesr-

nal of ACM42:741-843.

Maier, D.; Mendelzon, A. O.; and Sagiv, Y. 1979. Testing
implications of data dependenciéRODS4(4):455-469.
Millstein, T.; Levy, A.; and Friedman, M. 2000. Query
containment for data integration systems.Pi@DS 2000,
67-75.

Nash, A.; Deutsch, A.; and Remmel, J. 2006. Data
exchange, data integration, and chase. Technical Report
CS2006-0859, UCSD.

Qian, X. 1996. Query folding. IICDE, 48-55.

Rabin, M. 1969. Decidability of Second-Order Theories
and Automata on Infinite Tree3ransactions of the Amer-
ican Mathematical Societi41(1-35):4.

Rosati, R. 2006. On the decidability and finite control-
lability of query processing in databases with incomplete
information. INPODS 2006, 356—-365.

Rosati, R. 2007. On conjunctive query answering in EL. In
20th International Workshop on Description Logics (DL-
2007). CEUR Electronic Workshop Proceedings.

Simkus, M., and Eiter, T. 2007. DNC: Decidable non-
monotonic disjunctive logic programs with function sym-
bols. InLPAR 2007, 514-530.

