
Can You Tell the Difference between DL-Lite Ontologies?

Roman Kontchakov
School of Computer Science and

Information Systems
Birkbeck College, London, U.K.

Frank Wolter
Department of Computer Science

University of Liverpool, U.K.

Michael Zakharyaschev
School of Computer Science and

Information Systems
Birkbeck College, London, U.K.

Abstract

We develop a formal framework for comparing differ-
ent versions of DL-Lite ontologies. Four notions of
difference and entailment between ontologies are intro-
duced and their applications in ontology development
and maintenance discussed. These notions are obtained
by distinguishing between differences that can be ob-
served among concept inclusions, answers to queries
over ABoxes, and by taking into account additional con-
text ontologies. We compare these notions, study their
meta-properties, and determine the computational com-
plexity of the corresponding reasoning tasks. Moreover,
we show that checking difference and entailment can be
automated by means of encoding into QBF satisfiability
and using off-the-shelf QBF solvers. Finally, we ex-
plore the relationship between the notion of forgetting
(or uniform interpolation) and our notions of difference
between ontologies.

Introduction
In computer science, ontologies are used to provide a com-
mon vocabulary for a domain of interest, together with a
description of the relationships between terms built from
the vocabulary. Ontology languages based on description
logics (DLs) represent ontologies as TBoxes (terminologi-
cal boxes) containing inclusions between complex concepts
over the vocabulary. An increasingly important application
of ontologies is management of large amounts of data, where
ontologies are used to provide flexible and efficient access to
repositories consisting of data sets of instances of concepts
and relations. In DLs, such repositories are typically mod-
elled as ABoxes (sets of assertions).

Developing and maintaining ontologies for this and other
purposes is a difficult task. When dealing with DLs, the
ontology designer is supported by efficient reasoning tools
for classification, instance checking and some other reason-
ing tasks. However, it is generally recognised that this sup-
port is not sufficient when ontologies are not developed as
‘monolithic entities’ but rather result from importing, merg-
ing, combining, re-using, refining and extending already ex-
isting ontologies. In all those cases, reasoning support for

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

analysing the impact of the respective operation on the on-
tology would be highly desirable. Typical examples of such
‘unorthodox’ reasoning services include the following:

• Comparing versions of ontologies. The standard diff
utility is an indispensable tool for comparing files. How-
ever, such a purely syntactic operation is of little value if
the files contain different versions of ontologies (Noy &
Musen 2002) because our concern now is not the syntactic
form of their axioms, but the relationships between terms
over their common vocabulary Σ these ontologies imply.
The reasoning service we need in this case is to compare
the logical consequences over Σ of different versions of
ontologies.

• Ontology refinement. When refining an ontology by
adding new axioms, one usually wants to preserve the re-
lationships between terms of a certain part Σ of its vocab-
ulary. The reasoning service required in such a case is to
check whether the refined ontology has precisely the same
logical consequences over Σ as the original one.
• Ontology re-use. When importing an ontology, one wants

to use its vocabulary Σ as originally defined. However,
relationships between terms over Σ may change due to
some axioms in the importing ontology. So, again, we
need a reasoning service capable of checking whether new
logical consequences over Σ are derivable (this service
has been termed safety checking in (Grau et al. 2007b)).

In all these and many other cases, we are interested in com-
paring the relationships between terms over some vocabu-
lary (or signature) Σ two ontologies imply. This gives rise
to the two main notions we investigate in this paper: Σ-
difference and Σ-entailment. Roughly, the Σ-difference be-
tween two ontologies is the set of ‘formulas’ over Σ that are
derivable from one ontology but not from the other; and one
ontology Σ-entails another if all Σ-formulas derivable from
the latter are also derivable from the former.

A very important special case of Σ-entailment, namely
various versions of the notion of conservative extension,
has been intensively investigated in the past few years (An-
toniou & Kehagias 2000; Ghilardi, Lutz, & Wolter 2006;
Grau et al. 2007a; 2007b; Lutz, Walther, & Wolter 2007).
In this case one ontology is included in the other and Σ is
the vocabulary of the smaller one. The Σ-formulas consid-
ered in these papers were concept inclusions C1 v C2, and

Proceedings, Eleventh International Conference on Principles of Knowledge Representation and Reasoning (2008)

285

a number of complexity and decidability results were ob-
tained.1 Also, model conservativity (Lutz, Walther, & Wolter
2007) and sufficient syntactic conditions of conservativity,
e.g., locality (Grau et al. 2007b), have been considered.

In this paper we also deal with concept inclusions, but
more importantly, we analyse Σ-difference and entailment
with respect to existential Σ-queries, where the reasoning
task is to decide whether two ontologies give precisely the
same answers to Σ-queries for any database (= ABox) over
Σ, and perhaps any additional context ontology over Σ. The
corresponding notions of Σ-query difference and entailment
are of interest for any DL, but they are of particular impor-
tance to those DLs that were specifically designed in order
to facilitate efficient query-answering over large data sets.

The idea of using ontologies as a conceptual view over
data repositories goes back to (Borgida et al. 1989) and has
recently been developed to a quite practical level (Acciarri
et al. 2005; Calvanese et al. 2007) with promising appli-
cations in such areas as data integration and P2P data man-
agement. The DL-Lite family of description logics has been
largely designed with this application in mind (Calvanese et
al. 2005; 2006). The data complexity of query answering
is within LOGSPACE for most members of the family, and
moreover, queries over DL-Lite ontologies can be rewritten
as SQL queries so that standard database query engines can
be used. DL-Lite is part of the OWL 1.1 Web Ontology Lan-
guage, which is a W3C Member Submission.

In this paper, we investigate four notions of Σ-difference
and Σ-entailment for two members of the DL-Lite family:
DL-Litebool, the most expressive language of the family, ba-
sically covering all others, and DL-Litehorn, the Horn sub-
set of DL-Litebool. The four notions of Σ-difference and
entailment are obtained by distinguishing between differ-
ences visible among concept inclusions, answers to queries
over ABoxes, and by taking into account additional context
ontologies. We compare these notions, study their meta-
properties, and determine the computational complexity of
the corresponding reasoning tasks. Moreover, we show
that the reasoning services discussed above can be imple-
mented by means of encoding into satisfiability of quantified
Boolean formulas (QBF). We report on our first experiments
with general purpose off-the-shelf QBF solvers for deciding
Σ-entailment between ‘typical’ DL-Lite ontologies. Finally,
we show that Σ-difference and entailment are closely re-
lated to forgetting and uniform interpolation as considered
in (Lin & Reiter 1994; Pitts 1992). More precisely, we show
that uniform interpolants always exist for DL-Litebool and
DL-Litehorn TBoxes and that these can be used to decide Σ-
entailment, in some cases.

The DL-Lite Family
We remind the reader of the syntax and semantics of the DLs
DL-Litebool and DL-Litehorn introduced and investigated in
(Calvanese et al. 2005; 2006; Artale et al. 2007). The lan-
guage of DL-Litebool has object names a1, a2, . . . , concept

1The complexity and decidability results for conservative exten-
sions obtained in (Ghilardi, Lutz, & Wolter 2006; Lutz, Walther, &
Wolter 2007) can also be generalised to Σ-entailment.

names A1, A2, . . . , and role names P1, P2, Complex
roles R and DL-Litebool concepts C are defined as follows:

R ::= Pi | P−i ,

B ::= ⊥ | > | Ai | ≥ q R,

C ::= B | ¬C | C1 u C2,

where q ≥ 1. The concepts of the form B above are called
basic. A concept inclusion in DL-Litebool is of the form
C1 v C2, where C1 and C2 are DL-Litebool concepts. (Other
concept constructs like ∃R, ≤ q R and C1 tC2 will be used
as standard abbreviations.) A TBox in DL-Litebool, T , is a
finite set of concept inclusions in DL-Litebool.

In the Horn fragment DL-Litehorn of DL-Litebool, concept
inclusions are restricted to the form

d
k Bk v B, where B

and the Bk are basic concepts. In this context, basic con-
cepts will also be called DL-Litehorn concepts. Note that the
inclusions

d
k Bk v ⊥ and > v B are legal in DL-Litehorn.

A DL-Litehorn TBox is a finite set of DL-Litehorn concept
inclusions. It is worth noting that in DL-Litehorn we can ex-
press both global functionality of a role and local function-
ality (i.e., functionality restricted to a (basic) concept B) by
means of the axioms ≥ 2 R v ⊥ and B u ≥ 2 R v ⊥.

Let L be either DL-Litebool or DL-Litehorn. An ABox in L,
A, is a set of assertions of the form C(ai), R(ai, aj), where
C is an L-concept, R a role, and ai, aj are object names. A
knowledge base in L (KB, for short) is a pair K = (T ,A)
with a TBox T and an ABox A both in L.

An interpretation I is a structure of the form
(∆I , AI1 , . . . , P I1 , . . . , aI1 , . . .), where ∆I is a nonempty
set, AIi ⊆ ∆I , P Ii ⊆ ∆I×∆I and aIi ∈ ∆I with aIi 6= aIj ,
for ai 6= aj (i.e., we adopt the unique name assumption).
The extension CI ⊆ ∆I of a concept C is defined as usual,
e.g.,

d ∈ (≥ q R)I iff |{d′ ∈ ∆I | (d, d′) ∈ RI}| ≥ q.

A concept inclusion C1 v C2 is satisfied in I if CI1 ⊆ CI2 ;
in this case we write I |= C1 v C2. I is a model for
a TBox T if all concept inclusions from T are satisfied in
I. An ABox assertion C(a) (R(ai, aj)) is satisfied in I if
aI ∈ CI ((aIi , aIj) ∈ RI). A concept inclusion C1 v C2

follows from T , T |= C1 v C2 in symbols, if every model
for T satisfies C1 v C2. A concept C is T -satisfiable if
there exists a model I for T with CI 6= ∅. We say that I
is a model for a KB (T ,A) if I is a model for T and every
assertion of A is satisfied in I.

An (essentially positive) existential query in L (or simply
a query, if L is understood) is a first-order formula

q(x1, . . . , xn) = ∃y1 . . . ∃ymϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is constructed, using only ∧ and ∨, from atoms of
the form C(t) and R(t1, t2), with C being an L-concept,
R a role, and ti being either an object name or a variable
from the list x1, . . . , xn, y1, . . . , ym. Given a KB K and a
query q(~x), ~x = x1, . . . , xn, we say that an n-tuple ~a of
object names is a certain answer to q(~x) w.r.t. K and write
K |= q(~a) if, for every model I for K, we have I |= q(~a).

The subsumption problem ‘T |= C1 v C2?’ is CONP-
complete in DL-Litebool and P-complete in DL-Litehorn;

286

the data complexity of the query answering problem for
DL-Litehorn KBs is in LOGSPACE, while for DL-Litebool it
is CONP-complete (Artale et al. 2007).

What is the Difference?
As we saw in the introduction, the notions of difference and
entailment between ontologies are restricted to some sig-
nature, i.e., a finite set of concept and role names.2 Given
a concept, role, concept inclusion, TBox, ABox, or query
E, we denote by sig(E) the signature of E, that is, the
set of concept and role names that occur in E. It is to be
noted that ⊥ and > are regarded as logical symbols, and so
sig(⊥) = sig(>) = ∅. A concept (role, concept inclusion,
TBox, ABox, query) E is called a Σ-concept (role, concept
inclusion, TBox, ABox, query, respectively) if sig(E) ⊆ Σ.
Thus, P− is a Σ-role iff P ∈ Σ.

Definition 1 Let L ∈ {DL-Litebool, DL-Litehorn} and let T1

and T2 be TBoxes in L and Σ a signature.
• The Σ-concept difference between T1 and T2 is the set

cDiffLΣ(T1, T2) of all Σ-concept inclusions C v D in L
such that T2 |= C v D and T1 6|= C v D. We say that T1

Σ-concept entails T2 in L if cDiffLΣ(T1, T2) = ∅.
• The Σ-query difference between T1 and T2 is the set

qDiffLΣ(T1, T2) of pairs (A, q(~x)), where A is a Σ-ABox
in L and q(~x) a Σ-query in L such that (T1,A) 6|= q(~a)
and (T2,A) |= q(~a), for some tuple ~a of object names
from A. We say that T1 Σ-query entails T2 in L if
qDiffLΣ(T1, T2) = ∅.
• The strong Σ-concept difference between T1 and T2 is the

set scDiffLΣ(T1, T2) of all pairs (T , C v D) such that T is
a Σ-TBox in L and C v D ∈ cDiffLΣ(T ∪T1, T ∪T2). T1

strongly Σ-concept entails T2 inL if scDiffLΣ(T1, T2) = ∅.
• The strong Σ-query difference between T1 and T2 is the

set sqDiffLΣ(T1, T2) of all triples (T ,A, q(~x)) such that T
is a Σ-TBox inL and (A, q(~x)) ∈ qDiffLΣ(T ∪T1, T ∪T2).
We also say that T1 strongly Σ-query entails T2 in L if
sqDiffLΣ(T1, T2) = ∅.

As argued in the introduction, the notions of Σ-difference
and Σ–entailment can play an important role in comparing
ontologies, checking whether a refinement of an ontology
has undesirable effects on a certain part of its signature, and
in checking whether a re-used (imported) ontology changes
when put into the environment of another ontology. In all
those cases, Σ indicates the vocabulary over which the user
wants to compare ontologies. For example, for two versions
of a medical ontology, a user interested in anatomy might
choose Σ to be the set of terms relevant to anatomy and then
check whether the two ontologies differ w.r.t. these terms.

In the definition of Σ-query difference, we take into ac-
count arbitrary Σ-ABoxes in L. The reason is that during
the ontology design phase, the data repositories to which the
ontology will be applied are often either unknown or are sub-
ject to more or less frequent changes. Thus, to assume that

2As DL-Litebool TBoxes do not contain object names, we do not
have to include them to signatures (unlike DLs with nominals).

we have a fixed ABox is unrealistic when checking differ-
ences between ontologies, and that is why in our approach
we regard ABoxes as ‘black boxes.’

Observe that, in general, more differences are detected
when we consider Σ-queries rather than Σ-concept inclu-
sions. Indeed, let L be one of DL-Litebool and DL-Litehorn.
To see that any difference detected by means of concept
inclusions can also be detected by means of queries, sup-
pose that we have T1 6|= C1 v C2 and T2 |= C1 v C2,
for some Σ-concept inclusion C1 v C2 in L. Consider
the ABox A = {C1(a)} and the query q = C2(a). Then
(T2,A) |= q, while (T1,A) 6|= q. (Note that in DL-Litehorn,
C1 = B1 u · · · uBk and C2 = B, where B, B1, . . . , Bk are
basic concepts.) To show that the converse does not hold,
namely that queries can detect more differences than con-
cept inclusions, we consider the following example. (Most
of the claims in the examples below can be verified directly
or using the criteria of Theorem 11 below.)
Example 2 Take Σ = {Lecturer, Course}, T1 = ∅, and

T2 = {Lecturer v ∃teaches, ∃teaches− v Course}.
Intuitively, the only consequence of T2 over Σ is ‘if there is
a lecturer, then there is a course,’ but it cannot be expressed
as a Σ-concept inclusion. Thus, T1 Σ-concept entails T2

(in both DL-Litebool and DL-Litehorn). However, T1 does
not Σ-query entail T2. Indeed, let A = {Lecturer(a)} and
q = ∃y Course(y). Then (T1,A) 6|= q but (T2,A) |= q.

It is also of interest to observe that Σ-query entail-
ment in DL-Litehorn does not imply Σ-query entailment in
DL-Litebool (the converse implication follows immediately
from the fact that DL-Litehorn is a fragment of DL-Litebool).
Example 3 Let Σ = {Lecturer}, T1 = ∅, and

T2 = {Lecturer v ∃teaches, Lecturer u ∃teaches− v ⊥}
Then T1 does not Σ-query entail T2 in DL-Litebool: just take
A as before and q = ∃y ¬Lecturer(y). But T1 Σ-query en-
tails T2 in DL-Litehorn.

The first two notions of difference in Definition 1 do not
take into account any context ontologies in which T1 or T2

may be used, nor do they cover the situation where T1 and
T2 are changed by adding new axioms. To accommodate for
this, we have introduced strong versions of entailment and
difference. If two versions of ontologies strongly Σ-entail
each other for their shared signature Σ, then they can be
safely replaced by each other within any ontology T which
only uses symbols from Σ; after such a replacement no dif-
ferences between the sets of derivable Σ-concept inclusions
(or answers to Σ-queries) can be detected. To see that the
‘weak’ notions of entailment do not always have this re-
placement property, consider the following example.
Example 4 Let T1 = ∅ and T2 be the TBox from Example 3
saying that every lecturer teaches and that a lecturer is not
something which is taught. Let, as before, Σ = {Lecturer}.
Then T1 and T2 Σ-concept entail each other in DL-Litebool.
But for T = {> v Lecturer}, we have T1 ∪ T 6|= > v ⊥
and T2 ∪ T |= > v ⊥, i.e., the former TBox is consistent
while the latter is not. Thus, the difference between T1 and
T2 becomes visible if we extend them with the ontology T .

287

Example 4 shows also that Σ-query entailment in
DL-Litehorn does not imply strong Σ-concept entailment in
DL-Litehorn. In the context of defining modules within on-
tologies, taking into account changes to ontologies and con-
text ontologies has been strongly advocated in (Grau et al.
2007b), which inspired our definitions. The following exam-
ple shows that strong Σ-concept entailment in DL-Litehorn
does not imply strong Σ-concept entailment in DL-Litebool.

Example 5 Consider the DL-Litehorn TBoxes

T1 =
{

Male u Female v ⊥, > v ∃father, > v ∃mother,
∃father− v Male, ∃mother− v Female

}
,

T2 =
{
> v ∃id, Male u ∃id− v ⊥, Female u ∃id− v ⊥

}
,

and let Σ = {Male, Female, father, mother}. T2 implies
that > 6v Male t Female. Now, in DL-Litebool, T1 ∪ T2 is
not strongly Σ-concept entailed by T1: it is enough to take
T = {> v Male t Female}. However, T1 ∪ T2 is strongly
Σ-entailed by T1 in DL-Litehorn.

Semantic Criteria of Σ-Entailment
Now we compare the notions of Σ-difference and Σ-
entailment in a systematic way using model-theoretic char-
acterisations. Our first observation generalises the well-
known result from propositional logic according to which
two propositional Horn theories entail the same Horn formu-
las if, and only if, these theories have the same consequences
in the class of all propositional formulas.

Theorem 6 For any DL-Litehorn TBoxes T1, T2 and any sig-
nature Σ, the following two conditions are equivalent:

• T1 Σ-concept entails T2 in DL-Litebool;
• T1 Σ-concept entails T2 in DL-Litehorn.

Examples 3 and 5 show that this theorem does not hold
for the stronger notions of Σ-entailment. Moreover, for nei-
ther DL-Litehorn nor DL-Litebool any of the stronger notions
is equivalent to Σ-concept entailment. Our second theorem
summarises the classification of the remaining notions and
shows that in all those cases where we have not provided
counterexamples our notions of Σ-entailment are equivalent.

Theorem 7 Let L be DL-Litebool or DL-Litehorn, T1 and T2

TBoxes in L, and Σ a signature. For L = DL-Litebool, the
following conditions are equivalent:

(1) T1 Σ-query entails T2 in L;
(2) T1 strongly Σ-concept entails T2 in L;
(3) T1 strongly Σ-query entails T2 in L.

For L = DL-Litehorn, conditions (2) and (3) are equivalent,
while (1) is strictly weaker than each of them.

Thus, the full comparison table looks as follows:

DL-Litehorn
Σ-concept�Σ-query� strong Σ-concept≡strong Σ-query

DL-Litebool
Σ-concept�Σ-query≡ strong Σ-concept≡strong Σ-query

The equivalence results of Theorem 7 follow from the
model-theoretic characterisations of the notions of Σ-entail-
ment to be presented below. In this paper, our characterisa-
tions will have a somewhat syntactic flavour in the sense that
they are formulated in terms of types—syntactic abstrac-
tions of domain elements—realised in models, rather than in
model-theoretic terms. The advantage of such characterisa-
tions is that they can be used directly for designing decision
algorithms, despite the fact that the underlying models are
often infinite as neither DL-Litebool nor DL-Litehorn has the
finite model property (Calvanese et al. 2005). Needless to
say, however, that the correctness of the type-based charac-
terisations presented below require model constructions (see
the Appendix on proof sketches).

Let Σ be a signature and Q a set of positive natural num-
bers containing 1. By a ΣQ-concept we mean any concept of
the form ⊥, >, Ai, ≥ q R, or its negation, for some Ai ∈ Σ,
Σ-role R and q ∈ Q. A ΣQ-type is a set t of ΣQ-concepts
containing > such that the following conditions hold:

• for every ΣQ-concept C, either C ∈ t or ¬C ∈ t,

• if q < q′ are both in Q and ≥ q′R ∈ t then ≥ q R ∈ t.

Clearly, for each ΣQ-type t with⊥ /∈ t, there is an interpre-
tation I and a point x in it such that x ∈ CI , for all C ∈ t.
In this case we say that t is realised (at x) in I.

Definition 8 For a TBox T , a ΣQ-type t is called T -realis-
able if t is realised in a model for T . A set Ξ of ΣQ-types is
said to be T -realisable if there is a model for T realising all
types from Ξ. We also say that Ξ is precisely T -realisable if
there is a model I for T such that I realises all types in Ξ,
and every ΣQ-type realised in I is in Ξ.

Given a TBox T , let QT denote the set of numerical pa-
rameters occurring in T together with 1. The following con-
ditions are equivalent:

• T1 Σ-concept entails T2 in DL-Litebool;
• every T1-realisable ΣQT1∪T2 -type is T2-realisable.

This equivalence is trivial if one considers ΣN-types instead
of ΣQT1∪T2 -types. Thus, the message here is that it is suffi-
cient to consider only parameters from QT1∪T2 .

For Σ-query entailment in DL-Litebool (and the two other
equivalent notions), the following conditions are equivalent:

• T1 Σ-query entails T2 in DL-Litebool;
• every precisely T1-realisable set Ξ of ΣQT1∪T2 -types is

precisely T2-realisable.

Intuitively, while Σ-concept entailment is a ‘local’ form of
entailment referring to one point in a model, Σ-query entail-
ment and strong Σ-concept/query entailment are ‘global’ in
the sense that all points of models have to be considered.

Example 9 In Example 2, to compute the ΣQT1∪T2 -types,
we do not require numerical parameters, as Σ contains
no role names. There are four T1-realisable Σ-types
{(¬)Lecturer, (¬)Course}. All of these are T2-realisable as
well. However, the singleton set {{Lecturer,¬Course}} is
precisely T1-realisable but not precisely T2-realisable.

288

In the case of DL-Litehorn more definitions are required.
Given a ΣQ-type t, let t+ = {B ∈ t | B a basic concept}
(i.e., positive part of the type). Say that a ΣQ-type t1 is h-
contained in a ΣQ-type t2 if t+

1 ⊆ t+
2 . The following two

notions characterise Σ-entailment for DL-Litehorn:

Definition 10 A set Ξ of ΣQ-types is said to be sub-pre-
cisely T -realisable if there is a model I for T such that I
realises all types from Ξ, and every ΣQ-type realised in I is
h-contained in a type from Ξ. We also say that Ξ is meet-pre-
cisely T -realisable if there is a model I for T such that, for
every ΣQ-type t realised in I, Ξt 6= ∅ and t+ =

⋂
ti∈Ξt

t+
i ,

where Ξt = {ti ∈ Ξ | t+ ⊆ t+
i }. (It follows that t+ ⊆ t+

i ,
for all ti ∈ Ξt, and thus, Ξ is sub-precisely T -realisable.)

Theorem 11 Let L ∈ {DL-Litebool, DL-Litehorn} and ‘Σ-
entails’ be one of the four notions of Σ-entailment. For a
signature Σ and TBoxes T1 and T2 in L, the following are
equivalent:
• T1 Σ-entails T2 in L;
• every precisely T1-realisable set of ΣQT1∪T2 types satis-

fies the corresponding property from the following table:

language L
Σ-entailment DL-Litehorn DL-Litebool

Σ-concept3 T2-realisable T2-realisable

Σ-query sub-precisely
T2-realisable

strong Σ-concept meet-precisely
T2-realisable

precisely
T2-realisable

strong Σ-query

Example 12 Consider the TBoxes from Example 3. Again,
we do not require numerical parameters because Σ does
not contain role names. The T1-realisable Σ-types are
{¬Lecturer} and {Lecturer}, and both are T2-realisable.
Hence T1 Σ-concept entails T2 in DL-Litebool (and, there-
fore, in DL-Litehorn). The singleton set {{Lecturer}} is pre-
cisely T1-realisable, but not precisely T2-realisable. Hence
T1 does not Σ-query entail T2 in DL-Litebool. However,
{{Lecturer}} is sub-precisely T1-realisable and, therefore
T1 Σ-query entails T2 in DL-Litehorn. On the other hand,
{{Lecturer}} is not meet-precisely T2-realisable, and so T1

does not strongly Σ-concept entail T2 in DL-Litehorn.

Robustness Properties
Results regarding Σ-difference and Σ-entailment can be eas-
ily misinterpreted and are of limited use if these notions
do not enjoy certain robustness properties. To start with,
recall that in the definition of essentially positive existen-
tial queries for DL-Litebool, we allow negated concepts in
queries and ABoxes. An alternative approach would be to
allow only positive concepts. These two types of queries
give rise to different notions of query entailment: under the
second definition, the TBox T2 from Example 3 is Σ-query
entailed by T1 = ∅, even in DL-Litebool. We argue, how-
ever, that it is the essentially positive queries that should be

3Every T1-realisable type is always contained in a precisely T1-
realisable set.

considered in the context of this investigation. The reason is
that, with only positive queries allowed, the addition of the
definition B ≡ ¬Lecturer to T2 and B to Σ would result in a
TBox which is not Σ-query entailed by T1 in DL-Litebool any
longer. This kind of non-robust behaviour of the notion of
Σ-entailment is clearly undesirable. Obviously, the formula-
tions we gave are robust under the addition of definitions to
TBoxes. We now consider two other robustness conditions.

Theorem 13 Let L ∈ {DL-Litehorn, DL-Litebool} and ‘Σ-
entails’ be one of the four notions of Σ-entailment given in
Definition 1.

• The relation ‘Σ-entails’ is robust under vocabulary ex-
tensions for L: for all L-TBoxes T1 and T2, if T1 Σ-
entails T2, then T1 Σ′-entails T2, for every Σ′ such that
Σ′ ∩ sig(T2) ⊆ Σ.

• The relation ‘Σ-entails’ is robust under joins for L: for
all L-TBoxes T1 and T2, if T and Ti Σ-entail each other,
for i = 1, 2, and sig(T1)∩ sig(T2) ⊆ Σ, then T Σ-entails
T1 ∪ T2.

Robustness under vocabulary extensions is of particular im-
portance for query Σ-entailment and the strong versions of
Σ-entailment. For example, it implies that if T1 strongly
Σ-query entails T2 then, for any ABox A, TBox T and
query q containing, besides Σ, arbitrary symbols not oc-
curring in T2, we have (T1 ∪ T ,A) |= q(~a) whenever
(T2 ∪ T , A) |= q(~a). This property is critical for applica-
tions, as it is hardly possible to restrict ABoxes and context
ontologies to a fixed signature Σ and not permit the use of
any fresh symbols.

Robustness under joins is of interest for collaborative on-
tology development. This property means that if two (or
more) ontology developers extend a given ontology T in-
dependently and do not use common symbols with the ex-
ception of those in a certain signature Σ then they can safely
form the union of T and all their additional axioms provided
that their individual extensions are safe for Σ.

Both robustness conditions are closely related to the well-
known Robinson consistency lemma and interpolation (see
e.g., (Chang & Keisler 1990)), which have been investi-
gated in the context of modular software specification (Dia-
conescu, Goguen, & Stefaneas 1993) as well. They typically
fail for description logics with nominals and/or role hierar-
chies (Areces & ten Cate 2006; Konev et al. 2007). Observe
that, for robustness under joins, mutual Σ-entailment of T
and Ti is required:

Example 14 Let T1 = {A v ∃R,∃R− v B}, T2 = T ,
T = {> v ¬B}, and Σ = {A, B}. Then T Σ-concept
entails Ti, i = 1, 2, but T1 ∪ T2 |= > v ¬A, and so it is not
Σ-concept entailed by T .

Complexity and Algorithms
We first determine the complexity of deciding Σ-entailment
and then consider the problem of computing Σ-differences.

Theorem 15 For all notions of Σ-entailment introduced
in Definition 1, deciding Σ-entailment is Πp

2-complete in
DL-Litebool and CONP-complete in DL-Litehorn.

289

The lower bounds follow immediately from the complex-
ity of deciding conservativity in propositional logic and its
Horn fragment. The upper bound for Σ-concept entail-
ment in DL-Litebool and DL-Litehorn is rather straightfor-
ward: by the characterisation of Theorem 11, it is suf-
ficient to check that every T1-realisable ΣQT1∪T2 -type is
T2-realisable. Thus, to check non Σ-concept entailment
in DL-Litebool, the algorithm guesses a ΣQT1∪T2 -type and
checks, using an NP-oracle, that it is T1-realisable but not
T2-realisable. For DL-Litehorn, this latter check can be done
in deterministic polynomial time.

Proving the upper bounds for the remaining decision
problems is harder: the criteria of Theorem 11 do not make
any claim regarding the cardinality of the sets of ΣQT1∪T2 -
types one has to consider (there are exponentially many
ΣQT1∪T2 -types). Our upper bound proof shows that it suf-
fices to consider sets Ξ of ΣQT1∪T2 -types the size of which
is bounded by a linear function in the size of the TBoxes.
Then, for DL-Litebool TBoxes T1 and T2, one can decide
whether T1 does not Σ-entail T2 by guessing a set Ξ of lin-
early many ΣQT1∪T2 -types and checking that it is precisely
T1-realisable and not precisely T2-realisable. The Appendix
provides an NP algorithm deciding whether a given set of
ΣQ-types is precisely T -realisable. This gives the Πp

2 upper
bound for Σ-query entailment in DL-Litebool. The proce-
dures for DL-Litehorn are similar: given DL-Litehorn TBoxes
T1 and T2, one can decide whether T1 does not (strongly)
Σ-query entail T2 by guessing Ξ and checking that it is
precisely T1-realisable and not sub-precisely (respectively,
meet-precisely) T2-realisable. The Appendix provides poly-
nomial deterministic algorithms deciding whether a set of
ΣQ-types is precisely, sub-precisely and meet-precisely T -
realisable, for a DL-Litehorn TBox T . This gives CONP up-
per bounds for Σ-query and strong Σ-query entailment.

Observe that deciding Σ-entailment and conservativity is
much harder for most DLs: it is EXPTIME-complete for EL
(Lutz & Wolter 2007), 2EXPTIME-complete for ALC and
ALCQI, and undecidable forALCQIO (Ghilardi, Lutz, &
Wolter 2006; Lutz, Walther, & Wolter 2007).

In applications, it is not enough just to decide whether
two ontologies differ w.r.t. a signature. If the ontologies are
different, the ontology engineer needs an informative list of
differences. Observe that the set of Σ-differences as defined
in Definition 1 is either infinite or empty. Thus, only ap-
proximations of these sets can be computed. By the crite-
ria of Theorem 11, for Σ-concept difference the ΣQ-types
which are T1-realisable but not T2-realisable are obvious
candidates to include in such a set. Such a type contains,
for each concept name A ∈ Σ and (≥ qR) with q ∈ Q,
R ∈ Σ, either the concept itself, or its negation. If there
are too many Σ-differences (remember, there are exponen-
tially many types) and the resulting list is incomprehensi-
ble, the user can step-by-step decrease the size of Σ (e.g.,
by removing elements X from Σ such that two types which
coincide except for X are in the Σ-difference) until the set
of types in the Σ-difference can be analysed. Moreover, as
a second step the user might consider applying pinpointing
algorithms (Schlobach & Cornet 2003) which exhibit the ax-
ioms in the ontology from which the Σ-differences are deriv-

able. For stronger versions of Σ-difference, it appears to be
unavoidable to consider precisely T1-realisable sets of ΣQ-
types, which are (in one of the three ways described in The-
orem 11) not precisely T2-realisable. We leave a systematic
study of the problem of constructing or approximating the
query and strong versions of difference for future research.

Experimental Results
To see whether the algorithms of the previous section can
be used in practice, we refined the criteria for Σ-concept
and Σ-query entailment in DL-Litebool and encoded them
by means of ∀∃ QBFs (the validity problem for which is
Πp

2-complete). The reader can find the encodings in the full
version available at www.dcs.bbk.ac.uk/∼roman/qbf2.
We used these QBF translations to check Σ-concept/query
entailment for DL-Litebool ontologies with the help of
three off-the-shelf QBF solvers: sKizzo (Benedetti 2005),
2clsQ (Samulowitz & Bacchus 2006) and Quaffle (Zhang &
Malik 2002b; 2002a). As our benchmarks, we considered
three series of instances of the form (T1, T2, Σ). In the NN-
series, T1 does not Σ-concept entail T2; in the YN-series, T1

Σ-concept but not Σ-query entails T2; and in the YY-series,
T1 Σ-query entails T2. The sizes of the instances are uni-
formly distributed over the intervals given in the table below.

no. of axioms basic concepts
series instances T1 T2 T1 T2 Σ

NN 420 59–154 74–198 47–121 49–146 5–52
YN 252 56–151 77–191 44–119 58–145 6–45
YY 156 54–88 62–110 43–79 47–94 6–32

It is to be noted that our ontologies were not randomly gener-
ated. On the contrary, we used ‘typical’ DL-Lite ontologies
available on the Web: extensions of DL-Litebool fragments
of the standard ‘department ontology’ as well as DL-Litebool
representations of the ER diagrams used in the QuOnto sys-
tem (www.dis.uniroma1.it/∼quonto/).

The next table illustrates the size of the QBF translations
of our instances for both Σ-concept and Σ-query entailment.

Σ-concept entailment QBF Σ-query entailment QBF
series variables clauses variables clauses

NN 1,469–11,752 2,391–18,277 1,715–15,174 5,763–163,936
YN 1,460–11,318 2,352–17,424 1,755–14,723 7,006–151,452
YY 1,526–4,146 2,200–6,079 1,510–4,946 5,121–29,120

The large difference between the size of the QBF transla-
tions for Σ-concept and Σ-query entailment (say, 18,277
v. 163,936 clauses in the same instance) reflects the differ-
ence between simple and precise realisability of sets of types
(cf. Theorem 11): roughly, the QBF encoding of the latter re-
quires quadratical number of clauses (in the number of role
names) whereas the former needs only linearly many.

A brief summary of the tests, conducted on a 3GHz
P4 machine with 2GB RAM, is given in Fig. 1, where
the graphs in the upper (lower) row show the per-
centage of solved instances for Σ-concept (respectively,
Σ-query) entailment; for details and more charts see
www.dcs.bbk.ac.uk/∼roman/qbf2.

The main conclusion of the tests is that automated check-

290

Q
ua

ffl
e

2c
ls

Q
sK

iz
zo

Σ
-c

on
ce

pt
Σ

-q
ue

ry
YY%

0
10
20
30
40
50
60
70
80
90

100

0 1 2 4 8 16 32 64 128 256 512 s

YN%

0
10
20
30
40
50
60
70
80
90

100

0 1 2 4 8 16 32 64 128 256 512 s

NN%

0
10
20
30
40
50
60
70
80
90

100

0 1 2 4 8 16 32 64 128 256 512 s

0
10
20
30
40
50
60
70
80
90

100

0 2 8 32 128 512 2048 8192 32768 s
0

10
20
30
40
50
60
70
80
90

100

0 1 2 4 8 16 32 64 128 256 512 1024 2048 s
0

10
20
30
40
50
60
70
80
90

100

0 1 2 4 8 16 32 64 128 256 512 1024 2048 s

Figure 1: Percentage of instances solved (Y axis) for each timeout (X axis).

ing of Σ-entailment between DL-Litebool ontologies4 is in-
deed possible, even with off-the-shelf general purpose soft-
ware (let alone dedicated reasoners). Although of the
same worst-case complexity, in practice Σ-concept entail-
ment turns out to be much easier to check than Σ-query
entailment. Quaffle solved all of our 828 Σ-concept in-
stances. However, none of the solvers could cope with all
Σ-query instances, with those of the YY series being es-
pecially hard. All in all, we have solved more than 95%
of the Σ-query instances. Another interesting observation
is that, for Σ-concept entailment, bigger signatures usually
meant harder instances, whereas the impact of the size of
Σ on Σ-query entailment was rather limited. Finally, our
tests showed that none of the three solvers was better than
the others when checking Σ-entailment: Quaffle was the
best for Σ-concept entailment, 2clsQ for Σ-query entail-
ment with the answer ‘NO,’ and sKizzo for Σ-query en-
tailment with the answer ‘YES.’ On the other hand, having
tried various quantifier orderings in the prenex QBF trans-
lations (www.dcs.bbk.ac.uk/∼roman/qbf2), we have
identified a number of strategies that could dramatically im-
prove performance of QBF solvers when checking Σ-query
entailment.

Forgetting
Now we briefly discuss a different approach to deciding Σ-
entailment, which is based on the notion of forgetting (or
uniform interpolation). Assume that we want to re-use the
information provided by a TBox T about a certain signa-
ture Σ. If we are not interested at all in what T says about
the symbols that do not belong to Σ, then it would be use-
ful to have a new TBox TΣ containing only symbols from
Σ and having the same consequences over Σ as T in the
sense that T and TΣ Σ-entail each other. Of course, the
question whether such an ontology TΣ exists and can be

4The main application area of the DL-Lite family of logics is
conceptual data modelling and data integration, where typical DL-
Lite ontologies do not contain more than a few hundred axioms.

constructed depends on the language constructors, the sig-
nature Σ, and the type of Σ-entailment we are interested in.
A similar problem (in different contexts) has been studied by
different research communities which used different names
such as forgetting (Lang, Liberatore, & Marquis 2003;
Lin & Reiter 1994; Wang et al. 2008), uniform interpola-
tion (Pitts 1992; Visser 1996; Ghilardi, Lutz, & Wolter 2006;
Konev et al. 2007), and variable elimination. For the case
of Σ-concept entailment in DL-Lite, the notion of forgetting
or uniform interpolation can be defined as follows.
Definition 16 Let L ∈ {DL-Litehorn, DL-Litebool}. We say
that L admits forgetting (or has uniform interpolation) if, for
every TBox T in L and every finite signature Σ, there exists
a TBox TΣ in L with sig(TΣ) ⊆ Σ such that T and TΣ Σ-
concept entail each other in L. In this case, TΣ is called a
uniform interpolant of T w.r.t. Σ in L.
Example 17 Consider the TBox

T = {Hand v BodyPart, BodyPart v PhysicalObject}
in L, and let Σ = {Hand, PhysicalObject}. Then the TBox
TΣ = {Hand v PhysicalObject} is clearly a uniform inter-
polant of T w.r.t. Σ in L.

Observe that if L has uniform interpolation, then com-
puting uniform interpolants is an alternative way of decid-
ing Σ-concept entailment in L. Indeed, suppose that two
TBoxes T and T ′ in L are given and that we want to decide
whether T Σ-concept entails T ′ in L. Compute a uniform
interpolant T ′Σ of T ′ w.r.t. Σ in L. Then T Σ-concept en-
tails T ′ if T |= C1 v C2 for all (C1 v C2) ∈ T ′Σ. Thus,
Σ-concept entailment can be reduced to computing uniform
interpolants and checking subsumption in L. The follow-
ing theorem states that DL-Litebool and DL-Litehorn do enjoy
uniform interpolation.
Theorem 18 Let L ∈ {DL-Litebool, DL-Litehorn}. Then L
has uniform interpolation, and a uniform interpolant of a
TBox T w.r.t. Σ in L can be constructed in exponential time
in the size of T (that is, the number of occurrences of sym-
bols in T).

291

It would be interesting to conduct experiments on decid-
ing Σ-concept entailment using Theorem 18 and compare
the performance of this approach with the one based on the
QBF encoding we discussed above.

We remark that forgetting of concepts (but not roles) has
been studied in (Wang et al. 2008). However, the method
presented in (Wang et al. 2008) cannot be generalised to
forgetting roles, which should be allowed according to the
definition of forgetting. It is also worth mentioning that,
for many standard DLs such as ALC and even EL, uniform
interpolants do not always exist (Ghilardi, Lutz, & Wolter
2006; Konev et al. 2007).

The notion of uniform interpolation introduced above is
of little help if we want to decide stronger versions of Σ-
entailment from Definition 1.

Example 19 Let L ∈ {DL-Litebool, DL-Litehorn}. Consider
the TBox

T = {Lecturer v ∃teaches, ∃teaches− v Course}

from Example 2, and let Σ = {Lecturer, Course}. Then
TΣ = ∅ is a uniform interpolant of T w.r.t. Σ in L because,
as we have already seen, the empty TBox Σ-concept entails
T in L. We also know that the empty TBox does not Σ-
query entail T in L. Thus, in contrast to Σ-concept entail-
ment, computing a uniform interpolant of T w.r.t. Σ in L
does not really help us decide Σ-query entailment in L.

Thus, we are facing the problem of finding a modifica-
tion of the notion of uniform interpolation that is capable of
deciding Σ-query entailment (and other stronger notions of
Σ-entailment from Definition 1). Here we briefly sketch a
solution for DL-Litebool.

Denote by DL-Liteu
bool the extension of DL-Litebool by the

universal role u, with the DL-Liteu
bool concepts defined as for

DL-Litebool except that now we have the additional clause

C ::= . . . | ∃u.C ′ | . . . ,

where C ′ is a DL-Litebool concept. (Note that DL-Liteu
bool

concepts contain no nested occurrences of ∃u.) Given an
interpretation I, we set (∃u.C)I = ∆I if CI 6= ∅ and
(∃u.C)I = ∅ otherwise. The remaining model-theoretic
notions are defined exactly as for DL-Litebool. Using the
construction from (Artale et al. 2007) one can show that
the subsumption problem ‘T |= C1 v C2?’ is still CONP-
complete for TBoxes T in DL-Liteu

bool and concept inclu-
sions C1 v C2 in DL-Liteu

bool. It is important that we regard
u as a logical symbol, so that sig(∃u.C) = sig(C).

Definition 20 Let T be a TBox in DL-Litebool and Σ a sig-
nature. A TBox TΣ in DL-Liteu

bool is called a uniform in-
terpolant of T w.r.t. Σ in DL-Liteu

bool if sig(TΣ) ⊆ Σ and,
for every concept inclusion C1 v C2 in DL-Liteu

bool with
sig(C1 v C2) ⊆ Σ, we have

T |= C1 v C2 iff TΣ |= C1 v C2.

The language DL-Liteu
bool captures exactly the remaining

notions of Σ-entailment for DL-Litebool, which, by Theo-
rem 7, are all equivalent to Σ-query entailment:

Theorem 21 Let T and T ′ be TBoxes in DL-Litebool and
Σ a signature. And let T ′Σ be a uniform interpolant of T ′
w.r.t. Σ in DL-Liteu

bool. Then T Σ-query entails T ′ if, and
only if, T |= C1 v C2, for every (C1 v C2) ∈ T ′Σ.

The following theorem shows that DL-Litebool has uni-
form interpolation w.r.t. DL-Liteu

bool.

Theorem 22 For every TBox T in DL-Litebool and every
signature Σ, one can constructed in exponential time in
the size of T a uniform interpolant TΣ of T w.r.t. Σ in
DL-Liteu

bool.

Example 23 Consider again the TBox

T = {Lecturer v ∃teaches, ∃teaches− v Course}
and Σ = {Lecturer, Course}. Then

TΣ = {Lecturer v ∃u.Course}
is a uniform interpolant of T w.r.t. Σ in DL-Liteu

bool.

Conclusion
We have analysed the relation between various notions of
difference and entailment w.r.t. a signature in description
logics DL-Litebool and DL-Litehorn, and proved that the cor-
responding reasoning problems are not harder (at least theo-
retically) than similar problems in propositional logic. We
also demonstrated that an efficient reasoning service for
checking Σ-entailment between DL-Litebool ontologies can
be implemented, even using general purpose off-the-shelf
QBF solvers.

Future research problems include the following:

• The algorithms presented for Σ-entailment provide a basis
for developing module extraction algorithms for DL-Lite
ontologies. Such an algorithm should output, given an on-
tology and a signature Σ, a minimal sub-ontology which
Σ-entails the full ontology; see (Grau et al. 2007a) for
an overview. It remains to develop the details of such a
procedure for DL-Lite.
• We have only provided a sketch of how an approxima-

tion of the differences between two versions of an ontol-
ogy can be computed. Further experimental results are
required to evaluate the feasibility of this approach.

• It would be of interest to implement an algorithm com-
puting uniform interpolants and conduct experiments to
evaluate how large uniform interpolants can be for real-
world ontologies and signatures. Note that, in the worst
case, minimal uniform interpolants are of exponential size
in the size of the original TBox. Moreover, the com-
puted uniform interpolants can then be used to decide Σ-
entailment for DL-Litebool and it would be of interest to
compare this approach to deciding Σ-entailment with the
QBF encoding method developed in this paper.

• We have shown that the extension DL-Liteu
bool of

DL-Litebool with the universal role is sufficiently expres-
sive to capture Σ-query entailment using uniform inter-
polants. It would be interesting to design corresponding
languages for Σ-query entailment and strong Σ-concept
entailment for DL-Litehorn.

292

Acknowledgements
The work on this paper was partially supported by the U.K.
EPSRC research grants EP/E034942/1 and EP/E065279/1.

Appendix: Proof Sketches
In the appendix, we give proof sketches of some of the re-
sults for DL-Litebool. Full proofs of all results of this paper,
including those for the case of DL-Litehorn, are available at
www.dcs.bbk.ac.uk/∼roman.

First, we prove an important amalgamation property of
DL-Litebool models. Given a signature Σ, we say that two
interpretations I andJ are Σ-isomorphic and write I ∼Σ J
if there is a bijection f : ∆I → ∆J such that (i) f(aI) =
aJ , for every object name a, (ii) x ∈ AI iff f(x) ∈ AJ ,
for every concept name A in Σ, and (iii) (x, y) ∈ P I iff
(f(x), f(y)) ∈ PJ , for every role name P in Σ. Clearly,
Σ-isomorphic interpretations cannot be distinguished by Σ-
TBoxes, Σ-ABoxes or Σ-queries. Given a set Ii, i ∈ I , of
interpretations with 0 ∈ I , define the interpretation

J =
⊕
i∈I

Ii,

where ∆J = {(i, w) | i ∈ I, w ∈ ∆i}, aJ = (0, aI1), for
an object name a, AJ = {(i, w) | w ∈ AIi}, for a concept
name A, and PJ = {((i, w1), (i, w2)) | (w1, w2) ∈ P Ii},
for a role name P . J can be regarded as a disjoint union of
the Ii. Given an interpretation I, we set

Iω =
⊕
i∈ω

Ii,

where Ii = I for i ∈ ω. It should be clear that Σ-TBoxes,
Σ-ABoxes or Σ-queries (for any signature Σ) cannot distin-
guish between I and Iω .

Lemma A.1 Let I1 and I2 be at most countable models for
TBoxes T1 and T2, respectively, and let Σ be a signature
such that sig(T1) ∩ sig(T2) ⊆ Σ. If interpretations I1 and
I2 realise precisely the same ΣQT1∪T2 -types, then there is
an interpretation I∗ such that:
• I∗ |= T1 ∪ T2,
• I∗ ∼Σ Iω

1 , and
• I∗, I1 and I2 realise the same set of ΣQT1∪T2 -types.

Proof. Let Ξ be the set of ΣQT1∪T2 -types realised in I1

(and I2). We show that Iω
1 can be expanded to a model I∗

for T1 ∪ T2. As both Iω
1 and Iω

2 realise each ΣQT1∪T2 -type
from Ξ by countably infinitely many points, there is a bijec-
tion f : ∆I

ω
2 → ∆I

ω
1 which is invariant under ΣQT1∪T2 -

types. Now, we set ∆I
∗

= ∆I
ω
1 and, for all object names a,

concept names A, and role names P ,

aI
∗

= aI
ω
1 ,

AI
∗

=
{

AI
ω
1 , if A ∈ Σ ∪ sig(T1),

{f(x) | x ∈ AI
ω
2 }, otherwise,

P I
∗

=
{

P I
ω
1 , if P ∈ Σ ∪ sig(T1),

{(f(x), f(y)) | (x, y) ∈ P I
ω
2 }, otherwise.

One can show that I∗ is as required. q

We need the following immediate consequence of
Lemma A.1.

Lemma A.2 Let J be an (at most countable) model for T1

and Σ a signature with Σ ⊆ sig(T1). Suppose that there is
a model for T2 realising exactly the same ΣQT1∪T2 -types as
J . Then there is a model I∗ for T2 such that I∗ ∼Σ J ω .

In particular, I∗ |= A iff J |= A, for all Σ-ABoxes A,
I∗ |= T iff J |= T , for all Σ-TBoxes T , and I∗ |= q(~a) iff
J |= q(~a), for all Σ-queries q(~a).

Now, the DL-Litebool part of Theorems 7 and 11 is a con-
sequence of the following lemma:

Lemma A.3 Let T1, T2 be TBoxes in DL-Litebool and Σ a
signature.
(i) The following two conditions are equivalent:

(ceb) T1 Σ-concept entails T2 in DL-Litebool;
(r) every T1-realisable ΣQT1∪T2 -type is T2-realisable.

(ii) The following four conditions are equivalent:

(sceb) T1 strongly Σ-concept entails T2;
(qeb) T1 Σ-query entails T2;
(sqeb) T1 strongly Σ-query entails T2;
(pr) if a set of ΣQT1∪T2 -types is precisely T1-realisable,

then it is precisely T2-realisable.

Proof. (ceb) ⇒ (r) Suppose t is a T1-realisable ΣQT1∪T2 -
type which is not T2-realisable. Then T2 |= D v ⊥ but
T1 6|= D v ⊥, for D =

d
C∈t C, contrary to T2 being Σ-

entailed by T1.

(r) ⇒ (ceb) Assume T1 6|= C1 v C2 and sig(C1 v C2) ⊆
Σ. Take a model J for T1 with J 6|= C1 v C2. By (r), we
find a model I2 for T2 realising all ΣQT1∪T2 -types which
are realised in J . Let I1 be the disjoint union of J and
I2. Then I1 6|= C1 v C2 and I1 and I2 realise precisely the
same ΣQT1∪T2 -types. By Lemma A.1 (applied to T2 and the
empty TBox), we find a model I for T2 with I 6|= C1 v C2.
Hence T2 6|= C1 v C2.

(pr) ⇒ (sqeb) Suppose that there are a Σ-TBox T , a Σ-
ABox A and a Σ-query q(~x) such that (T2 ∪ T ,A) |= q(~a)
but (T1 ∪ T ,A) 6|= q(~a), for some object names ~a. Take a
modelJ for (T1∪T ,A) such thatJ 6|= q(~a) and let Ξ be the
set of ΣQT1∪T2 -types realised in J . Then there is a model
for T2 realising exactly the types in Ξ and, by Lemma A.2,
there exists a model I∗ for T2 such that I∗ |= (T ,A) and
I∗ 6|= q(~a), which is a contradiction.

(qeb) ⇒ (pr) Suppose there is a set Ξ of ΣQT1∪T2 -types
that is precisely T1-realisable but not precisely T2-realisable.
Consider the ABox AΞ = {C(at) | C ∈ t, t ∈ Ξ}, where
at is a fresh object name, for each type t ∈ Ξ. Let Θ be the
set of all T2-realisable ΣQT1∪T2 -types that are not in Ξ. We
have Θ 6= ∅. Now consider the query

q = ∃x
∨
t∈Θ

∧
C∈t

C(x).

Then (T2,AΞ) |= q but (T1,AΞ) 6|= q, which is again a
contradiction.

293

(sceb) ⇒ (pr) Let Ξ be a set of precisely T1-realisable
ΣQT1∪T2 -types. Consider

TΞ =
{
> v

⊔
t∈Ξ

l

C∈t

C
}

.

Clearly, T1 ∪ TΞ 6|=
d

C∈t C v ⊥, for every t ∈ Ξ. Then,
by (sceb), T2 ∪ TΞ 6|=

d
C∈t C v ⊥ and thus, there is a

model It for T2 ∪ TΞ realising t. Take the disjoint union I
of all these models It, for t ∈ Ξ. It is easy to see that I is a
model for T2 realising precisely the types in Ξ. q

We now prove the complexity results for deciding Σ-
query entailment for DL-Litebool as stated in Theorem 15.
The proof also indicates the encoding into QBF used in our
experiments. We reduce precise T -realisability of a set of
types (as stated in criterion (pr) of Lemma A.3) to a satisfi-
ability problem in propositional logic. Let Σ be a signature
and Q a set of positive natural numbers containing 1. With
every basic concept B of the form A or ≥ q R we associate
a fresh propositional variable B∗, and, for a concept C in
DL-Litebool, denote by C∗ the result of replacing each B in
it with B∗ (and u, t with ∧, ∨, respectively), for a ΣQ-type
t, denote by t∗ the set {C∗ | C ∈ t}, and, for a TBox T , de-
note by T ∗ the set {C∗1 → C∗2 | C1 v C2 ∈ T }. Thus, C∗

is a formula and t∗, T ∗ are sets of formulas of propositional
logic.

The following result follows immediately from (Artale et
al. 2007):
Lemma A.4 Let T be a TBox in DL-Litebool, Q ⊇ QT ,
and Ω be a set of roles closed under inverse and containing
all sig(T)-roles. Then a set Ξ of ΣQ-types is precisely T -
realisable iff there is a set Ω0 ⊆ Ω closed under inverse and
such that:
(t) for each t ∈ Ξ, t∗ ∪ Ax(T , Ω0) is satisfiable;
(pw) for each R ∈ Ω0, there is a type tR in Ξ such that

t∗R ∪ {(≥ 1 R)∗} ∪ Ax(T , Ω0) is satisfiable,
where

Ax(T , Ω0) = T ∗ ∪
{
¬(≥ 1 R)∗ | R ∈ Ω \ Ω0} ∪{

(≥ q R)∗ → (≥ q′R)∗ | R ∈ Ω, q, q′ ∈ Q, q > q′
}
.

It follows, in particular, that, given T and a set Ξ of ΣQ-
types, precise T -realisability of Ξ is decidable in NP. To
prove the Πp

2-upper bound we show that sets Ξ of polyno-
mial size in the size of T are enough.
Lemma A.5 Suppose that a set Ξ of ΣQT1∪T2 -types is pre-
cisely T1-realisable but not precisely T2-realisable. Let Ω be
the set of role names and their inverses that occur in T1∪T2.
Then there is some Θ ⊆ Ξ with |Θ| ≤ |Ω| + 1 such that Θ
is precisely T1-realisable but not precisely T2-realisable.
Proof. By Lemma A.4, for every t ∈ Ξ, there is Ω0 ⊆ Ω
such that the set Θt = {t} ∪ {tR | R ∈ Ω0} is precisely
T1-realisable. But then at least one of these Θt, for t ∈ Ξ,
is as required, for otherwise, if all of them turned out to be
precisely T2-realisable, the disjoint union of models It for
T2 precisely realising Θt would precisely realise the whole
Ξ, which is impossible. q

Theorem A.6 The Σ-query, strong Σ-concept and strong
Σ-query entailment problems are all Πp

2-complete for
DL-Litebool.

Proof. We check criterion (pr) of Lemma A.3. Let Σ be a
signature and Ω the set of role names and their inverses that
occur in T1∪T2. We may assume that Σ ⊆ sig(T1∪T2). By
Lemma A.4, for both T = T1 and T = T2, it is decidable
in NP (in |T1 ∪ T2|) whether a set Ξ of ΣQT1∪T2 -types of
size ≤ |Ω| + 1 is precisely T -realisable. The Σp

2 algorithm
deciding whether there exists a set of ΣQT1∪T2 -types that is
precisely T1-realisable but not precisely T2-realisable is as
follows:

1. Guess a set Ξ of ΣQT1∪T2 -types of size ≤ |Ω|+ 1.

2. Check, using an NP-oracle, whether (i) Ξ is precisely
T1-realisable, and whether (ii) Ξ is not precisely T2-
realisable.

3. Return ‘T1 Σ-query entails T2’ if the answers to (i) and
(ii) are both positive.

By Lemmas A.3 and A.5, T1 Σ-query entails T2 if, and only
if, the algorithm says so. q

Finally, we give proof sketches of Theorems 18, 22 and
21 on uniform interpolation, again restricting ourselves to
the case of DL-Litebool.

Proof of Theorem 18. Let T be a TBox in DL-Litebool and
Σ a signature. Define TΣ to be the set of all concept inclu-
sions of the form

d
D∈t D v ⊥, where t is a ΣQT -type

which is not T -realisable. It follows immediately from The-
orem 11 that TΣ is a uniform interpolant of T w.r.t. Σ in
DL-Litebool. As there are only exponentially many different
ΣQT -types and concept satisfiability in DL-Litebool is NP-
complete, TΣ can be constructed in exponential time. q

Proof of Theorem 21. Let T ′Σ be a uniform interpolant of
T ′ w.r.t. Σ in DL-Liteu

bool. Suppose that T Σ-query entails
T ′ and T 6|= κ for some κ ∈ T ′Σ. Let I be a model for
T with I 6|= κ. Let Q be the set of numerical parameters
from T ∪ T ′ ∪ {κ} and Ξ the set of ΣQ-types realised in I.
Then Ξ is T -precisely realisable. Hence, by Theorem 11, Ξ
is T ′-precisely realisable. Let I ′ be a model for T ′ which
precisely realises Ξ. Then I ′ 6|= κ. It follows that T ′ 6|= κ,
and so κ 6∈ T ′Σ, which is a contradiction.

Conversely, suppose T does not Σ-query entail T ′. By
Theorem 11, there exists a set Ξ of ΣQT ∪T ′ types which is
precisely T -realisable but not precisely T ′-realisable. Let

C =
(l

t∈Ξ

∃u.
l

D∈t

D
)
u
(
∀u.

⊔
t∈Ξ

l

D∈t

D
)
.

Then T 6|= C v ⊥ but T ′ |= C v ⊥. It follows that
T ′Σ |= C v ⊥. So there exists κ ∈ T ′Σ such that T 6|= κ. q

Proof of Theorem 22. Let T be a TBox in DL-Litebool and
Σ a signature. Define TΣ to be the set containing all concept
inclusions of the form

d
D∈t D v ⊥, where t is a ΣQT -type

294

which is not T -realisable, as well as all concept inclusions
of the form

l

D∈t

D v
⊔

Ξ∈Ω

(l

t′∈Ξ

∃u.
l

D∈t′

D
)
,

where t is a T -realisable ΣQT -type and Ω is the set of all
minimal sets Ξ of ΣQT -types such that {t} ∪ Ξ is precisely
T -realisable. One can show (see Lemma A.5) that all Ξ con-
tain at most 2n types, where n is the number of role names in
T . It follows that TΣ can be constructed in exponential time
in the size of T . It remains to show that TΣ is a uniform
interpolant. Clearly, T |= κ, for all κ ∈ TΣ. For the con-
verse direction, it is sufficient to show that each precisely
TΣ-realisable set of ΣQT -types is precisely T -realisable.
Let Ξ0 be such a set. By the definition of TΣ, for each t ∈ Ξ0

there exists Ξt ⊆ Ξ0 such that {t} ∪ Ξt is T -precisely re-
alisable. Take the disjoint union of models for T realising
{t} ∪ Ξt, for t ∈ Ξ0. It is readily seen that this is a model
for T precisely realising Ξ0. q

References
Acciarri, A.; Calvanese, D.; De Giacomo, G.; Lembo, D.;
Lenzerini, M.; Palmieri, M.; and Rosati, R. 2005. QuOnto:
Querying ontologies. In Proc. of AAAI, 1670–1671.
Antoniou, G., and Kehagias, A. 2000. A note on the refine-
ment of ontologies. Int. J. of Intelligent Systems 15:623–
632.
Areces, C., and ten Cate, B. 2006. Hybrid logics. In Black-
burn, P.; van Benthem, J.; and Wolter, F., eds., Handbook
of Modal Logic. Elsevier.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2007. DL-Lite in the light of first-order
logic. In Proc. of AAAI, 361–366.
Benedetti, M. 2005. sKizzo: A suite to evaluate and certify
QBFs. In Nieuwenhuis, R., ed., Proc. of CADE–20, 369–
376.
Borgida, A.; Brachman, R.; McGuinness, D.; and Resnick,
L. A. 1989. Classic: A structural data model for objects.
In Proc. of the ACM SIGMOD Int. Conf. on Management
of Data, 58–67.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2005. DL-Lite: Tractable description logics
for ontologies. In Proc. of AAAI, 602–607.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2006. Data complexity of query answering
in description logics. In Proc. of KR, 260–270.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; Poggi, A.; and Rosati, R. 2007. Mastro-I: Efficient
integration of relational data through DL ontologies. In
DL, 1670–1671.
Chang, C., and Keisler, H. 1990. Model Theory. Elsevier.
Diaconescu, R.; Goguen, J.; and Stefaneas, P. 1993. Log-
ical support for modularisation. In Huet, G., and Plotkin,
G., eds., Logical Environments, 83–130. Cambridge Uni-
versity Press, New York.

Ghilardi, S.; Lutz, C.; and Wolter, F. 2006. Did I dam-
age my ontology? A case for conservative extensions in
description logic. In Proc. of KR, 187–197.
Grau, B. C.; Horrocks, I.; Kazakov, Y.; and Sattler, U.
2007a. Just the right amount: Extracting modules from
ontologies. In Proc. of WWW, 717–726.
Grau, B. C.; Horrocks, I.; Kazakov, Y.; and Sattler, U.
2007b. A logical framework for modularity of ontologies.
In Proc. of IJCAI, 298–303.
Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2007.
Formal properties of modularisation. In H. Stucken-
schmidt and S. Spaccapietra, eds., Ontology Modulariza-
tion, Springer, 2008.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propo-
sitional independence: formula-variable independence and
forgetting. JAIR, 18:391–443.
Lin, F., and Reiter, R. 1994. Forget it! In Proceedings of
AAAI Fall Symposium on Relevance, 154–159.
Lutz, C., and Wolter, F. 2007. Conservative extensions in
the lightweight description logic EL. In Proc. of CADE,
84–99.
Lutz, C.; Walther, D.; and Wolter, F. 2007. Conservative
extensions in expressive description logics. In Proc. of IJ-
CAI, 453–458.
Noy, N., and Musen, M. 2002. PromptDiff: a fixed-point
algorithm for comparing ontology versions. In Proc. of
AAAI, 744–750.
Pitts, A. 1992. On an interpretation of second-order quan-
tification in first-order intuitionistic propositional logic. J.
of Symbolic Logic, 57:33–52.
Samulowitz, H., and Bacchus, F. 2006. Binary clause rea-
soning in QBF. In Proc. of SAT, volume 4121 of LNCS,
353–367.
Schlobach, S., and Cornet, R. 2003. Non-standard reason-
ing services for debugging of description logic terminolo-
gies. In Proc. of IJCAI, 355–362.
Visser, A. 1996. Uniform interpolation and layered bisim-
ulation. In Gödel ’96 (Brno, 1996), volume 6 of Lecture
Notes in Logic. Springer, 139–164.
Wang, Z.; Wang, K.; Topor, R.; Pan, J. 2008. Forgetting
Concepts in DL-Lite. In Proc. of ESWC, 245–257.
Zhang, L., and Malik, S. 2002a. Conflict driven learning
in a quantified Boolean satisfiability solver. In Proc. of
ICCAD, 442–449.
Zhang, L., and Malik, S. 2002b. Towards a symmetric
treatment of satisfaction and conflicts in quantified Boolean
formula evaluation. In Proc. of CP, volume 2470 of LNCS,
200–215.

295

