
Inconsistency Management Policies

Maria Vanina Martinez1, Francesco Parisi2, Andrea Pugliese2, Gerardo I. Simari1, V. S. Subrahmanian1

1 University of Maryland College Park
College Park, MD 20742, USA

{mvm,gisimari,vs}@cs.umd.edu

2 Università della Calabria
Via Bucci − 87036 Rende (CS), Italy

{fparisi,apugliese}@deis.unical.it

Abstract

Though there is much work on how inconsistency in
databases should be managed, there is good reason to believe
that end users will want to bring their domain expertise and
needs to bear in how to deal with inconsistencies. In this
paper, we propose the concept of inconsistency management
policies (IMPs). We show that IMPs are rich enough to spec-
ify many types of inconsistency management methods pro-
posed previously, but provide end users with tools that allow
them to use the policies that they want. Our policies are also
capable of allowing inconsistency to persist in the database or
of eliminating more than a minimal subset of tuples involved
in the inconsistency. We present a formal axiomatic definition
of IMPs and present appropriate complexity results, together
with results linking different IMPs together. We extend the
relational algebra (RA) to incorporate IMPs and present the-
oretical results showing how IMPs and classical RA operators
interact.

Introduction

The management of inconsistent databases has been studied
for many years by many different researchers (Grant 1978;
Baral, Kraus, and Minker 1991; Benferhat, Dubois, and
Prade 1997; Besnard and Schaub 1998; Arenas, Bertossi,
and Chomicki 1999; Bohannon et al. 2005; Calı̀, Lembo,
and Rosati 2003; Bertossi and Chomicki 2003; Chomicki
2007) However, almost all past approaches proceeded un-
der the assumption that there was some epistemically correct
way of resolving inconsistencies or reasoning in the pres-
ence of inconsistency. More recently, (Subrahmanian and
Amgoud 2007) argued that inconsistency can often be re-
solved in different ways based on what the user wants, and
they provided a mechanism to reason about maximal consis-
tent subsets (also called “repairs” by (Arenas, Bertossi, and
Chomicki 1999)) using objective functions where the user
gets to choose an objective function.

To see why, let us consider the very simple salary table
given below. This “Salary Example” will be used throughout
the paper.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Name Salary Tax bracket Source
t1 John 70K 15 s1

t2 John 80K 20 s2

t3 John 70K 25 s3

t4 Mary 90K 30 s1

Let us assume that salaries are uniquely determined by
names. In this case, a user may want to resolve the inconsis-
tency about John’s salary in many different ways. (C1) If he
were considering John for a loan, he might want to choose
the lowest possible salary of John to base his loan on. (C2)
If he were assessing the amount of taxes John has to pay,
he may choose the highest possible salary John may have.
(C3) If he were just trying to estimate John’s salary, he may
choose some number between 70K and 80K (e.g., the aver-
age of the three reports of John’s salary) as the number. (C4)
if he had different degrees of confidence in the sources that
provided these salaries, he might choose a weighted mean
of these salaries. (C5) He might choose not to resolve the
inconsistency at all, but to just let it persist till he can clear
it up. (C6) He might simply consider all the data about John
unreliable and might want to ignore it till it can be cleared
up – this is the philosophy of throwing away all contami-
nated data.1 We are not aware of a single piece of past work
that can handle all six reasonable possibilities mentioned
above. (Baral, Kraus, and Minker 1991; Subrahmanian
and Amgoud 2007; Arenas, Bertossi, and Chomicki 1999;
Bohannon et al. 2005; Calı̀, Lembo, and Rosati 2003;
Bertossi and Chomicki 2003; Chomicki 2007) can handle
cases C1 and C2, but not the other cases.

Each of cases C1 through C6 reflects a policy that the user
is using to resolve inconsistencies. Much as a carpenter has
tools like hammers and saws, we propose to put data clean-
ing policies in the hands of users so that they can use them
as tools, when appropriate, for reasoning about the data. It is
important to enable users to bring their application specific
knowledge to bear when resolving inconsistencies.

The contributions of this paper are as follows: we first de-
fine the concept of a policy for managing inconsistency. Our
notion of an inconsistency management policy generalizes

1This is more likely to happen, for example, when there is a
scientific experiment with inconsistent data or when there is a crit-
ical action that must be taken, but cannot be taken on the basis of
inconsistent data.

Proceedings, Eleventh International Conference on Principles of Knowledge Representation and Reasoning (2008)

367

(Arenas, Bertossi, and Chomicki 1999) by allowing policies
to either remove inconsistency completely or to allow part
or all of the inconsistency to persist. Our notion of a policy
accounts for all six cases above, and many more. We start
with policies applicable to a single functional dependency
(FD for short) – one of the most common kinds of integrity
constraints used in databases – and then extend policies to
manage multiple FDs. We present two semantics to manage
multiple FDs based on partial orderings on the importance of
FDs. We present results showing that these semantics lead to
various NP-hardness results. We then show that our policies
can be embedded as operators within the relational algebra
in two different ways – one where the policy is applied first
(before other relational operators) and another where it is
applied last. We study the interaction of these policy usage
methods with other relational query operations and provide
several interesting results.

Syntax and Notation
We assume the existence of relational schemas of the form
S(A1, . . . , An) (Ullman 1988) where the Ai’s are attributes.
Each attribute Ai has an associated domain, dom(Ai). A
tuple over S is a member of dom(A1) × · · · × dom(An),
and a set of such tuples is called a relation. We use t[Ai]
to denote the value of the Ai attribute of tuple t. We use
Attr(S) to denote the set of all attributes in S.

Given the relational schema S(A1, . . . , An), a functional
dependency (FD) fd over S is an expression of the form
A′

1, . . . , A
′
k → A′

k+1, . . . , A
′
m, where {A′

1, . . . , A
′
m} ⊆

Attr(S). A relation R over the schema S satisfies the above
FD iff ∀ t1, t2 ∈ R, t1[A′

1] = t2[A′
1] ∧ . . . ∧ t1[A′

k] =
t2[A′

k] ⇒ t1[A′
k+1] = t2[A′

k+1] ∧ . . .∧ t1[A′
m] = t2[A′

m].
Without loss of generality, we assume that every functional
dependency fd has exactly one attribute on the right-hand
side (i.e., k+1 = m) and denote this attribute as RHS(fd).
Moreover, with a little abuse of notation, we write that fd is
defined over R.

Definition 1 Let R be a relation and F a set of functional
dependencies. A culprit is a set c ⊆ R not satisfying F such
that ∀ c′ ⊂ c, c′ satisfiesF .

For instance, the culprits in the example of the Introduction
are {t1, t2} and {t2, t3}. We use culprits(R,F) to denote
the set of culprits in R w.r.t. F .

Definition 2 Let R be a relation and F a set of functional
dependencies. Given two culprits c, c′ ∈ culprits(R,F),
we say that c and c′ overlap, denoted c 4 c′, iff c ∩ c′ 6= ∅.

Definition 3 Let 4∗ be the reflexive transitive closure of re-
lation 4. A cluster is a set cl =

⋃
c∈e c where e is an equiv-

alence class of 4∗.

In the example of the Introduction, the only cluster is
{t1, t2, t3}. We will denote the set of all clusters in R w.r.t.
F as clusters(R,F).

Inconsistency Management Policies
In this section, we introduce the concept of policy for man-
aging inconsistency in databases violating a given set of

functional dependencies. Basically, applying an inconsis-
tency management policy on a relation results in a new rela-
tion with the intention of obtaining a lower degree of incon-
sistency.

Definition 4 An inconsistency management policy (IMP for
short) for a relation R w.r.t. a set of functional dependencies
F over R is a function γF from R to a relation R′ = γF (R)
that satisfies the following axioms:

Axiom A1. If t ∈ R−
⋃

c∈culprits(R,F) c, then t ∈ R′. This
axiom says that tuples that do not belong to any culprit
cannot be eliminated or changed.

Axiom A2. If t′ ∈ R′ − R, then there exists a cluster c and
a tuple t ∈ c such that for each attribute A not appearing
in any fd ∈ F , t.A = t′.A. This axiom says that every
tuple in R′ must somehow be linked to a tuple in R.

Axiom A3. ∀fd ∈ F , |culprits(R, {fd})| ≥
|culprits(R′, {fd})|. This axiom says that the IMP
cannot increase the number of culprits.

Axiom A4. |R| ≥ |R′|. This axiom says that the IMP can-
not increase the cardinality of the relation.

γF is a total (resp. partial) inconsistency management pol-
icy if γF (R) satisfies all (resp. not all) FDs in F . γF is a
singular IMP iff F is a singleton.

When F = {fd} we write γfd instead of γ{fd}.
It is important to note that axioms (A1) through (A4)

above are not meant to be exhaustive. They represent a mini-
mal set of conditions that we believe any inconsistency man-
agement policy should satisfy. Specific policies may satisfy
additional properties.

Singular IMPs
In this section, we introduce three types of IMPs: tuple-
based, value-based, and interval-based. Later, we will ex-
tend these strategies to manage multiple FDs. Our goal is to
allow the end user to choose a policy that best matches his
needs.

Definition 5 An IMP τfd for a relation R w.r.t. a functional
dependency fd is said to be a tuple-based policy if each clus-
ter cl ∈ clusters(R, {fd}) is replaced by cl′ ⊆ cl in τfd(R).

Tuple-based IMPs generalize the well known notion of max-
imal consistent subsets (Baral, Kraus, and Minker 1991) and
repairs (Arenas, Bertossi, and Chomicki 1999) by allowing
a cluster to be replaced by any subset of the same cluster.
Notice that tuple-based IMPs allow inconsistency to per-
sist – a user may choose to retain all inconsistency (case
C5) or retain part of the inconsistency. For instance, if the
user believes only sources s1, s2 in the Salary Example, he
might choose to replace the cluster {t1, t2, t3} by the cluster
{t1, t2} as shown below.

Name Salary Tax bracket
t1 John 70K 15
t2 John 80K 20
t4 Mary 90K 30

368

(Baral, Kraus, and Minker 1991; Arenas, Bertossi, and
Chomicki 1999) do not allow this possibility. Observe that
this kind of policy can cause some information to be lost as
a side effect. In our example, although the Tax bracket 25 is
not involved in any FD, it is lost when the policy is applied.
We now introduce two kinds of policies that avoid this prob-
lem. The first kind of policy is based on the notion of cluster
simplification.

Definition 6 Given a cluster cl ∈ clusters(R, {fd}), cl′ is a
cluster simplification of cl iff ∀t ∈ cl, either t ∈ cl′ or there
exists exactly one tuple t′ ∈ cl′ obtained from tuple t by
replacing t[RHS(fd)] with t′′[RHS(fd)] where t′′ ∈ cl.

A simplification allows replacement of values in tuples in the
same cluster (in the attribute associated with the right-hand
side of an FD). This leads to the following kind of IMP.

Definition 7 An IMP νfd for a relation R w.r.t. a functional
dependency fd is said to be a value-based policy if each clus-
ter cl ∈ clusters(R, {fd}) is replaced by a cluster simplifi-
cation of cl in νfd(R).

Thus a value-based IMP either leaves a cluster unchanged or
reduces the number of distinct values for the attribute in the
right-hand side of the functional dependency. A user may,
for example, decide to use his knowledge that s1 reflects
more recent information than s2 to reset the s2 information
to that provided by s1. In this case, the relation returned by
the value-based policy would be the one shown below.

Name Salary Tax bracket

t1 John 70K 15
t2 John 70K 20
t3 John 70K 25
t4 Mary 90K 30

The third kind of policy is called interval-based.

Definition 8 An IMP ξfd for a relation R w.r.t. a func-
tional dependency fd is said to be an interval-based pol-
icy if ∀cl ∈ clusters(R, {fd}), either cl ⊆ ξfd(R) or
ξfd(R) = (R − {t1, . . . , tn}) ∪ {t′1, . . . , t′n} where (i)
{t1, . . . , tn} ⊆ cl and (ii) ∀t′i ∈ {t′1, . . . , t′n} there is a tuple
ti ∈ cl such that for all attributes A 6= RHS(fd), t′i.A =
ti.A, and t′i.RHS(fd) = v where v is any value in the in-
terval [mint∈cl(t[RHS(fd)]), maxt∈cl(t[RHS(fd)])].

The interval-based policy allows any tuple in a cluster to
be replaced by a new tuple having a different value for at-
tribute RHS(fd).2 For example, we may replace the values
of the Salary attribute of the tuples in cluster {t1, t2, t3} in
the Salary example by a value equal to 73.33K (the mean
of the three salary values for John). Or, if the reliability of
sources s1, s2, s3 are 1, 3, and 2, respectively, we might re-
place the values of the Salary attribute with the weighted

2Another kind of policy could use the interval
[mint∈cl(t[RHS(fd)]),maxt∈cl(t[RHS(fd)])] in the new
tuple, as the value for attribute RHS(fd). In order to store, for
each attribute, an appropriate interval, this kind of policy would
require an extension of the database schema. We do not consider
them in this work.

mean (70K ∗ 1 + 80K ∗ 3 + 70K ∗ 2)/6 = 75K. Thus,
the interval-based policy allows cases C3 and C4 in the In-
troduction to be handled.

Proposition 1 The tuple-based, value-based, and interval-
based policies satisfy axioms A1, A2, A3, and A4.

Observe that, given a relation R and a functional depen-
dency fd over R, for every tuple-based policy τfd we have
that τfd(R) ⊆ R. This does not hold for value-based and
interval-based policies, as shown in the example for value-
based policies, where tuple (John, 70K, 20) does not belong
to the original relation.

Proposition 2 Given a relation R over a schema S and a
functional dependencyfd : A1, . . . , Ak → B over R,

1. for each tuple-based policy τfd, there is a value-based pol-
icy νfd such that τfd(R) ⊆ νfd(R); moreover, if Attr(S) =
{A1, . . . , Ak, B}, then τfd(R) = νfd(R).

2. for each value-based policy νfd, there is an interval-based
policy ξfd such that νfd(R) = ξfd(R).

Several authors (Lozinskii 1994; Grant and Hunter 2006;
Hunter and Konieczny 2005; Grant and Hunter 2008) have
proposed approaches to characterize how dirty a database is.
The following result says that all the kinds of IMPs men-
tioned reduce the dirtiness or degree of inconsistency of a
database independently of which of these approaches is con-
sidered.

Proposition 3 Consider a relation R, a functional depen-
dency fd over R, and an IMP γfd that is either a tuple-
based, value-based, or interval-based policy. The dirtiness
of γfd(R) is less than or equal to the dirtiness of R for
any of the definitions of dirtiness given in (Lozinskii 1994;
Grant and Hunter 2006; Hunter and Konieczny 2005; Grant
and Hunter 2008).

Multi-Dependency Policies
Suppose each fd ∈ F has a single-dependency policy asso-
ciated with it (specifying how to manage the inconsistencies
in the relation with respect to that FD). We assume that the
system manager specifies a partial ordering ≤F on the FDs,
specifying their relative importance. Let TOT≤F (F) be the
set of all possible total orderings of FDs w.r.t. ≤F : this can
be obtained by topological sorting.

Definition 9 Given a relation R, a set of functional de-
pendencies F , a partial ordering ≤F , and an order o =
〈fd1, . . . , fdk〉 ∈ TOT≤F (F), a multi-dependency IMP
(MDIMP for short) for R w.r.t. o andF is a function µo

F from
a relation R to a relation γfdk

(. . . γfd2
(γfd1

(R)) . . .), where
γfd1

, . . . , γfdk
are the singular dependency policies associ-

ated with fd1, . . . , fdk , respectively.

Basically, all that a total ordering does is to specify the order
in which the conflicts are resolved. We start by resolving
the conflict involving the first FD in the ordering, then the
second, and so forth. However, different total orderings can
lead to different results.

Example 1 Consider the Salary Example presented in the
Introduction and the set of FDs {fd1, fd2} where fd1 is

369

Name → Salary and fd2 is Name → Tax bracket. Sup-
pose the tuple-based policy τfd1 selects the tuple with the
highest value of the Salary attribute (when inconsistency oc-
curs), while τfd2

selects the lowest value of the Tax bracket
attribute. Under the total order o = 〈fd1, fd2〉, we get
{(John, 80K, 20), (Mary, 90K, 30)} as the result. Note
that after τfd1

is applied, the other policy is not, because
there is no further inconsistency w.r.t. fd2. Therefore, τfd1
is solely responsible for deciding what tuples are part of
the final answer. Under the total order o = 〈fd2, fd1〉,
the result of applying the multi-dependency policy will
be {(John, 70K, 15), (Mary, 90K, 30)}. Here, τfd2 decides
which tuples are in the answer, causing the application of
τfd1

to have no effect.
Now consider the set of FDs {fd1, fd3} where fd3 is
Salary → Tax bracket, and suppose the value-based policy
νfd1 states that, in case of inconsistency, the highest value
for attribute Salary should be preferred, while νfd3 states
that the lowest value for attribute Tax bracket should be pre-
ferred. In this case, depending on which order we choose,
the result of applying the multi-dependency policy will be:
{(John, 80K, 15), (Mary, 90K, 30)} (for 〈fd1, fd3〉), and
{(John, 80K, 15), (John, 80K, 20), (Mary, 90K, 30)} (for
〈fd3, fd1〉).
It is clear that the order in which violations of FDs get re-
solved plays an important role in determining the semantics
of our system. One semantics assumes that the user or the
system administrator somehow chooses a fixed total order-
ing rather than a partial ordering. This then leads to the se-
mantics specified in Definition 9. However, a natural ques-
tion is whether we should say that a tuple is in the answer
if it is present in the answer irrespective of which order is
chosen. This is what we call the Core semantics below, and
is analogous to cautious reasoning.

Definition 10 Given a relation R, a set of functional depen-
dencies F over R, and a partial ordering ≤F on F , the
result of applying a policy under the core semantics is the
set Core(R,F ,≤F) =

⋂
{µo

F (R) | o ∈ TOT≤F (F)}.

Intuitively, the Core semantics looks at all total orderings
compatible with the associated partial ordering on F . If ev-
ery such total ordering causes a tuple to be in the result (ac-
cording to Definition 9), then the tuple is returned in the an-
swer. Of course, one may also be interested in the following
analogous “Possibility” problem.

Problem 1 (Possibility Problem) Given a relation R, a tu-
ple t ∈ R, a set of functional dependencies F over R,
and a partial ordering ≤F , does there exist a total order-
ing o ∈ TOT≤F (F) such that t ∈ µo

F (R)?

We now state three complexity results.

Theorem 1 Given a relation R, a set of functional depen-
dencies F , a partial order ≤F over F , and a tuple t ∈ R:

1. Determining whether t ∈ Core(R,F ,≤F) is coNP-
complete.

2. Determining whether there is a total ordering o ∈
TOT≤F (F) such that t ∈ µo

F(R) is NP-complete.

3. If the arity of R is bounded, then the complexity of the
problems (1) and (2) above is in PTIME.

Proof Statement 2. (Membership) A polynomial size wit-
ness for this problem is a total ordering o ∈ TOT≤F (F)
such that t ∈ µo

F (R). As any single FD policy can be
computed in polynomial time, this witness can be verified
in polynomial time by applying the policies one at a time,
according to o, and finally checking whether t ∈ µo

F(R).
(Hardness) We show a LOGSPACE reduction from

3SAT (Papadimitriou 1994). An instance of 3SAT is a pair
〈U, Φ〉, where U = {p1, p2, . . . , pk} is a set of proposi-
tional variables and Φ is a propositional formula of the form
C1 ∧ . . . ∧ Cn defined over U . Specifically, each Ci (with
1 ≤ i ≤ n) is a clause containing exactly three (possibly
negated) propositional variables in U .

We show how Φ can be encoded by an instance 〈R,F ,≤F
, t′〉 of our problem. Let S be the relational schema
S(A1, B1, V1, . . . , Ak, Bk, Vk, C, D, E) and F be the set
of FDs {fdA,j : Aj → Vj , fdB,j : Bj → Vj | j ∈
[1..k]} ∪ {fdC : C → D, fdD : D → E}. Consider the
following tuple-based total policies associated with the FDs
in F : γfdA,j stating choose the highest value of Vj , γfdB,j

stating choose the lowest value of Vj (with j ∈ [1..k]),
γfdC stating delete the whole set of inconsistent tuples, and
γfdD stating delete the whole set of inconsistent tuples. As-
sume that ≤F states that ∀j ∈ [1..k − 1] and Y ∈ {A, B},
fdY,j < fdY,j+1 and fdY,k < fdC , and fdC < fdD .

Let R be an instance of S defined as follows. Initially R
is empty. Then, ∀pj ∈ U and ∀Ci ∈ Φ,

• if making pj true makes Ci true we add to R the tu-
ple t such that t[Aj] = t[Bj] = pj, t[Vj] = 1,
t[C] = Ci, t[D] = t[E] = 1, and ∀X 6∈ Attr(S) \
{Aj, Bj , Vj, C, D, E}, t[X] = k1 where k1 is a new sym-
bol;

• if making pj false makes Ci true we add to R the tu-
ple t such that t[Aj] = t[Bj] = pj, t[Vj] = 0,
t[C] = Ci, t[D] = t[E] = 1, and ∀X ∈ Attr(S) \
{Aj, Bj , Vj, C, D, E}, t[X] = k1.

Moreover, ∀Ci ∈ Φ we add to R the tuple t such that t[C] =
Ci, t[D] = t[E] = 2, and ∀X ∈ Attr(S) \ {C, D, E},
t[X] = k2 where k2 is new symbol. Finally, R also con-
tains the tuple t′ such that t′[D] = 2, t′[E] = 3 and
∀X ∈ Attr(S) \ {D, E}, t′[X] = k3 where k3 is new sym-
bol.

We now prove that Φ is satisfiable iff there is a total or-
dering o ∈ TOT≤F (F) such that t′ ∈ µo

F (R).
(⇒) Assume that Φ is satisfiable. Let U ′ ⊆ U be the set of

propositional variables made true by a satisfying assignment
for Φ. The total ordering o ∈ TOT≤F (F) such that t′ ∈
µo
F (R) is obtained as follows.
For each pj ∈ U ′, o requires that fdA,j < fdB,j ; this

means that for the tuples t such that t[Aj] = t[Bj] = pj ,
the value t[Vj] = 1 is chosen by γfdA,j , and that γfdB,j will
not have any effect on R. For each pj ∈ U \ U ′, o requires
that fdB,j < fdA,j; this means that for the tuples t such that
t[Aj] = t[Bj] = pj, the value t[Vj] = 0 is chosen by γfdB,j ,
and that γfdA,j will not have any effect on R. Observe that
this suffices to define a total ordering o according the partial

370

ordering ≤F (since the ordering for the other FDs is already
defined by ≤F).

Let R1 be the relation resulting from the application of
the policies associated with the FDs fdA,j and fdB,j (with
j ∈ [1..k]) according the above-specified order. Observe
that ∀pj ∈ U ′, πVj (σAj=pj (R1)) = {1}, and ∀pj ∈ U \U ′,
πVj (σAj=pj (R1)) = {0}.

It is easy to see that the fact that Φ is satisfiable entails
that πC(R1) = {C1, . . . , Cn}. Moreover, since ∀Ci ∈ Φ,
the relation R1 also contains a tuple t such that t[C] = Ci

and t[D] = 2, there are n clusters w.r.t. fdC (one for each
Ci). Thus, the result of applying γfdC to R1 is a relation R2

where each of these cluster is deleted (according the policy
defined by γfdC). Hence, the only tuple which remains in
R2 is t′. Finally, the application of the last policy γfdD does
not have any effect (since there are no inconsistent tuples
w.r.t. fdD), and t′ results in µo

F (R).
(⇐) Assume now that there is a total ordering o ∈

TOT≤F (F) such that t′ ∈ µo
F (R). According to the par-

tial ordering ≤F , γfdD must be the last policy applied on
the relation. Thus, after applying all the others policies in in
F there is no cluster w.r.t. fdD (otherwise γfdD would have
deleted the whole cluster). The fact that there are no conflict-
ing tuples in µo

F (R) w.r.t. fdD entails that there is no tuple
t ∈ µo

F (R) such that t′[D] = 2 and t′[E] 6= 3. Therefore,
all the tuples t such that t[C] = Ci and t[D] = t[E] = 2
must have been deleted by γfdC , and this can happen only
if there was at least a cluster for each Ci. Hence, after ap-
plying the policies associated with the FDs fdA,j and fdB,j

(with j ∈ [1..k]) according to o, the resulting relation con-
tains, ∀Ci ∈ Φ, a tuple t such that t[C] = Ci. Let R1 be
such a relation. We define an assignment satisfying Φ as
follows. For each variable pj, if πVj(σAj=pj (R1)) = {1}
then pj is made true by such a assignment, otherwise (i.e.,
πVj (σAj=pj (R1)) = {0}) pj is made false.

Statement 1. (Membership) A polynomial size witness
for the complement of this problem is a total ordering o ∈
TOT≤F (F) such that t 6∈ µo

F(R). As any single FD policy
can be computed in polynomial time, this witness can be
verified in polynomial time by applying the policies one at
a time, according to o, and finally checking whether t /∈
µo
F (R).
(Hardness) The complement of the problem of determin-

ing whether t ∈ Core(R,F ,≤F) is the problem of deciding
whether there is a total ordering o ∈ TOT≤F (F) such that
t 6∈ µo

F(R). We show a LOGSPACE reduction from the
Possibility problem to the complement of our problem.

Let 〈R1,F1,≤F1, t1〉 be an instance of the problem of de-
ciding whether there is a total ordering o1 ∈ TOT≤F1

(F1)
such that t1 ∈ µo1

F1
(R1). We define an instance

〈R2,F2,≤F2 , t2〉 of our problem as follows.
Given the relational schema S1(A1, . . . , An) of

R1, we define the relational schema S2 of R2 as
S2(A1, . . . , An, B, C). Let R2 be initially empty. For
each tuple t ∈ R1 \ {t1} we add to R2 the tuple t′ such
that t′[X] = t[X] ∀X ∈ Attr(S1) and t′[B] = t′[C] = k1,
where k1 is a new symbol. Moreover, we add to R2 the
following tuples:

• t∗1 such that∀X ∈ Attr(S1), t∗1[X] = t1[X], and t∗1[B] =
k2, where k2 is a new symbol, and t∗1[C] = 0.

• t2 such that ∀X ∈ Attr(S1), t2[X] = k3, where k3 is a
new symbol, t2[B] = k2, and t2[C] = 1.
Let F2 be F1∪{fd : B → C}, γfd be a tuple-based total

policy stating that the lowest value of C must be chosen, and
≤F2 be the partial order consisting of the relations in ≤F1

and ∀fd′ ∈ F1, fd′ < fd.
We now prove that there is o1 ∈ TOT≤F1

(F1) such that
t1 ∈ µo1

F1
(R1) iff there is o2 ∈ TOT≤F2

(F2) such that t2 6∈
µo2
F2

(R2).
(⇒) Assume that there is a total ordering o1 ∈

TOT≤F1
(F1) such that t1 ∈ µo1

F1
(R1). We can define

o2 ∈ TOT≤F2
(F2) such that t2 6∈ µo2

F2
(R2) as follows:

o2 is equal to o1 plus fd′ < fd where fd′ is the last FD
in o1. The fact that t1 ∈ µo1

F1
(R1) implies that the tuple

t∗1 ∈ R2 will be in µo1
F2

(R2). Thus, as t2[B] = t∗1[B] and
t2[C] > t∗1[C] the policy γfd deletes t2 from R2. Hence,
t2 6∈ µo2

F2
(R2).

(⇐) Assume now that there is a total ordering o2 ∈
TOT≤F2

(F2) such that t2 6∈ µo2
F2

(R2). As only γfd can
delete t2, this implies that before applying γfd the tuple
t∗1 was in the result of µo1

F2
(R2) (where o1 is equal to o2

except the ordering relationships involving fd). Hence,
t1 ∈ µo1

F1
(R1).

Statement 3. Assuming that the arity of R is bounded by
a constant b, the cardinality of F is bounded by 2b, and the
number of possible ordering in TOT≤F (F) is bounded by
the factorial of 2b, which is still a constant w.r.t. the cardinal-
ity of R. Thus, since any single FD policy can be computed
in polynomial time, checking whether there is total order-
ing o ∈ TOT≤F (F) such that t ∈ µo

F(R) (or equivalently
t /∈ µo

F(R)) and determining whether t ∈ Core(R,F ,≤F)
are in PTIME. �

It should be noted that we assume that policies can be
computed in polynomial time. We do not consider NP-hard
policies such as, i.e., among a set V of inconsistent (possi-
bly negative) values choose a nonempty subset V ′ ⊂ V such
that

∑
v∈V ′ v = 0. F We do not specify a possible seman-

tics which returns
⋃
{µo

F (R) | o ∈ TOT≤F (F)}, since this
can yield a relation with sources of inconsistency that were
not present before the application of the multi-dependency
policy. In the following, we show an example of how such a
situation can arise.

Example 2 Consider the following relation R:

Name Salary Tax bracket
t1 John 70K 15
t2 John 80K 20

Let fd1 be Name → Salary, and fd2 be Salary →
Tax bracket. Suppose we have two interval-based policies
ξfd1 and ξfd2 , both stating that conflicting values must be
replaced by their mean. Assuming that fd1 and fd2 are
incomparable w.r.t. ≤F , then there are two possible total
orders: 〈fd1, fd2〉 and 〈fd2, fd1〉. In the first case, the re-
sult of applying the corresponding multi-dependency pol-
icy is R′ = {(John, 75K, 17.5)}, whereas in the second

371

case the result is R′′ = {(John, 75K, 15), (John, 75K, 20)}.
It is easy to see that |culprits(R′ ∪ R′′, {fd1, fd2})| >
|culprits(R, {fd1, fd2})|.

Extensions of Classical Relational Algebra
Operators with Multi-Dependency Policies

In this section, we study the relationship between IMPs and
classical relational algebra operators. We suggest adding to
the relational algebra operators that combine the classical
relational operators with our IMPs. Each relational operator
can be augmented by an IMP by either applying IMP first
and then applying the operator, or the other way around. The
following definition formalizes this.

Definition 11 Given two relations R1 and R2, a binary re-
lational operator op, two sets F1,F2 of functional depen-
dencies defined over R1 and R2, respectively, and two multi-
dependency policies µF1 and µF2 ,

1. a policy-first inconsistency management operator
(policy-first operator) is defined as the 7-ary op-
erator ωpolicy-first(R1, R2, op,F1,F2, µF1, µF2) =
op(µF1(R1), µF2(R2));

2. a policy-last inconsistency management operator
(policy-last operator) is defined as the 7-ary op-
erator ωpolicy-last(R1, R2, op,F1,F2, µF1 , µF2) =
µF1∪F2(op(R1, R2)).

Observe that the use of a policy-last operator requires the
union of the given sets of functional dependencies to be han-
dled by a multi-dependency policy that takes into account
both sets. The definition of policy-first and policy-last in-
consistency management operators for unary relational oper-
ators is straightforward. In the rest of this section, we study
these policy-first and policy-last operators for several rela-
tional algebra operators.

Policy-first vs. Policy-last Operators for Projection

In the case of a policy-last projection operator, the projec-
tion is applied first and then the policy. In order for the in-
consistency management operation to make sense, the pro-
jected attributes must include all attributes from the left-
hand side of the functional dependencies involved in the
multi-dependency policy, and at least one of the attributes
from the right-hand side of each dependency. This is neces-
sary to ensure that there will still be enough data to be able
to identify the inconsistent tuples regarding all functional
dependencies involved in the policy.

Example 3 Consider relation R in our Salary Example and
the functional dependency fd : Name → Salary. Sup-
pose also that we have a tuple-based policy τfd for fd that
states that in case of inconsistency the tuple with the high-
est salary must be preferred. Let us consider a projec-
tion πsalary(R). If τfd is applied first to R then we obtain
{80K, 90K}. Otherwise, if πsalary(R) is applied first, we no
longer have inconsistency w.r.t. fd (and therefore no clusters
at all), thus the application of τfd has no effect and the result
is {70K, 80K, 90K}.

The situation of this example can arise in the presence
of both value and interval-based IMPs as well. The follow-
ing theorem provides necessary and sufficient conditions for
which it does not matter if a policy is applied before or after
the projection operator.

Theorem 2 Let R be a relation and fd : A1, . . . , Ak → B
be a functional dependency over R. Let X ⊆ Attr(R) be a
superset of {A1, . . . , Ak, B}. For each (tuple-based, value-
based, or interval-based) IMP γfd it holds that is the case
that γfd(πX (R)) = πX(γfd(R)) iff

1. γfd(πm
X (R)) = πm

X (γfd(R)), and
2. γfd(πm

X (R)) = γfd(πX(R)),
where πm is the multi-set projection operator (i.e., the pro-
jection operator that returns multi-sets rather than sets).

Proof (⇐) From condition (1) and (2) we obtain that
γfd(πX (R)) = πm

X (γfd(R)). Clearly the first term of this
equality is a set, since the application of the policy γfd on the
relation πX(R) is a relation. Hence, πm

X (γfd(R)) is also a
set. This implies that it is equal to πX(γfd(R)).
(⇒) Assuming that either condition (1) or (2) is false it is
easy to see that γfd(πX (R)) 6= πX(γfd(R)). �

The former condition requires that the policy does not de-
pend on the values of attributes not involved in the functional
dependency with which the policy is associated. This prop-
erty is valid for all the IMPs C1-C6 of the Introduction and,
intuitively, for a large class of IMPs. The latter condition re-
quires that the policy does not depend on duplicate values of
an attribute. This property is valid for IMPs C1, C2, C5, and
C6 shown in the Introduction and for a large class of IMPs
like those stating choose the values lower/greater than (or
equal to) a constant, or choose all values except the low-
est/hightest ones, and so on. The following example shows
what can happen when a policy depends on duplicate values.

Example 4 Consider relation R shown in the Introduction
and the functional dependency fd : Name → Salary. Let
γfd be the policy C3, and X be the set {Name, Salary}.
Thus, γfd(πX(R)) = {(John, 75K), (Mary, 90K)},
whereas πX (γfd(R)) = {(John, 73.33K), (Mary, 90K)}.
Hence none of these sets is subset of the other one.

Policy-first vs. Policy-last Operators for Selection
We start by showing that, for unrestricted policies, the order
in which the policy and the selection operator are applied
makes a difference.

Example 5 Consider the following relation R and the func-
tional dependency fd : Name → Salary.

Name Salary
t1 John 70K
t2 John 80K
t3 John 90K

Let γfd be the tuple-based policy “choose all val-
ues except the lowest one”. It is easy to see
that σSalary≥80K(γfd(R)) = {t2, t3}, whereas
γfd(σSalary≥80K(R)) = {t3}. Now assume that the policy

372

is “choose the lowest value” and the selection condition is
the same used above. We have σSalary≥80K(γfd(R)) = ∅,
whereas γfd(σSalary≥80K(R)) = {t2}.

Thus, in general, neither σC(γfd(R)) 6⊆ γfd(σC(R)) nor
σC(γfd(R)) 6⊇ γfd(σC(R)). Moreover, as a consequence
of Proposition 2, this is valid also for the value-based and
interval-based approaches. The following proposition iden-
tifies a kind of tuple-based policy for which the order is ir-
relevant.

Proposition 4 Let R be a relation and fd be a functional de-
pendency over R. Given a tuple-based MDIMP γfd and a se-
lection condition C, it holds that γfd(σC(R)) = σC(γfd(R))
if γfd is equivalent to σCγ for some selection condition Cγ .

Policy-first vs. Policy-last Operators for Cartesian
Product
In this section we discuss the use of the policy-first and
policy-last strategies with the cartesian product operator.

The following definition identifies a class of (tuple-based,
value-based, or interval-based) IMPs which yield the same
result when applied to a multi-set S of tuples or on a multi-
set which contains the same proportion of tuples w.r.t. S.

Definition 12 An IMP γ is said to be ratio-invariant iff for
any multi-set S = {t1, t2 . . . , tn} of tuples and for any in-
teger k > 0 it is the case that γ(S) = γ(S′), where S′ is
the multi-set S′ = {ti1, ti2 . . . , tin | tij = tj where tj ∈ S and
i ∈ [1..k]}

Observe that all IMPs C1-C6 described in the Introduction
are ratio-invariant. For instance, policy C1 is ratio-invariant
because the minimum value of a multi-set is independent of
the number of elements having the same value. The same
happens with the weighted mean used by C4: the weighted
mean of the values in {v1, v2 . . . , vn} is the same of that of
{vi

1, v
i
2 . . . , vi

n | vi
j = vj where vj ∈ S and i ∈ [1..k]} (if

wi
j = wj). On the other hand, a policy stating that “if there

are at least K occurrences of a value V , then choose V ,
otherwise choose 0” is not ratio-invariant.

The following theorem provides results regarding the use
of (ratio-invariant) IMPs with the cartesian product operator.

Theorem 3 Let R1 and R2 be relations, and fd1 and fd2
be functional dependencies over R1 and R2, respectively.
For any pair of ratio-invariant (tuple-based, value-based, or
interval-based) IMPs γfd1

and γfd2
, it is the case that

1. γfd1
(R1 × R2) = γfd1

(R1) × R2

2. γfd2
(R1 × R2) = R1 × γfd2

(R2)
3. γfd1

(γfd2
(R1 × R2)) = γfd1

(R1) × γfd2
(R2)

4. γfd1
(γfd2

(R1 × R2)) = γfd2
(γfd1

(R1 × R2)).

Proof We assume that the schemas of R1 and R2 do not
have attributes in common, thus the schema of R1 × R2 is
the union of the schemas of R1 and R2. Moreover, with
a little abuse of notation, we allow the application of γfd1

(resp. γfd2
) to R1 × R2, even if they are defined for R1

(resp. R2).
We now prove the first case, the second case can be

proved by analogous reasoning. Since fd1 works only on

the attributes of R1 and is ratio-invariant, it holds that
γfd1

(πm
Attr(R1)

(R1 × R2)) = γfd1
(RM

1) = γfd1
(R1), where

πm is the multi-set projection operator, and RM
1 is the multi-

set relation obtained by copying M = |R2| times every tu-
ple of R1. As R1 × R2 = {t1.t2 | t1 ∈ R1 ∧ t2 ∈ R2},
it is easy that γfd1

(R1 × R2) is equivalent to is the set
{t′1.t2 | t′1 ∈ γfd1

(R1) ∧ t2 ∈ R2}, which is γfd1
(R1) × R2.

As to the third case, since γfd2
(R1×R2) = R1×γfd2

(R2),
as a consequence of the first statement we obtain γfd1

(R1 ×
γfd2

(R2)) = γfd1
(R1) × γfd2

(R2).
The result of the fourth case follows from the fact

that γfd1
(γfd2

(R1 × R2)) = γfd1
(R1) × γfd2

(R2) and
γfd2

(γfd1
(R1 × R2)) = γfd1

(R1) × γfd2
(R2). �

Policy-first vs. Policy-last Operators for Union

In this section we discuss the use of the policy-first and
policy-last strategies with the union operator. We consider
the case when the union is performed between two relations
having the same schema and the functional dependency is
defined over this schema. We start by showing a case where
different results are obtained when the policy is applied be-
fore or after the union.

Example 6 Consider the relational schema
S(Name, Salary) and the functional dependency
fd : Name → Salary. Assume that relation R1 is
{t1 = (John, 75K), t2 = (John, 80K)} and R2 is {t3 =
(John, 70K), t4 = (John, 85K), t5 = (Mary, 90K)}.
Let γfd be the tuple-based policy “choose the highest
value of Salary”. It is easy to see that γfd(R1) = {t2},
γfd(R2) = {t4, t5}, and γfd(R1 ∪ R2) = {t4, t5}. Hence,
γfd(R1 ∪ R2) 6⊇ γfd(R1) ∪ γfd(R2). Now assume that
the policy is “choose all the values except the lowest
one”. We obtain γfd(R1) = {t2}, γfd(R2) = {t4, t5},
but in this case γfd(R1 ∪ R2) = {t1, t2, t4, t5}. Hence,
γfd(R1 ∪ R2) 6⊆ γfd(R1) ∪ γfd(R2).

Similar cases can be identified for value-based and
interval-based policies. The following theorem presents nec-
essary and sufficient conditions for which it does not matter
if a policy is applied before or after the union.

Theorem 4 Let R1 and R2 be relations over the relational
schema S, and fd : X → B be a functional dependency
where X ⊆ Attr(S). For any (tuple-based, value-based,
or interval-based) IMPs γfd it holds that γfd(R1 ∪ R2) =
γfd(R1) ∪ γfd(R2) iff πX(R1) ∩ πX(R2) = ∅.

Proof (⇐) If πX(R1) ∩ πX(R2) = ∅ then
clusters(R1, {fd}) ∩ clusters(R2, {fd}) = ∅, and
clusters(R1 ∪ R2, {fd}) = clusters(R1, {fd}) ∪
clusters(R2, {fd}). Thus, the application of γfd to R1∪R2

yields the same result as when it is applied first on the
portion of R1 ∪ R2 corresponding with R1 and then on the
portion corresponding to R2.
(⇒) Reasoning by contradiction, assume that πX (R1) ∩
πX(R2) 6= ∅. It is easy to show that there is a policy γ
such that γfd(R1 ∪ R2) 6= γfd(R1) ∪ γfd(R2). �

373

Related Work
There has been a tremendous amount of work in inconsis-
tency management since the 60s and 70s when paraconsis-
tent logics where introduced (da Costa 1974; Blair and Sub-
rahmanian 1989) and logics of inconsistency (Belnap 1977;
Grant 1978) were developed. The four valued logic in (Bel-
nap 1977) was used for handling inconsistency in logic pro-
gramming (Blair and Subrahmanian 1989) and extended to
the case of bilattices (Fitting 1991). Subsequently, frame-
works such as default logic (Reiter 1980), maximal consis-
tent subsets (Baral, Kraus, and Minker 1991), inheritance
networks (Touretzky 1986), and others were used to gener-
ate multiple plausible consistent scenarios (often called “ex-
tensions”), and methods to draw inferences were developed
that looked at truth in all (or some) extensions. Kifer and
Lozinskii (Kifer and Lozinskii 1992) extended annotated
logics of inconsistency developed by Blair and Subrahma-
nian (Blair and Subrahmanian 1989) to handle a full first
order case, while (Thirunarayan and Kifer 1993) developed
similar extensions to handle inheritance networks. Argu-
mentation methods (Amgoud and Cayrol 2002) were used
to reason about how certain arguments defeated others.

Methods to clean data and/or provide consistent query an-
swers in the presence of inconsistent data are also quite com-
mon (Jermyn, Dixon, and Read 1999; Schallehn and Sattler
2003; Chomicki 2007; Bohannon et al. 2005). For instance,
(Chomicki 2007) addresses the basic concepts and results
of the area of consistent query answering (in the standard
model-theoretic sense). They consider universal and binary
integrity constraints, denial constraints, functional depen-
dencies, and referential integrity constraints. (Bohannon et
al. 2005) presents a cost-based framework that allows find-
ing “good” repairs for databases that exhibit inconsistencies
in the form of violations to either functional or inclusion de-
pendencies. They propose heuristic approaches to construct-
ing repairs based on equivalence classes of attribute values;
the algorithms presented are based on greedy selection of
least repair cost, and a number of performance optimizations
are also explored. The technique based on query rewrit-
ing introduced in (Arenas, Bertossi, and Chomicki 1999)
for quantifier-free conjunctive queries and binary univer-
sal constraints was extended in (Fuxman and Miller 2005;
Fuxman, Fazli, and Miller 2005) to work for a subclass of
conjunctive queries in the presence of key constraints. The
complexity of the consistent query answer problem was in-
vestigated in (Calı̀, Lembo, and Rosati 2003) in the presence
of both functional and inclusion dependencies, and further
studied in (Chomicki and Marcinkowski 2005) in the pres-
ence of denial constraints and inclusion dependencies. The
notion of consistent answer was extended to the case of ag-
gregate queries in (Arenas et al. 2003), where the evaluation
of consistent answers of aggregate queries was investigated
in the presence of functional dependencies.

The logic-based frameworks in (Arenas, Bertossi, and
Chomicki 2003; Greco, Greco, and Zumpano 2003; Barceló
and Bertossi 2003) assume that tuple insertions and dele-
tions are the basic primitives for repairing inconsistent data.
Repairs also consisting of value-update operations were con-
sidered in (Franconi et al. 2001; Bertossi et al. 2005;

Wijsen 2003; 2005; Bohannon et al. 2005; Flesca, Furfaro,
and Parisi 2005; 2007). In particular, (Wijsen 2003; 2005;
Flesca, Furfaro, and Parisi 2005) investigated the complex-
ity of the consistent query answering problem when the
basic primitive for repairing data is the attribute-value up-
date, whereas (Franconi et al. 2001; Bertossi et al. 2005;
Bohannon et al. 2005; Flesca, Furfaro, and Parisi 2007) fo-
cused on the problem of computing repairs rather than com-
puting consistent answers.

There are also several important works (Lozinskii 1994;
Hunter and Konieczny 2005; Grant and Hunter 2006) on
measuring the amount of inconsistency in a database or
knowledge base.

Conclusions
None of the past approaches to inconsistency management
is capable of handling cases C3, C4, C5, C6 introduced in
the Introduction because past approaches adhere to three im-
portant tenets: first, that no “new” data should be introduced
into the database; second, that as much of the original data as
possible should be retained and third, that consistency must
be restored.

Though we agree these are desirable goals, the fact re-
mains that users in specific application domains often know
a lot more about the intricacies of their data than a database
designer who has never seen the data. In many of these
cases, the end-user wants to resolve inconsistencies by tak-
ing his knowledge of the data into account. Tools for man-
aging inconsistent data today do not support such users.

For example, there are many cases where end-users might
actually want to introduce “seemingly new” data – in case
C3 and C4, the user wants to take an average or weighted
average of salaries. This may be what the user or his com-
pany determines is appropriate for his application domain.
Should he be stopped from doing this by database designers
who do not know the application a priori? No.

Likewise, consider case C6. When conducting a scien-
tific experiment (biological, atmospheric etc.), inconsistent
data might be collected for any number of reasons (faulty
measurements, incorrectly mixed chemicals, environmental
factors). Should the results of the experiments be based on
dirty data? Some scientists at least would argue “No” (per-
haps for some experiments) and eliminate the dirty data and
repeat all, or parts, of the experiment. Databases should pro-
vide support for decisions users want to make.

In response to these needs, we introduce the concept of in-
consistency management policies in this paper as functions
satisfying a minimal set of axioms. We propose several IMPs
that satisfy these axioms, and study relations between them
in the simplified case where only one functional dependency
is present. We show that when multiple FDs are present,
multiple alternative semantics can result. We prove results
on the complexity of some of these semantics and related
problems. Fortunately, as long as we assume that relations
have schemas of bounded size, these problems end up in
PTIME. We introduce new versions of the relational algebra
that are augmented by inconsistency management policies
which are applied either before the operator or after. We de-
velop theoretical results on the resulting extended relational

374

operators that could, in principle, be used in the future for
query optimization.

Future work will focus on several problems. In this paper,
we have provided a theoretical definition of an IMP, but not
given a policy specification language – such a language is
needed. The equivalence theorems in the paper could form
the basis for query optimization in inconsistent DBs, but
such query optimizers need to be developed. Cost models
for our policy-first and policy-last operations need to be de-
veloped to build query plans.

Acknowledgments
The authors gratefully acknowledge funding support for
this work provided by the AFOSR through the Laboratory
for Computational Cultural Dynamics (LCCD) under grants
FA95500610405 and FA95500510298, the ARO under grant
DAAD190310202, and the NSF under grant 0540216. Any
opinions, findings or recommendations in this document are
those of the authors and do not necessarily reflect the views
of sponsors.

References
Amgoud, L., and Cayrol, C. 2002. A reasoning model
based on the production of acceptable arguments. Ann. of
Math. and Artif. Intel. 34(1):197–215.

Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Con-
sistent query answers in inconsistent databases. In PODS,
68–79.

Arenas, M.; Bertossi, L. E.; and Chomicki, J. 2003. An-
swer sets for consistent query answering in inconsistent
databases. TPLP 3(4-5):393–424.

Arenas, M.; Bertossi, L. E.; Chomicki, J.; He, X.; Ragha-
van, V.; and Spinrad, J. 2003. Scalar aggregation in incon-
sistent databases. Theor. Comp. Sci. 3(296):405–434.

Baral, C.; Kraus, S.; and Minker, J. 1991. Combining
multiple knowledge bases. IEEE TKDE 3(2):208–220.

Barceló, P., and Bertossi, L. E. 2003. Logic programs for
querying inconsistent databases. In PADL, 208–222.

Belnap, N. 1977. A useful four valued logic. Modern Uses
of Many Valued Logic 8–37.

Benferhat, S.; Dubois, D.; and Prade, H. 1997. Some
syntactic approaches to the handling of inconsistent knowl-
edge bases: A comparative study part 1: The flat case. Stu-
dia Logica 58(1):17–45.

Bertossi, L. E., and Chomicki, J. 2003. Query answering
in inconsistent databases. In Logics for Emerging Applica-
tions of Databases, 43–83. Springer.

Bertossi, L. E.; Bravo, L.; Franconi, E.; and Lopatenko,
A. 2005. Complexity and approximation of fixing numer-
ical attributes in databases under integrity constraints. In
DBPL, 262–278.

Besnard, P., and Schaub, T. 1998. Signed systems for
paraconsistent reasoning. J. Autom. Reas. 20(1):191–213.

Blair, H. A., and Subrahmanian, V. S. 1989. Paraconsistent
logic programming. Theor. Comp. Sci. 68(2):135–154.

Bohannon, P.; Fan, W.; Flaster, M.; and Rastogi, R. 2005.
A cost-based model and effective heuristic for repairing
constraints by value modification. In SIGMOD, 143–154.
Calı̀, A.; Lembo, D.; and Rosati, R. 2003. On the decid-
ability and complexity of query answering over inconsis-
tent and incomplete databases. In PODS, 260–271.
Chomicki, J., and Marcinkowski, J. 2005. Minimal-change
integrity maintenance using tuple deletions. Inf. Comp.
197(1-2):90–121.
Chomicki, J. 2007. Consistent query answering: Five easy
pieces. In ICDT, 1–17.
da Costa, N. 1974. On the theory of inconsistent formal
systems. Notre Dame J. of Formal Logic 15(4):497–510.

Fitting, M. 1991. Bilattices and the semantics of logic
programming. J. of Logic Progr. 11(1-2):91–116.

Flesca, S.; Furfaro, F.; and Parisi, F. 2005. Consis-
tent query answers on numerical databases under aggregate
constraints. In DBPL, 279–294.

Flesca, S.; Furfaro, F.; and Parisi, F. 2007. Preferred
database repairs under aggregate constraints. In SUM, 215–
229.

Franconi, E.; Palma, A. L.; Leone, N.; Perri, S.; and Scar-
cello, F. 2001. Census data repair: a challenging applica-
tion of disjunctive logic programming. In LPAR, 561–578.

Fuxman, A., and Miller, R. J. 2005. First-order query
rewriting for inconsistent databases. In ICDT, 337–351.

Fuxman, A.; Fazli, E.; and Miller, R. J. 2005. Conquer:
Efficient management of inconsistent databases. In SIG-
MOD, 155–166.

Grant, J., and Hunter, A. 2006. Measuring inconsistency
in knowledgebases. J. of Intel. Inf. Syst. 27(2):159–184.

Grant, J., and Hunter, A. 2008. Analysing inconsistent
first-order knowledge bases. Artif. Intel. 172(8-9):1064–
1093.

Grant, J. 1978. Classifications for inconsistent theories.
Notre Dame J. of Formal Logic 19(3):435–444.
Greco, G.; Greco, S.; and Zumpano, E. 2003. A log-
ical framework for querying and repairing inconsistent
databases. IEEE TKDE 15(6):1389–1408.
Hunter, A., and Konieczny, S. 2005. Approaches to mea-
suring inconsistent information. In Inconsistency Toler-
ance, 191–236.

Jermyn, P.; Dixon, M.; and Read, B. J. 1999. Preparing
clean views of data for data mining. In ERCIM Work. on
Database Res., 1–15.

Kifer, M., and Lozinskii, E. L. 1992. A logic for reasoning
with inconsistency. J. of Autom. Reas. 9(2):179–215.
Lozinskii, E. L. 1994. Resolving contradictions: A plausi-
ble semantics for inconsistent systems. J. of Autom. Reas.
12(1):1–31.
Papadimitriou, C. M. 1994. Computational complexity.
Addison-Wesley.
Reiter, R. 1980. A logic for default reasoning. Artif. Intel.
13(1-2):81–132.

375

Schallehn, E., and Sattler, K. 2003. Using similarity-based
operations for resolving data-level conflicts. In BNCOD,
volume 2712, 172–189.
Subrahmanian, V. S., and Amgoud, L. 2007. A general
framework for reasoning about inconsistency. In IJCAI,
599–504.
Thirunarayan, K., and Kifer, M. 1993. A theory of non-
monotonic inheritance based on annotated logic. Artif. In-
tel. 60(1):23–50.
Touretzky, D. 1986. The mathematics of inheritance sys-
tems. Morgan Kaufmann.
Ullman, J. D. 1988. Principles of Database and
Knowledge-Base Systems, Volume I. Computer Science
Press.
Wijsen, J. 2003. Condensed representation of database
repairs for consistent query answering. In ICDT, 378–393.
Wijsen, J. 2005. Database repairing using updates. ACM
TODS 30(3):722–768.

376

