
Taming the Infinite Chase:
Query Answering under Expressive Relational Constraints

Andrea Calı̀2,1

1Computing Laboratory
University of Oxford, UK

Georg Gottlob1,2

2Oxford-Man Inst. of Quantitative Finance
University of Oxford, UK

{andrea.cali, georg.gottlob}@comlab.ox.ac.uk, kifer@cs.sunysb.edu

Michael Kifer 3

3Dept. of Computer Science
SUNY Stony Brook, USA

Abstract

A crucial task in Knowledge Representation is answering
queries posed over a knowledge base, represented as a set
of facts plus a set of rules. In this paper we address the prob-
lem of answering conjunctive queries posed over knowledge
bases where rules are an extension of Datalog rules, called
Datalog∃ rules, that may have existentially quantified vari-
ables in the head; this kind of rules are traditionally called
tuple-generating dependencies (TGDs)in the database liter-
ature, but they are broadly used in description logics and in
ontological reasoning. In this setting, thechasealgorithm
is an important tool for query answering. So far, most of
the research has concentrated on cases where the chase ter-
minates. We define and study large classes of TGDs under
which the query evaluation problems remain decidable even
in case the chase does not terminate. We provide tight com-
plexity bounds for such cases. Our results immediately ex-
tend to query containment.

Introduction
Answering queries posed over knowledge bases is a cen-
tral problem in knowledge representation and database the-
ory. In the database area, checking query containment is
one of the important query optimization and schema inte-
gration techniques (Aho, Sagiv, and Ullman 1979; Johnson
and Klug 1984; Millstein, Levy, and Friedman 2000), and
in knowledge representation it has been used for object clas-
sification, schema integration, service discovery, and more
(Calvanese, De Giacomo, and Lenzerini. 2002). In the pres-
ence of a knowledge base, the problem of query containment
is strictly related to that of query answering; indeed, the two
are reducible to each other; we focus on the former, and our
results immediately extend to the latter.

A practically relevant instance of the query containment
problem was first studied by Johnson and Klug in (John-
son and Klug 1984) for functional and inclusion depen-
dencies and later in (Calvanese, De Giacomo, and Lenz-
erini 1998). Several additional decidability results were ob-
tained by focusing on concrete applications. For instance,
in (Cal̀ı 2007), constraints specific to the entity-relationship
diagrams were considered, and (Calı̀ and Kifer 2006) used
constraints derived from a subset of F-logic (Kifer, Lausen,

Copyright c© 2008,Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Wu 1995), called F-logic Lite. (Simkus and Eiter 2007)
deals with expressive constraints based on Answer Set Pro-
gramming.

In this paper, rather than focusing on specific logical
theories, we analyze the fundamental difficulty that under-
lies earlier approaches, such as (Johnson and Klug 1984;
Cal̀ı 2007; Cal̀ı and Kifer 2006). They all considered special
classes of so-calledtuple-generating dependencies (TGDs)
andequality-generating dependencies (EGDs), all used the
technique calledchase, and all faced the problem that the
chase generates infinite relations, and, in general, query an-
swering and containment are undecidable. In our work, we
tackle the problem in a much more general way, by carv-
ing out a very large class of constraints for which the infi-
nite chase can be tamed. The class of constraints we deal
with is an extension of Datalog rules, that we denote with
Datalog∃; such rules are known astuple-generating depen-
dencies (TGDs)in the database literature; a TGD is an im-
plication between two conjunction of atoms (calledbodyand
head, where the head is implied by the body), where some
of the variables in the head can be existentially quantified.

A well-known procedure that enforces the validity of a set
of TGDs is the chase (Maier, Mendelzon, and Sagiv 1979;
Johnson and Klug 1984). Intuitively, the chase “repairs”
violations of TGDs by repeatedly adding atoms, until a
fixed-point is reached that satisfies all TGDs; the result
of the chase may be infinite. The chase has been inten-
sively used in the area of data exchange (Fagin et al. 2005;
Gottlob and Nash 2006; Nash, Deutsch, and Remmel 2006).
Also, note that the chase is a form oftableau, and it has suc-
cessfully been applied in terminological reasoning based on
description logics (Calvanese et al. 2007; Rosati 2007).

Several authors have recently studied data exchange and
query evaluation problems for settings where the chase al-
ways terminates and thus produces a finite solution (Fagin
et al. 2005). To this aim, restrictions for sets of TGDs, such
asweak acyclicity(first introduced in (Deutsch and Tannen
2003) and heavily utilized, e.g., in (Fagin et al. 2005)), have
been defined that guarantee termination for whatever input
database. However, little was known about decidable query
evaluation and query containment in case of non-terminating
chases that produce an infinite result, with the notable excep-
tion of the classical work of Johnson and Klug (Johnson and
Klug 1984), that shows by a very involved proof that query

Proceedings, Eleventh International Conference on Principles of Knowledge Representation and Reasoning (2008)

70



containment is decidable in case constraints are either:(i)
inclusion dependencies (IDs)alone, i.e., TGDs whose body
and head consist both of a single atom only;(ii) a special
class of IDs andkey dependencies (KDs).

The topic of the present paper is to consider significantly
larger classes of TGDs. In particular, we define the notions
of sets ofguarded TGDs (GTGDs)and ofweakly guarded
TGDs (WGTGDs). A TGD is guarded if its body contains an
atom calledguard that covers all variables occurring in the
body. Weakly guarded TGDs are a generalization of guarded
TGDs that only require guards to cover all variables occur-
ring ataffectedpositions only, where affected positions are
positions in predicates that may contain some fresh labelled
nulls generated during the chase. The notion of guard is
crucial, since query evaluation becomes undecidable once
we allow the presence of a single non-guarded TGD. In-
stead, under WGTGDs, the (possibly infinite) result of the
chase has bounded treewidth (Theorem 23), and we use this
fact together with well-known results about the generalized
tree-model property (Courcelle 1990; Goncalves and Grädel
2000) for a short proof that Boolean query evaluation and
query containment are decidable under WGTGDs (and thus
also with GTGDs). Unfortunately, this decidability result
does not allow us to derive useful complexity bounds.

Our main contribution lies in the complexity bound for
query evaluation under WGTGDs and GTGDs. We show
that the complexity of query evaluation (and equivalently,
query containment) under WGTGDs isEXPTIME-hard, in
case of a fixed set of TGDS, and 2-EXPTIME-hard in case
the TGDs are part of the input.

As for upper bounds, let us first remark that we can-
not (as one may think at the first glance) directly or eas-
ily use known results on guarded logics (Goncalves and
Grädel 2000) to derive complexity results for query evalua-
tion, since queries are in general non-guarded. We therefore
develop new algorithms, and prove that query answering is
EXPTIME-complete in case of bounded predicate arities, and
even in case the set of constraints is fixed, and is 2-EXPTIME
complete in general. The proof of the upper bound is based
on an alternating algorithm that mimicks the chase by using
a finite number of configurations. Each of them corresponds
to thecloudof one atoma, i.e. the set of atoms in the chase
whose arguments either appear ina or in the “active domain”
of the input database instance.

Then, we derive complexity results for query answering
under GTGDs. While in the general case the complexity
is the same as for WGTGDs, interestingly, when consider-
ing afixedset of dependencies (which is the usual setting in
data exchange and in description logics), we get much better
results: evaluating Boolean queries isNP-complete (same
complexity of answering without constraints (Chandra and
Merlin 1977)), and inPTIME in case the query is atomic.
Our results subsume the results of (Johnson and Klug 1984)
on IDs alone as a special case.

The complexity results in this paper, together with some
additional ones that are immediate consequence of them, are
summarized in Figure 1, where all complexity bounds are
tight, andΣ denotes the set of Datalog∃ rules. By “bounded
width” we intend bounded treewidth or even hypertree width

GTGDs WGTGDs GTGDs WGTGDs
CQ type variableΣ variableΣ fixedΣ fixedΣ

general 2-EXPTIME 2-EXPTIME NP EXPTIME
bounded width,
fixed, and atomic 2-EXPTIME 2-EXPTIME PTIME EXPTIME

Figure 1: Summary of complexity results

(Gottlob, Leone, and Scarcello 2002). Notice that complex-
ity in the case of fixed queries and fixed TGDs is the so-
calleddata complexity, i.e. the complexity wrt the data only,
which is of particular interest in database applications. With
such results, we subsume both the main decidability and
complexity result in (Johnson and Klug 1984), and decid-
ability and complexity results on F-logic lite (Calı̀ and Kifer
2006) as special cases, and we are actually way more gen-
eral.

A relevant application. F-logic (Kifer, Lausen, and
Wu 1995) is a formalism for object-oriented deductive
databases. For a smaller but still powerful version of F-logic,
called F-logic Lite (Cal̀ı and Kifer 2006), we show how to
encode F-logic Lite using TGDs and a single EGD, which
can be ignored wrt query answering. The results of our
paper apply to obtained set of constraints, since the TGDs
are WGTGDs. We should note, however, that our results
cover a much larger set of F-logic queries than (Calı̀ and
Kifer 2006); in particular, we can consider queries defined
with recursive Datalog∃ rules by encoding them into TGDs,
as long as such TGDs are WGTGDs. Also, we prove that
query answering under F-logic Lite can be decided inNP
and combining this with a hardness result (reduction from 3-
COLORABILITY ), we prove that query answering (and query
containment) in F-logic Lite isNP-complete.

Further results. We mention some relevant results that
will be published elsewhere.Equality generating dependen-
cies (EGDs)are a generalization of functional dependencies
in relational databases. An EGD, like a TGD, is an im-
plication between a head and a body, where the body is a
conjunction of atoms, and the head is an equality atom that
equates two variables appearing in the body. Query answer-
ing becomes easily undecidable in the presence of EGDs and
TGDs, even when TGDs are simple IDs. In particular, in
(Cal̀ı, Lembo, and Rosati 2003) it is shown that query an-
swering is undecidable under IDs andfunctional dependen-
cies (FDs), where a FD is a special case of EGD. We define
a class ofinnocuousEGDs, that enjoy the property that they
can be ignored in the query answering phase, since they do
not actually interact with TGDs.

We also describe a semantic condition, calledPolynomial
Clouds Criterion (PCC), imposing that the number of clouds
generated during a chase is polynomial in the size of the in-
put database instance, and the cloud of each generated atom
a can be obtained in polynomial time from the parent ofa in
the chase. Whenever a set of WGTDs fulfills the PCC, then
answering Boolean queries is inNP, and answering atomic
queries, as well as queries of bounded hypertree width, is in
PTIME.

71



Preliminaries
In this section we define the basic notions that we shall use
throughout the paper. More details can be found in (Calı̀,
Gottlob, and Kifer 2008).

We introduce the following pairwise disjoint sets of sym-
bols: (i) an infinite set∆ of constants, which constitute the
“normal” domain of a database schemaR; (ii) an infinite set
∆N of labeled nulls, which will be used as “fresh” Skolem
terms;(iii) an infinite set∆V of variables, which are used
in queries. Intuitively, a null is a placeholder for an un-
known value; two distinct nulls may denote the same value1;
therefore, a null can be seen as a variable. We assume a
lexicographic order on∆ and ∆N , with every symbol in
∆N following all symbols in∆. Sets of variables (or se-
quences, with a slight abuse of notation) are denoted asX̄,
with X̄ = X1, . . . , Xk for somek.

We will refer to a relational schemaR, assuming that
database instances (also called databases), queries and de-
pendencies use predicates inR. We assume the reader is
familiar with the relational model and conjunctive queries.
As mentioned, we denote relational schemas byR, queries
by Q, database instances byD, and the answers to a query
Q, evaluated on the database instanceD, by Q(D). In the
following, we shall considerconjunctive queries (CQs), with
which we assume the reader is familiar.vars(Q) denotes the
set of variables appearing in a CQQ. Database instances,
or simply databases, will be constructed with values from
∆ ∪∆N , and they will be possibly infinite.

By an atom we mean an atomic formula of the form
P (a1, ..., an), whereP is ann-ary predicate (also called re-
lation name). The constants and labeled nulls appearing in
an atoma are denoted bydom(a). This notation extends to
sets and conjunctions of atoms. ApositionP [i] in a rela-
tional schema is identified by a relational predicateP and
its i-th attribute, identified by the integeri.

We now come to the notion of homomorphism. Amap-
ping from one set of symbols,S1, to another set of symbols,
S2, is a functionµ : S1 → S2 defined as follows:(i) ∅
(empty mapping) is a mapping;(ii) if µ0 is a mapping, then
µ0 ∪ {X → Y }, whereX ∈ S1 andY ∈ S2 is a mapping
if µ0 does not already contain someX → Y ′ with Y 6= Y ′.
If X → Y is in a mappingµ, we writeµ(X) = Y . A ho-
momorphismfrom a set of atomsD1 to another set of atoms
D2, both over the same relational schemaR, is a mappingµ
from ∆∪∆N ∪∆V to ∆∪∆N ∪∆V such that the following
conditions hold:(1) if c ∈ ∆ thenµ(c) = c; (2) if c ∈ ∆N

thenµ(c) ∈ ∆∪∆N ; (3) if the atomR(c1, . . . , cn) is in D1,
then the atomR(µ(c1), . . . , µ(cn)) is in D2. The notion of
homomorphism is naturally extended to atoms as follows.
If f = R(c1, . . . , cn) is an atom andµ a homomorphism,
we defineµ(f) = R(µ(c1), . . . , µ(cn)). For asetof atoms,
F = {f1, . . . , fm}, we defineµ(F ) = {µ(f1), . . . , µ(fm)}.
The set of atoms{µ(f1), . . . , µ(fm)} is also calledimageof
F wrt µ. In this case, we say thatµ mapsF to µ(F ). For
a conjunctionof atomsΦ = φ1 ∧ . . . ∧ φn, we useµ(Φ) to

1Notice that this does not hold for constants in∆; we adopt the
unique name assumption, imposing that different constants in∆

denote different objects.

denote the set of atomsµ({φ1, . . . , φn}).
The notion of a homomorphism serves to define the an-

swers to conjunctive queries. The answers to a conjunc-
tive queryQ of the formQ(X1, . . . , Xn) ← Φ(X̄) over a
database instanceD, denotedQ(D), are defined as follows:
an atomt ∈ ∆n is in Q(D) iff there exists a homomorphism
µ that mapsΦ(X̄) to atoms ofD, and(X1, . . . , Xn) to t
(notice that only tuples made of constants in∆ are allowed
to be in the answer).

A major issue in this work are database dependencies,
which are defined over a relational schema. In the relational
model, one of the most important classes of dependencies
aretuple-generating dependencies (TGDs), which are a gen-
eralization of inclusion dependencies.
Definition 1. Given a relational schemaR, a TGD σ
is a first-order formula of the form∀X̄∀Ȳ Φ(X̄, Ȳ ) →
∃Z̄Ψ(X̄, Z̄), whereΦ(X̄, Ȳ ) and Ψ(X̄, Z̄) are conjunc-
tions of atoms overR, called body and headof the TGD,
and denotedbody(σ) andhead(σ) respectively. Such a de-
pendency is satisfied in a databaseD for R if, whenever
there is a homomorphismh that maps the atoms ofΦ(X̄, Ȳ )
to atoms ofD, there exists an extensionh′ of h (i.e.,h′ ⊇ h)
that maps the atoms ofΦ(X̄, Z̄) to atoms ofD.

To simplify the notation, we will usually omit the quanti-
fiers in TGDs.

We now define the notion ofquery answeringunder
TGDs. A similar notion is used in data exchange (Fagin
et al. 2005; Gottlob and Nash 2006) and in query answering
over incomplete data (Calı̀, Lembo, and Rosati 2003). Given
an incomplete database, i.e., a database that does not satisfy
all the constraints inΣ, we first define the set of completions
(akarepairs) of that database, which we callsolutions.
Definition 2. Consider a relational schemaR, a set of
TGDsΣ, and a database instanceD for R. The set of in-
stancesB such thatB |= D∪Σ, is called the set ofsolutions
of D givenΣ, and is denoted bysol(Σ, D).
Definition 3. Consider a relational schemaR, a set of
TGDs Σ, and a database instanceD for R. The an-
swers to a conjunctive queryQ on D given Σ, denoted
ans(Q,Σ, D), is the set of ground atomsa such that for
everyB ∈ sol(Σ, D), it holdsa ∈ Q(B).

The chaseprocess was introduced in order to enable
checking implication of dependencies (Maier, Mendelzon,
and Sagiv 1979), and later also for checking query con-
tainment (Johnson and Klug 1984). Informally, the chase
procedure is a process of repairing a database with respect
to a set of database dependencies, so that the result of the
chase satisfies the dependencies. By abuse of terminology,
by “chase” we referboth to the chase procedure and to its
output. Chase works on a database through so-called TGD
and EGDchase rules. TGD rules come in two flavors:obliv-
ious and restricted, where the restricted one repairs TGDs
only when they are not satisfied. We focus our attention to
the oblivious one, since it makes proofs technically simpler.
TheTGD chase ruledefined below is the building block of
the construction of the chase.

(OBLIVIOUS) TGD CHASE RULE. Consider a relational
databaseD for a schemaR, and a TGDσ on R of the

72



form Φ(X̄, Ȳ ) → Ψ(X̄, Z̄). The TGDσ is applicableto
D if there is a homomorphismh that maps the atoms of
Φ(X̄, Ȳ ) to atoms ofD. Let σ be applicable andh1 be a
homomorphism that extendsh as follows: for eachXi ∈ X̄,
h1(Xi) = h(Xi); for eachZj ∈ Z̄, h1(Zj) = zj , wherezj

is a “fresh” null, i.e.,zj ∈ ∆N , zj 6∈ D, andzj lexicograph-
ically follows all other labeled nulls already introduced, and
it is different from them. The result of the application of the
TGD σ is the addition toD of all the atomic formulas in
h1(Ψ(X̄, Z̄)) that are not already inD.

The chase algorithm consists of an exhaustive application
of the TGD chase rule, that may lead to an infinite result.
The chase rule is applied in a breadth-first fashion, as de-
scribed below.

We first give an important notion in the chase, namely the
levelof an atom. LetD the initial database from which the
chase is constructed. Then:(1) The atoms inD are said
to have level0. (2) Suppose a TGD rule forΦ(X̄, Ȳ ) →
Ψ(X̄, Z̄) is applied at some point in the construction of the
chase, and leth, h1 be as in the TGD chase rule. If the atom
with highest level among those inh1(Φ(X̄, Ȳ )) has levelk,
then every atom inh1(Ψ(X̄, Z̄)) that is actually added has
levelk + 1.

Let D be a database andΣ a set of TGDs Then, the
chase ofD with respect toΣ, denotedchase(Σ, D), is the
database constructed by an iterative application of the TGD
chase rules as follows: letI1, . . . , Ik be all possible im-
ages of bodies of TGDs inΣ wrt some homomorphism, and
let ai be the atom with highest level inIi; let M be such
that level(aM ) = min1≤i≤k{level(ai)}: among the possi-
ble applications of TGDs, choose the lexicographically first
among those that utilize a homomorphism from the body of
a TGD toIM .

Containment of queries over relational databases has long
been considered a fundamental problem in query optimiza-
tion – especially query containment under constraints such
as TGDs.

Definition 4. Consider a relational schemaR, a setΣ of
TGDs onR, and two conjunctive queriesQ1, Q2 expressed
overR. We say thatQ1 is contained inQ2 underΣ, denoted
Q1 ⊆Σ Q2, if for every database instanceD forR such that
D |= Σ we haveQ1(D) ⊆ Q2(D).

Query containment and answering under TGDs as defined
above are tightly connected, as we explain in the following.

Theorem 5. (Johnson and Klug 1984; Fagin et al. 2005;
Nash, Deutsch, and Remmel 2006). Consider a relational
schemaR, a setΣ of TGDs onR, a conjunctive queryQ,
and a ground atoma; we have thata ∈ ans(Q,Σ, D) iff
a ∈ Q(chase(Σ, D)). As a special case, ifQ is Boolean,

This result is important, and it holds because the (possibly
infinite) chase is auniversal solution(Fagin et al. 2005), i.e.,
for everyB ∈ sol(Σ, D), there exists a homomorphism that
mapschase(Σ, D) ontoB. In (Nash, Deutsch, and Remmel
2006) it is shown that the chase constructed with respect to
TGDs is defined also when it is infinite, and it is a universal
solution.

The following is straightforwardly obtainable from (John-
son and Klug 1984; Nash, Deutsch, and Remmel 2006).

Theorem 6. Consider a relational schemaR, a setΣ of
TGDs onR, and two queriesQ1, Q2 onR. We have that
Q1 ⊆Σ Q2 iff λ(head(Q1)) ∈ Q2(chase(Σ, λ(body(Q1))),
whereλ is a freezing homomorphism forQ1, i.e., a homo-
morphism that maps every distinct variable inQ1, into a
distinct fresh constant.

We now define three relevant decision problems, and
prove their equivalence.

Definition 7.

• Theconjunctive query evaluation decision problem CQ-
Eval is defined as follows. Given a conjunctive queryQ,
a set of TGDsΣ, a databaseD and a ground atoma,
decide whethera ∈ ans(Q,Σ, D).
• TheBoolean conjunctive query evaluation problem BCQ-

Eval is defined as follows. Given a Boolean conjunctive
query Q, a set of TGDsΣ, and a databaseD, decide
whether〈〉 ∈ ans(Q,Σ, D), i.e.,Q has a positive answer
(also writtenΣ ∪D |= Q).

• Theconjunctive query containment decision problem CQ-
Cont is defined as follows. Given two CQsQ1 and Q2,
and a setΣ of TGDs, decide whether for every database
instanceD it holdsQ1(D) ⊆ Q2(D).

The following result is folklore, and implicit in (Chandra
and Merlin 1977).

Lemma 8. The problems CQ-Eval and BCQ-Eval are
LOGSPACE-equivalent.

Proof. Notice that BCQ-Eval can be trivially made into a
special instance of CQ-Eval, e.g., by adding a propositional
atom as head atom. It thus suffices to show that CQ-eval
polynomially reduces to BCQ-eval. Let(Q,D,Σ, a) be
an instance of CQ-Eval. Assume the head atom ofQ is
Rh(X1, . . . , Xk) anda = Ra(c1, . . . , ck). Then, defineQ′

to be the Boolean conjunctive query whose atoms are those
in body(Q) plusR∗

h(X1, . . . , Xk), whereR∗
h is a fresh pred-

icate symbol not occurring inD andQ (and therefore not in
Σ, since the TGDs inΣ are on the same relational schema).
Moreover, leta′ = R∗

h(c1, . . . , ck). It is easy to see that
a ∈ Q(chase(Σ, D)) iff chase(Σ, D ∪ a′) |= Q′.

The following corollary descends from Theorems 6 and 5.

Corollary 9. Under TGDs, the problems CQ-eval and CQ-
Cont are mutuallyPTIME-reducible.

By Lemma 8 and by Corollary 9, we can conclude that
the three following problems areLOGSPACE-equivalent:(1)
CQ-eval under TGDs,(2) BCQ-eval under TGDs,(3) CQ-
Cont under TGDs. Henceforth, we will concentrate on only
one of these problems, namely the BCQ-eval problem. All
complexity results carry over to the other problems.

The following lemma allows us to restrict our attention on
a restricted class of TGDs.

Lemma 10. Let Q be a Boolean conjunctive query over a
schemaR, and letΣ be a set of TGDs onR. Then, fromΣ
we can construct inLOGSPACEa set of TGDsΣ′ such that
each TGD inΣ′ has only one atom in its head and for each
instanceD, Σ ∪D |= Q iff Σ′ ∪D |= Q.

73



Proof. To obtain Σ′ from Σ is sufficient to re-
place each rule of the formr : body(X̄) →
head1(Ȳ ), head2(Ȳ ), . . . , headk(Ȳ ), where k > 1
and Ȳ is the set of all the variables that appear in the
head (that may include part of̄X), with the following
set of rules: body(X̄) → V (Ȳ ), V (Ȳ ) → head1(Ȳ ),
V (Ȳ ) → head2(Ȳ ), . . . ,V (Ȳ ) → headk(Ȳ ) whereV is a
fresh predicate symbol, having the same arity as the number
of variables inȲ ; notice also that in general not all the
variables inȲ also appear in̄X. It is straightforward to see
that, except for the atoms of the formV (Ȳ ), chase(Σ, D)
andchase(Σ′, D) coincide. The atoms of the formV (Ȳ ),
being introduced only in the transformation above, do not
match any predicate symbol inQ, hence,chase(Σ, D) |= Q
iff chase(Σ′, D) |= Q.

Henceforth, we shall always assume without loss of gen-
erality that every TGD has a singleton atom in its head.

We now come to the notions of treewidth, tree de-
compositions and bounded-treewidth model property (see,
e.g., (Goncalves and Grädel 2000)). Roughly, the treewidth
of a database instanceD (or of an arbitrary set of atoms
whose arguments may contain labeled nulls) is the treewidth
of the Gaifman graph ofD.

Consider a graphG = (V,E); a tree decomposition of
G consists of a treeT = (N,A) and a labeling function
λ : N → 2V with the following properties:

(i) for everyv ∈ V , there existsn ∈ N such thatv ∈ λ(N);
(ii) for every arc(v1, v2) ∈ E, there existsn ∈ N such that
{v1, v2} ⊆ λ(n);

(ii) for everyv ∈ V , the set{n ∈ N | v ∈ λ(n)} induces a
(connected) subtree inT .

The Gaifman graphof a relational instanceD (or of a
generic set of atoms) is a nondirected graph defined as fol-
lows:

• the nodes are the symbols indom(D) (in general, con-
stants in∆ and nulls in∆N );

• there exists an arc(c1, c2) betweenc1 andc2 if there exist
some atom inD that has bothc1 andc2 as arguments.

The witth of a tree decomposition(T, λ), with T =
(N,A), of graphG = (V,E) is the integermaxn∈N |λ(n)|.
The treewidthof a graphG = (V,E), denotedtw(G), is
the minimum width among all tree decompositions. Given
a relational instanceD (or an arbitrary set of atoms), its
treewidthtw(D) is defined as the treewidth of its Gaifman
graph.

A classC of formulae has the bounded treewidth model
property if for eachφ ∈ C, wheneverφ is satisfiable, then
it is possible to compute a numberf(φ) such thatφ has a
model of treewidth≤ f(φ).

The following straightforwardly follows from (Courcelle
1990); see also (Goncalves and Grädel 2000).

Theorem 11. If a set of first-order formulae has the
bounded-treewidth model property, then checking satisfia-
bility for it is decidable.

(Weakly) Guarded TGDs
This section introduces the special classes ofguardedand
weakly guardedTGDs , which have a number of useful
properties.

We first give the notion ofaffectedposition of a relational
schema, given a set of TGDsΣ.
Definition 12. Given a relational schemaR and a set of
TGDsΣ overR, anaffected positionin R wrt Σ is defined
inductively as follows (here we use lowercase Greek letters
to denote positions). Letπh be a position in the head of a
TGDσ in Σ.

(a) if an existentially quantified variable appears inπh,
thenπh is affected wrtΣ;

(b) if the same universally quantified variableX appears
both in positionπh, and in the body ofσ in affected posi-
tionsonly, thenπh is affected wrtΣ.

Example 1. Consider the following set of TGDs:

σ1 : P1(X.Y ), P2(X,Y ) → ∃Z P2(Y,Z)
σ2 : P2(X.Y ), P2(W,X) → P1(Y,X)

Notice thatP2[2] is affected sinceZ in σ1 is existentially
quantified inσ1. Considering againσ1, the variableY ap-
pears inP2[2] but also inP1[2], therefore it does not make
the position where it appears in the head affected. Variable
X in σ2 appears in the affected positionP2[2] but also in
P2[1], which is not affected; therefore, it does not make
the position where it appears in the head affected. On the
contrary,Y appears inP2[2] and nowhere else, thus causing
P1[1] to be affected.
Definition 13. Given a TGDσ of the formΦ(X̄, Ȳ ) →
Ψ(X̄, Z̄), we say thatσ is a (fully) guarded TGD (GTGD)
if there exists an atom in the body, called aguard, that con-
tains all the universally quantified variables ofσ, i.e., all the
variablesX̄, Ȳ that occur inΦ(X̄, Ȳ ), the body ofσ.

Example 2. The TGD R1(X,Y, a), R2(Y ), R3(X, b) →
R4(Z,X) is guarded; in particular, the guard is the atom
R1(X,Y, a), since it contains all the universally quantified
variables of the TGD.
Definition 14. Given a TGDσ of the formΦ(X̄, Ȳ ) →
Ψ(X̄, Z̄), belonging to a set of TGDsΣ on a schemaR,
we say thatσ is aweakly guarded TGD (WGTGD)wrt Σ if
there exists an atom in the body, called aweak guard, that
contains all the universally quantified variables ofσ that ap-
pearonly in positions that are affected wrtΣ.

Example 3. Consider again the two TGDs in Example 1.
In σ1 both atoms are obviously guards (and weak guards of
course), since they contain all the universally quantified vari-
ables. Inσ2, Y is the only variable that appears in affected
positions only isY ; therefore, the first atom is a weak guard.

It is important to realize that the transformation described
in the proof of Lemma 10 preserves the guardedness and
weak guardedness properties. Therefore, we can still assume
that TGDs have singleton heads.

The following theorem shows that even asingle un-
guarded rule can destroy the decidability of simplest reason-
ing tasks under TGDs (Calı̀, Gottlob, and Kifer 2008).

74



Theorem 15. There is a fixed set of TGDsΣu such that
all but one TGDs ofΣu are guarded and it is undecid-
able whetherD ∪ Σu |= Q, or, equivalently, whether
Q ∈ chase(Σu, D).

Proof (sketch). The theorem is proved by simulating a
Turing machine (TM) with TGDs, making use of a single
non-guarded TGD. Note that, by using two guarded rules
and a single unguarded rule, we can define an infinite grid
as follows. LetD contain (among other atoms) the atom
index (0). Consider the following TGDs:

index (x)→ ∃y next(x, y)
next(x, y)→ index (y)
next(x, x′),next(y, y′)→ grid(x, y, x′, y′)

These rules, the third of which is unguarded, define an infi-
nite grid whose points have co-ordinatesx andy (represent-
ing tape position and time, respectively), and where for each
point (x, y) its tape successor(x′, y) and its time successor
(x, y′) is also encoded. Note that only the last of the TGDs
is non-guarded.

It is not hard to see that we can simulate the progress
of a TM using suitable initialization atoms inD and
guarded TGDs. To this aim, we need additional predi-
catescursor(Y,X) (the cursor is in positionX at timeY ),
state(Y, S) (M is in stateS at timeY ), content(X,Y,A)
(at timeY , the content of positionX in the tape isA), plus
some auxiliary predicates. The following rule encodes the
behaviour of the TM on all transition rules that move the
cursor to the right:

grid(S1, A1, S2, A2, right , X1, Y1, X2, Y2),
cursor(Y1, X1),
state(Y1, S1), content(X1, Y1, A1)→
cursor(Y2, X2), content(X1, Y2, A2),
state(Y2, S2),mark(Y1, X1)

Such a rule has also obvious sibling rules for “left” and
“stay” moves. Additional “inertia” rules are needed, that
make use of themark predicate; these rules ensure that all
non-marked positions in the tape are not modified. It is a
straightforward exercise to find afixednumber of such rules.
Notice that the fact that the rules have multiple atoms in the
head is not a loss of generality by virtue of Lemma 10. Fi-
nally, we assume without loss of generality that our Turing
machine has a single halting states0 which is encoded by
the atomhalt(s0) in D. We add a guarded rule

state(Y, S), halt(S)→ stop(S)

It is now clear that the machine halts iffchase(Σu, D) |=
∃X stop(X), i.e., iff Σu∪D |= ∃X stop(X). We have thus
reduced the halting problem to the problem of answering
atomic queries to a database underΣu. The latter problem
is thus undecidable.

Definition 16. Let Σ be a set of WGTGDs,D be a
database, andU = chase(Σ, D). Theguarded chase graph
GCG(Σ, D) is defined as follows. The set of vertices is
constituted by the atoms ofU , and there are two kind of
arcs: normaland dotted. Consider a TGDρ with a weak
guard γ ∈ body(ρ), which was used in an application of

a TGD rule using a homomorphismh that maps the body
and head ofρ to chase(Σ, D). Then (i) there is adottedarc
from every atom inh(body(ρ)) − {h(γ)}) to every atom in
h(head(ρ)); (ii) there is a normalarc from h(γ) to every
atom ofh(head(ρ)).

It is easily seen that the graph obtained fromGCG(Σ, D)
by omitting all dotted arcs is a forest.

Definition 17. The forest obtained fromGCG(Σ, D) by
dropping all dotted arcs is called theguarded chase forest
and is denoted byGCF (Σ, D).

Definition 18. Let D be a possibly infinite relational in-
stance for a schemaR, and letS be a set. We are mainly
interested in setsS such thatS ⊆ dom(D), but for the sake
of generality, we do not exclude other sets here.

• An [S]-join forest ofD is an undirected labeled forestT =
(V,E, λ), whose labeling functionλ : V → D is such
that :
(i) D ⊆ λ(V ), and
(ii) T is [S]-connected, i.e., for eachc ∈ dom(D) − S,

the set{v ∈ V | c occurs inλ(v)} induces a con-
nected subtree inT .

• We say thatD is [S]-acyclic iffD has an[S]-join forest.

The above definition generalizes the classical notion of
hypergraph acyclicity (Beeri et al. 1981) of an instance (or,
equivalently, of a query). In fact, an instance or a query (seen
as an instance) is hypergraph-acyclic iff it is[∅]-acyclic.

The following Lemma follows straightforwardly from the
definitions of[S]-acyclicity.

Lemma 19. Given a database instanceD for a schemaR,
and a setS, if D is [S]-acyclic, thentw(D) ≤ |S| + w,
wherew is the maximum arity of any predicate symbol inR.

Proof (sketch). A tree decomposition(T = (V,E), χ) of
width≤ |S|+w can be obtained from an[S]-join tree(T =
(V,E), λ) of B by defining∀v ∈ V, χ(v) = S ∪ λ(v).

Definition 20. Let D be an instance for a schemaR. Let
dom(D) be theactive domainof D, i.e.,dom(D) contains
all constants and labeled nulls that occur inD. The Her-
brand BaseHB(D) of D is the set of all atoms that can be
formed using the predicate symbols ofR and arguments in
dom(D). We define:

• chase⊥(Σ, D) = chase(Σ, D) ∩HB(D), and
• chase+(Σ, D) = chase(Σ, D)− chase⊥(Σ, D)

Notice that chase⊥(Σ, D) ∪ chase+(Σ, D) =

chase(Σ, D) and chase⊥(Σ, D) ∩ chase+(Σ, D) = ∅.
Moreover, ifD is null-free (which will be the case in many
applications), thenchase⊥(Σ, D) is the finite set of all
null-free atoms inchase(Σ, D), while chase+(Σ, D) may
be infinite.

Lemma 21. If Σ is a set of WGTGDs andD an instance,
thenchase+(Σ, D) is [dom(D)]-acyclic.

Lemma 22. If Σ is a set of WGTGDs andD an instance of
a schemaR, thentw(chase(Σ, D)) ≤ |D|+ w, wherew is
the maximum arity of a predicate inR.

75



Proof. Follows easily from Lemmata 19 and 21.

Theorem 23. Given a relational schemaR, a set of WGT-
GDsΣ, a Boolean conjunctive queryQ, and a database in-
stance forR, the problem of checking whetherΣ ∪D |= Q
(or, equivalently,chase(Σ, D) |= Q) is decidable.

Proof. Here we consider the queryQ as an existentially-
quantified logical sentence. We rely on the fact that both
chase(Σ, D) ∧ Q andchase(Σ, D) ∧ ¬Q have a (possibly
infinite) model of bounded treewidth, when they are satisfi-
able. This follows from the fact thatchase(Σ, D) is univer-
sal for D underΣ and has bounded treewidth. Our claim
now follows by a well-known result of Courcelle (Cour-
celle 1990), also found in (Goncalves and Grädel 2000), that
generalizes an earlier result of Rabin (Rabin 1969). This
result (Theorem 11) states that classes of first-order logic
(more generally, monadic second-order logic) that enjoy the
bounded treewidth model property are decidable.

The above theorem establishes decidability of query an-
swering under WGTGDs, but it tells little about the com-
plexity. This is the subject of the next section.

Complexity
In this section we present several complexity results about
query answering under guarded and weakly-guarded TGDs.

EXPTIME Hardness
Theorem 24. Given a relational schemaR, a set of WGT-
GDs Σ, a Boolean conjunctive queryQ, and a database
instanceD for R, the problem of determining whether
chase(Σ, D) |= Q is EXPTIME-hard. In the case where
the arity of predicates inR is not fixed, the same problem
is 2-EXPTIME hard. The same results hold in case of atomic
queries and even fixed queries.

Proof (sketch). The proof is by simulation of aPSPACE
Alternating Turing Machine (ATM); in the case of unlimited
arity of the predicates inR, we can simulate anEXPSPACE
ATM. A detailed proof can be found in the full version of
this paper (Calı̀, Gottlob, and Kifer 2008).

Squid Decompositions
In this section we define notion ofsquid decomposition, and
prove a lemma called “Squid Lemma” which will be a useful
tool for proving the upper complexity bound of the query
answering problem.

Definition 25. A squid decompositionδ = (h,H, T ) of
a Boolean conjunctive queryQ consists of a mappingh :
vars(Q) → vars(Q) of Q and a partition ofh(Q) into two
setsH andT such thatT = h(Q) −H and such thatT is
[vars(H)]-acyclic. We refer toH as theheadof δ, and toT
as thetentaclesof δ. The set of all squid decompositions of
Q is referred to assquidd(Q).

One may imagine the setH in a squid decomposition as
the head of a squid, and the setT as a forest of tentacles
attached to that head, in a way similar to what is done in

(Glimm et al. 2008). Note that a squid decomposition of
Q is not necessarily a query folding (Chandra and Merlin
1977; Qian 1996) ofQ, becauseh does not need to be an
endomorphism ofQ, in other terms, we do not require that
h(Q) ⊆ Q. Of course,h is a homomorphism.

Example 4. Consider the following Boolean conjunctive
query (the schema is obvious):

Q()← R(X,Y ), R(X,Z), R(Y,Z),
R(Z, V1), R(V1, V2), R(V2, V3), R(V3, V4), R(V4, V5),
R(V1, V6), R(V6, V5), R(V5, V7),
R(Z,U1), S(U1, U2, U3), S(U3, U4, U5)

A possible squid decomposition is the following homomor-
phism h defined as:h(V 6) = V 2, h(V 4) = h(V 5) =
h(V 7) = V 3, and as the identity on the other variables. The
result of the decomposition is the query shown in Figure 2,
where its join graph is depicted, in order to distinguish the
head from the tentacles.

R(X, Z)

R(Z, V1)

R(V1, V2)

R(V2, V3)

R(V3, V3)

S(U3, U4, U5)

S(U1, U2, U3)

R(Z, U1)

R(Y, Z)

R(X, Y )

head

tentacles

Figure 2: Squid decomposition from Example 4

The following Lemma, whose proof can be found in the
full paper (Cal̀ı, Gottlob, and Kifer 2008), will be used as a
main tool in the subsequent complexity analysis.

Lemma 26(Squid Lemma).LetΣ be a set of WGTGDs on
a schemaR, D a (ground) database instance forR, and
Q a conjunctive query, thenchase(Σ, D) |= Q iff there is
a squid decompositionδ = (h,H, T ) ∈ squidd(Q) and
a homomorphismθ : dom(h(Q)) → dom(chase(Σ, D))

such that: (i) θ(H) ⊆ chase⊥(Σ, D), and (ii) θ(T ) ⊆
chase+(Σ, D).

Clouds and the complexity of query answering
under WGTGDs
To study the complexity of query answering under WGT-
GDs, we introduce the notion ofcloud.

Definition 27. Let Σ be a set of WGTGDs on a schema
R and D an instance forR. For every atoma of
chase(Σ, D) the cloud of a with respect toΣ and D, de-
notedcloud(Σ, D, a), is the set of all atoms inchase(Σ, D)
whose arguments are indom(a) ∪ dom(D). More for-
mally, cloud(Σ, D, a) = {b ∈ chase(Σ, D) | dom(b) ⊆
dom(a) ∪ dom(D)}. Notice that for every atoma ∈

76



chase(Σ, D) we haveD ⊆ cloud(Σ, D, a). Moreover, we
define

clouds(Σ, D) = {cloud(Σ, D, a)}a∈chase(Σ,D)

clouds+(Σ, D) = {(a, cloud(Σ, D, a)) | a ∈ chase(Σ, D)}

A setS ⊆ cloud(Σ, D, a) is called asubcloudof a (with
respect toΣ and D). The set of all subclouds of an atom
a is denoted bysubclouds(Σ, D, a). Finally, we define
subclouds+(Σ, D) = {(a,C) | a ∈ chase(Σ, D) ∧ C ⊆
cloud(Σ, D, a)}

Definition 28. Let D be an instance for a schemaR. Let
α and β be two constructs consisting each of one atom of
HB(D), or a set of atoms ofHB(D), or an atom paired
with a set of atoms ofHB(D). We say thatα and β are
D-isomorphic, denotedα ≃D β, or simplyα ≃ β in case
D is understood, iff there exists a bijection (i.e., a bijective
homomorphism)f : dom(α)→ dom(β) such thatf(α) =
f(β) (notice thatf is the identity ondom(D)).

Example 5. If a, b ∈ dom(D) and ζ1, ζ2, ζ3, ζ4 6∈
dom(D), we have: P (a, ζ1, ζ2) ≃ P (a, ζ3, ζ4)
and (P (a, ζ3), {Q(a, ζ3), Q(ζ3, ζ3), R(ζ3)}) ≃
(P (a, ζ1), {Q(a, ζ1), Q(a, ζ1), R(ζ1)}). Differently,
P (a, ζ1, ζ2) 6≃ P (a, ζ1, ζ1) and P (a, ζ1, ζ2) 6≃
P (ζ3, ζ1, ζ1), α 6≃ β meaningα ≃ β does not hold.

Theorem 29. Let Σ be a set of WGTGDs,D an instance,
and Q a Boolean conjunctive query. Determining whether
D ∪ Σ |= Q, or, equivalently, whetherchase(Σ, D) |= Q,
is decidable inEXPTIME in case of bounded arities, and in
2-EXPTIME in general.

Proof (sketch). This proof sketch is a short version of the
proof that can be found in the report (Calı̀, Gottlob, and
Kifer 2008). We first give some preliminary definitions.

Definition 30. Let a be an atom. Thecanonical renaming
cana : dom(a) ∪ dom(D) → ∆a ∪ dom(D), where∆a

is a set{ξ1, . . . , ξh} of labelled nulls, disjunct from∆N , is
a substitution that maps each element ofdom(D) into itself
and maps thei-th argument value in lexicographic order of
a which is not indom(D) to ξi, for all i such that1 ≤ i ≤ h,
whereh is the number of values ina that are not indom(D).
If S ⊆ cloud(Σ, D, a) (i.e., if S ∈ subclouds(Σ, D, a)),
then cana(S) is well-defined and we denote bycan(a, S)
the pair(cana(a), cana(S)).

Example 6. If a = G(d, α1, α2, α1) where d ∈
dom(D) and α1, α2 6∈ dom(D), and if S =
{P (α1), R(α2, α2), S(α1, α2, b)}, where b ∈ dom(D),
then canc(c) = G(d, ξ1, ξ2, ξ1), and canc(S) =
{P (ξ1), R(ξ2, ξ2), S(ξ1, ξ2, b)}.

We now list a number of important results regarding
clouds. Let|R| be the number of predicates of the schema
R, andw the maximum arity of a predicate inR.

Fact 1. |cloud(Σ, D, a)| ≤ |R| · (|dom(D)|+ w)w, hence
cloud(Σ, D, a) is polynomial in size in case the arityw is
fixed, and exponential otherwise.

Fact 2. Let a be an atom in the guarded join forest
GCF (Σ, D). Then each atomb of the subtree↓a of

GCF (Σ, D) rooted ata is obtained by a sequence of
chase steps that involve only atoms ofcloud(Σ, D, a) and
↓a.

Fact 3. If D is an instance for a schemaR, Σ a set of
WGTDs,a, b ∈ chase(Σ, D), and(a, cloud(Σ, D, a)) ≃
(b, cloud(Σ, D, b)), then ↓a ∪ cloud(Σ, D, a) ≃ ↓b ∪
cloud(Σ, D, b).

Fact 4. The quotient setZ = {(a, cloud(Σ, D, a)) | a ∈
chase(Σ, D)}/≃ is finite. Its size is at most doubly expo-
nential in|D∪Σ| in case of unbounded arities and at most
singly exponential in|D ∪ Σ| in case of bounded arities.

The above facts allow us to design alternating algo-
rithms for query answering, by simulating the infinite
chase by operating on the finite quotient setZ rather
than on an infinite number of atoms and their associated
clouds. In particular, the equivalence class of each pair
(a, cloud(Σ, D, a)) will be represented by the canonized
paircana(a, cloud(Σ, D, a)).

First, we describe an alternating algorithm
Acheck(Σ, D,Q), which is executed given the following:
(1) a setΣ of WGTGDs; (2) an instanceD; (3) an atomic
queryQ of the form∃y1, . . . , yℓ P (t1, t2, . . . , tr) whereP
is a predicate symbol, and thet1, . . . , tr, with r ≥ ℓ, are
terms (constants or variables) indom(D)∪{y1, y2, . . . , yℓ}.
Acheck decides whetherchase(Σ, D) |= Q, or, equiva-
lently, D ∪ Σ |= Q.
Alternating Algorithm Acheck. The alternating algorithm
uses existential moves in order to successively guess the
vertices of a path inGCF (Σ, D) from some atom inD to
some atomb which is a homomorphic instance of the query
atom P (t1, t2, . . . , tr) to b (and fails if such a guess can-
not be made). For each intermediate atoma of this path,
a subcloudS of a is guessed as well as a linear ordering
s1 < s2 < · · · < sk on the elements ofS. To prove
that all atoms of the guessed subcloudS are effectively
in chase(Σ, D), in universal moves,k auxiliary configura-
tions are generated, where thei-th auxiliary configuration
assumess1 . . . si−1 is already derived and starts an alter-
nating subroutine derivingsi. The details of these auxil-
iary computation are tricky and are described in more detail
in (Cal̀ı, Gottlob, and Kifer 2008). Whenever an atoma
and its cloudC are generated, instead of using(a, C), the al-
gorithm works withcana(a, C) = (cana(a), cana(C)) and
appliescana also to the linear order and all other data struc-
tures used with each configuration.

In case of bounded arities, canonized clouds are of poly-
nomial size, and thus each configuration uses polynomial
space only. Given thatAPSPACE = EXPTIME, answering
atomic queries is inEXPTIME. In case the arity is un-
bounded, each configuration requires at most exponential
space: the problem is then feasible in AlternatingEX-
PSPACE, which is equal to double exponential time, or 2-
EXPTIME.

From this complexity bound, we easily derive :

Fact 5. Let Σ be a set of WGTGDs, and letD be an in-
stance for a schemaR. Then, computingchase⊥(Σ, D)
can be done in exponential time in case of bounded arity,
and in double exponential time otherwise.

77



We now show that answering general conjunctive queries
is of the same complexity. To this end, we design a non-
deterministic algorithmQcheck such thatQcheck(Σ, D,Q)
outputs “true” iff D ∪ Σ |= Q, or, equivalently, iff
chase(Σ, D) |= Q. The algorithm heavily relies on the con-
cept of squid decompositions, and on Lemma 26.

Nondeterministic Algorithm Qcheck. Qcheck first com-
puteschase⊥(Σ, D). Then it nondeterministically guesses
a squid decompositionδ = (h,H, T ) of Q, and a sub-
stitution θ0 : dom(H) → dom(chase(Σ, D)), such that
θ0(H) ⊆ chase⊥(Σ, D). Next Qcheck tests whetherθ0

can be extended to a homomorphismθ such thatθ(T ) ⊆
chase+(Σ, D). Note that, by Lemma 26, this is equiva-
lent to chase(Σ, D) |= Q. Such aθ exists iff for each
connected subgrapht of θ(T ), there is a homomorphism
θt that leaves all elements ofdom(D) unaltered such that
θt(t) ⊆ chase+(Σ, D). TheQcheck algorithm thus iden-
tifies the connected components ofθ(T ). Each such com-
ponent is an acyclic conjunctive query that can be written
as a join treet. For each such join treet, Qcheck now
tests whether there exists a homomorphismθt (which, we re-
mind, is the identity onD) such thatθt(t) ⊆ chase+(Σ, D).
This is done by the subroutineTcheck, which takes as argu-
ments the TGDs, the database instance, and the subgrapht
of T ; how Tcheck(Σ, D, t) is executed is described below.
Qcheck succeeds iff the exit is positive for each component.

The correctness ofQcheck follows from Lemma 26.
Given the nondeterministic guess of a squid decomposition,
the complexity ofQcheck is in NPX , i.e., NP with an ora-
cle in X, whereX is a complexity class that is sufficiently
powerful for computingchase⊥(Σ, D), and performing the
testsTcheck(Σ, D, t). We finally describeTcheck.

Nondeterministic Algorithm Tcheck. Tcheck works es-
sentially like Acheck, but instead of nondeterministically
constructing a main configuration path of the configuration
tree such that eventually some atom matches the unique
query atom,Tcheck nondeterministically constructs a main
configuration subtreeτ of the configuration tree, such that
eventually all atoms of the join treet will be consistently
translated into some vertices ofτ . In addition to the data
structures ofAcheck, the main configurations ofTcheck
maintain a pointerπ and a substitutionθ. In the initial main
configuration,π points to the root oft andθ is empty. In
general, the pointerπ of each main configurationC points
to some atomπ↑ of t, which has not yet been matched. The
algorithm attempts to expand this configuration by succes-
sively guessing a subtree of configurations mimicking a suit-
able subtree ofGCF (Σ, D) that satisfies the subquery oft
rooted atπ↑. If Tcheck gets to an atoma such that there is
a homomorphismσ such thatσ(θ(π↑)) = a↑, then, in case
π↑ has no children, the current configuration turns into an
accepting one. Otherwise, (via a universal move) for each
child atomd of a↑ in t, Tcheck creates a separate configura-
tion with valuesa↑ = d andθ = σ ◦ θ.

For the complexity ofQcheck, note that in case the arity is
bounded,Tcheck runs inAPSPACE= EXPTIME, and comput-
ing chase⊥(Σ, D) is in EXPTIME (Cal̀ı, Gottlob, and Kifer
2008). Thus,Qcheck runs in timeNPEXPTIME = EXPTIME. In

case of unbounded arities, both computingchase⊥(Σ, D)
and runningTcheck are in 2-EXPTIME, thereforeQcheck
runs in timeNP2-EXPTIME = 2-EXPTIME.

By combining Theorems 24 and 29 we get the following
complexity characterization for reasoning under WGTGDs.

Theorem 31. Let Σ be a set of WGTGDs, letD be an
instance, and letQ be a Boolean conjunctive query. De-
termining whetherD ∪ Σ |= Q, or, equivalently, whether
chase(Σ, D) |= Q, is EXPTIME complete in case of bounded
predicate arities, and even in caseΣ is fixed; it is 2-
EXPTIME complete in general. The same completeness re-
sults hold for query containment under WGTGDs.

Guarded TGDs
Theorem 32. Let Σ be a set of GTGDs over a schemaR,
and letD be an instance forR. Let, moreover,w denote the
maximum arity of any predicate appearing inR, and let|R|
denote the total number of predicate symbols. Then:

(1) Computingchase⊥(Σ, D) can be done inPTIME if
both w and |R| are bounded, and thus also in case of
a fixed setΣ. This problem is inEXPTIME in casew is
bounded, and in 2-EXPTIME otherwise.

(2) If Q is an atomic (Boolean) query, then checking
whetherΣ ∪D |= Q or, equivalently,chase(Σ, D) |= Q,
is PTIME-complete in case bothw and |R| are bounded,
and remainsPTIME-complete even in caseΣ is fixed. This
problem isEXPTIME-complete ifw is bounded and 2-
EXPTIME-complete in general. It remains 2-EXPTIME-
complete even when|R| is bounded.

(3) If Q is a general Boolean conjunctive query, checking
whetherΣ ∪D |= Q or, equivalentlychase(Σ, D) |= Q
is NP-complete in case bothw and |R| are bounded, and
thus also in case of a fixed setΣ. Checking whether
chase(Σ, D) |= Q is EXPTIME-complete ifw is bounded
and 2-EXPTIME-complete in general. It remains2-
EXPTIME-complete even when|R| is bounded.

(4) Query containment under GTGDs isNP-complete if
both w and |R| are bounded, and even in case the set
Σ of GTGDs is fixed.

(5) Query containment under GTGDs isEXPTIME-
complete ifw is bounded and 2-EXPTIME-complete in
general. It remains2-EXPTIME-complete even when|R|
is bounded.

Proof (sketch). The hardness results are obtained with a
straightforward modification of the proof of Theorem 24.
The membership results are proved exactly as those for
WGTGDs (Theorem 29), except that, instead of using the
notion of cloud, we use the similar notion ofrestricted
cloud. Therestricted cloudrcloud(Σ, D, a) of an atom
a ∈ chase(Σ, D) is the set of all atomsb ∈ chase(Σ, D)
such thatdom(b) ⊆ dom(a). We thus use algorithms that
differ from the respective original algorithms only in that
they use restricted clouds instead of clouds. A more detailed
proof is given in (Cal̀ı, Gottlob, and Kifer 2008).

Note that one of the main results of Johnson and
Klug (Johnson and Klug 1984), namely, that query contain-
ment under inclusion dependencies of bounded arities isNP-
complete, is a special case of Item(3) of Theorem 32.

78



Application
In this section we show the application of our subset of
Datalog∃ to a formalism called F-logic Lite; we show that
query answering and containment under F-logic Lite rules
areNP-complete.

F-logic Lite is a smaller but expressive version of F-logic,
a well-known formalism introduced for object-oriented de-
ductive databases. We refer the reader to refer the reader
to (Cal̀ı and Kifer 2006) for details about F-logic Lite.
Roughly, with respect to F-Logic, F-logic Lite] excludes
negation and default inheritance, and allows only a limited
form of cardinality constraints.

We now briefly show how to encode F-logic Lite using
Datalog∃ rules that we denote withΣFLL, with ΣFLL =
{ρi}1≤i≤12.

(1) member(V, T )← type(O,A, T ), data(O,A, V ).
(2) sub(C1, C2)← sub(C1, C3), sub(C3, C2).
(3) member(O,C1)← member(O,C), sub(C,C1).
(4) V = W ← data(O,A, V ), data(O,A,W ), funct(A,O).

Note that this is the only EGD in this axiomatization.
(5) data(O,A, V )← mandatory(A,O).

Note that this is a TGD with an existential variable in the
head (variableV ; quantifiers are omitted).

(6) type(O,A, T )← member(O,C), type(C,A, T ).
(7) type(C,A, T )← sub(C,C1), type(C1, A, T ).
(8) type(C,A, T )← type(C,A, T1), sub(T1, T ).
(9) mandatory(A,C)← sub(C,C1),mandatory(A,C1).
(10) mandatory(A,O)←

member(O,C),mandatory(A,C).
(11) funct(A,C)← sub(C,C1), funct(A,C1).
(12) funct(A,O)← member(O,C), funct(A,C).

It can be easlity shown that the only EGD in the above
Datalog∃ rules does not actually interact with the TGDs, and
therefore we can ignore it (Calı̀, Gottlob, and Kifer 2008).

We now prove the complexity results.

Theorem 33. Conjunctive query answering under F-logic
Lite rules isNP-hard.

Proof (sketch). The proof is by reduction from the3-
COLORABILITY problem. Encode a graphG = (V,E)
as a conjunctive queryQ which, for each edge(vi, vj)
in E, has two atomsdata(X,Vi, Vj) anddata(X,Vj , Vi),
where X is a unique, fixed variable. LetD be the
instanceD = {data(o, r, g), data(o, g, r), data(o, r, b),
data(o, b, r), data(o, g, b), data(o, b, g)}. Then,G is three-
colorable iffD |= Q, which is the case iffD ∪ ΣFLL |= Q.
The transformation fromG to (Q,D) is obviously polyno-
mial. This proves the claim.

Theorem 34. Conjunctive query answering under F-logic
Lite rules is inNP.

Proof (sketch). As mentioned before, we can ignore the
only EGD in ΣFLL, since it does not interfere with query
answering; details are found in the full version (Calı̀, Got-
tlob, and Kifer 2008). Let us denote withΣ′

FLL the set of
Datalog∃ resulting fromΣFLL by eliminating ruleρ4, i.e.,
let Σ′

FLL = ΣFLL − {ρ4}. To establish membership inNP,
it is sufficient to show that:

(1) Σ′
FLL is weakly guarded.

(2) Σ′
FLL is such that, for every instanceD, there are, up to

D-isomorphisms, polynomially many clouds; more pre-
cisely, for every instanceD there exists a polynomialpol
such that|clouds(Σ, D)/≃| ≤ pol(|D|).

(3) There is a polynomialpol ′(·) such that for each in-
stanceD and for each atoma: (3.1) if a ∈ D, then
cloud(Σ, D, a) can be computed in timepol ′(|D|), and
(3.2) if a 6∈ D, thencloud(Σ, D, a) can be computed in
time pol(|D|) from D, a, andcloud(Σ, D, b), whereb is
the predecessor ofa in GCF (Σ, D).

(1) is readily seeen: the affected positions are the follow-
ing: data[3], member[1], type[1], mandatory[2], funct[2],
data[1]. It is easy to see that every rule ofΣ′

FLL is weakly
guarded, and thusΣFLL is weakly guarded.

Now let us sketch(2). Let Σfull
FLL = Σ′

FLL − {ρ5}, i.e.,
the set of all TGDs ofΣ′

FLL but ρ5. These are all full
TGDs and their application does not alter the domain. We
havechase(Σ′

FLL, D) = chase(Σ′
FLL, chase(Σfull

FLL, D)).
Let us now have a closer look atD+ = chase(Σfull

FLL, D).
Clearly, dom(D+) = dom(D). For each predicate sym-
bol P , let Rel(P ) denote the relation consisting of allP -
tuples inD+. Let Ω be the family of all relations that can
be obtained from any of the relationsRel(P ) by perform-
ing an arbitrary selection followed by some projection (we
forbid disjunctions in the selection predicate). For example,
assumec, d ∈ dom(D); then,Rel(data) will give rise to re-
lationsπ1,2(σ{1 = c}Rel(data)), and toπ2(σ{1 = d∧ 3 =
c}Rel(data)), and so on, where the numbers are attribute
identifiers (the notation here should be self-explanatory).
Given thatD+ is of size polynomial inD and that the max-
imum arity of any relationRel(p) is 3, the setΩ is of size
polynomial inD+ and thus polynomial inD. It can now
be shown thatΩ is preserved in a precise sense, when going
to the final resultchase(Σ′

FLL, D+). In particular, for each
relationRel ′(P ) corresponding to predicateP in the final
chase result, when performing a selection onRel ′(P ) that
assigns fixed values6∈ dom(D) to one or more attributes,
and projecting on the other columns, the set of all tuples of
dom(D)-elements in the result is a relation inΩ. For exam-
ple, assume thatv5 is a specific labeled null, then the set of
all T ∈ dom(D) such thatmember(v5, T ) is an element of
the final result is a set inΩ; similarily, if v7 andv8 are new
values, the set of all valuesA such thatdata(v7, A, v8) is a
relation inΩ. It is easy to see that from this it follows that
Σ′

FLL satisfies(2). In fact, all possible clouds are determined
by the polynomially many ways of choosing at most three
elements ofΩ for each predicate. The proof of the preser-
vation property can be done by induction on thei-th new
labeled null added. Roughly, for each such labeled null, cre-
ated by ruleρ5, we just analyze which sets of values (or tu-
ples) are attached to it via rulesρ4, thenρ6, ρ7, ρ8, ρ10, and
so on, and conclude that these sets were all already present
at the next lower level, and thus, by induction hypothesis,
are inΩ.

Condition(3) can straightforwardly proved by similar ar-
guments.

From Theorems 33 and 34 we immediately get:

79



Corollary 35. Conjunctive query answering under F-logic
Lite rules isNP-complete.

Conclusions
In this paper we identified a large and non-trivial class of re-
lational constraints, namelytuple- andequality-generating
dependencies, for which the problems of conjunctive query
answering and containment are decidable, and provided the
relevant complexity results. Applications of our results in-
clude databases and Knowledge Representation. For in-
stance, our results subsume the classical work of Johnson
and Klug (Johnson and Klug 1984) as well as (Calı̀ and Kifer
2006).

Future work. We intend to investigate query answer-
ing (and containment) under WGTGDs in the case of finite
models (finite implication problem). Some interesting re-
sults (Rosati 2006) exist in this respect, and they may carry
over to GTGDs or WGTGDs,

A related previous approach to guarded logic program-
ming is guarded open answer set programming(Heymans,
Nieuwenborgh, and Vermeir 2005). It is easy to see that a set
of GTGDs can be interpreted as a guarded answer set pro-
gram as defined in (Heymans, Nieuwenborgh, and Vermeir
2005), but that guarded answer set programs are, in general,
more expressive than GTGDs, for example, because they al-
low for negation. Investigating the decidability and com-
plexity of query answering (and containment) under more
expressive classes of constraints, capable of subsuming, for
instance, the results of (Calı̀ 2007) and (Heymans, Nieuwen-
borgh, and Vermeir 2005), is the subject of our future work.
We also plan to investigate the same problem in the case of
finite models.

References
Aho, A.; Sagiv, Y.; and Ullman, J. D. 1979. Equivalence
of relational expressions.SIAM J. of Computing8(2):218–
246.
Beeri, C.; Fagin, R.; Maier, D.; Mendelzon, A. O.; Ullman,
J. D.; and Yannakakis, M. 1981. Properties of acyclic
database schemes. InSTOC, 355–362.
Cal̀ı, A., and Kifer, M. 2006. Containment of conjunctive
object meta-queries. InVLDB 2006, 942–952.
Cal̀ı, A.; Gottlob, G.; and Kifer, M. 2008. Extending data-
log for terminological reasoning. Unpublished technical re-
port, available fromhttp://www.andreacali.com.
Cal̀ı, A.; Lembo, D.; and Rosati, R. 2003. On the decid-
ability and complexity of query answering over inconsis-
tent and incomplete databases. InPODS 2003, 260–271.
Cal̀ı, A. 2007. Querying incomplete data with logic pro-
grams: ER strikes back. InER 2007, 245–260.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; and Rosati, R. 2007. Tractable reasoning and efficient
query answering in description logics: The DL-lite family.
J. Autom. Reasoning39(3):385–429.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1998.
On the decidability of query containment under constraints.
In PODS 1998, 149–158.

Calvanese, D.; De Giacomo, G.; and Lenzerini., M. 2002.
Description logics for information integration. InCompu-
tational Logic: Logic Programming and Beyond, volume
2408 ofLNCS. Springer. 41–60.
Chandra, A., and Merlin, P. 1977. Optimal implemen-
tation of conjunctive queries in relational data bases. In
STOC 1977, 77–90.
Courcelle, B. 1990. The monadic second-order logic of
graphs. I. recognizable sets of finite graphs.Information
and Computation85(1):12–75.
Deutsch, A., and Tannen, V. 2003. Reformulation of xml
queries and constraints. InICDT, 225–241.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering.Theor.
Comput. Sci.336(1):89–124.
Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2008.
Conjunctive query answering for the description logic
SHIQ. J. of Artificial Intelligence Research31:151–198.
Goncalves, M. E., and Grädel, E. 2000. Decidability issues
for action guarded logics. InDescription Logics, 123–132.
Gottlob, G., and Nash, A. 2006. Data exchange: computing
cores in polynomial time. InPODS, 40–49.
Gottlob, G.; Leone, N.; and Scarcello, F. 2002. Hypertree
decompositions and tractable queries.J. Comput. Syst. Sci.
64(3):579–627.
Heymans, S.; Nieuwenborgh, D. V.; and Vermeir, D. 2005.
Guarded open answer set programming. InLPNMR 2005,
92–104.
Johnson, D., and Klug, A. 1984. Testing containment of
conjunctive queries under functional and inclusion depen-
dencies.JCSS28:167–189.
Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical founda-
tions of object-oriented and frame-based languages.Jour-
nal of ACM42:741–843.
Maier, D.; Mendelzon, A. O.; and Sagiv, Y. 1979. Testing
implications of data dependencies.TODS4(4):455–469.
Millstein, T.; Levy, A.; and Friedman, M. 2000. Query
containment for data integration systems. InPODS 2000,
67–75.
Nash, A.; Deutsch, A.; and Remmel, J. 2006. Data
exchange, data integration, and chase. Technical Report
CS2006-0859, UCSD.
Qian, X. 1996. Query folding. InICDE, 48–55.
Rabin, M. 1969. Decidability of Second-Order Theories
and Automata on Infinite Trees.Transactions of the Amer-
ican Mathematical Society141(1-35):4.
Rosati, R. 2006. On the decidability and finite control-
lability of query processing in databases with incomplete
information. InPODS 2006, 356–365.
Rosati, R. 2007. On conjunctive query answering in EL. In
20th International Workshop on Description Logics (DL-
2007). CEUR Electronic Workshop Proceedings.
Simkus, M., and Eiter, T. 2007. DNC: Decidable non-
monotonic disjunctive logic programs with function sym-
bols. InLPAR 2007, 514–530.

80




