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Abstract

Based on a set of simple logical equivalences we define a
rewriting procedure that computes extensions in the propo-
sitional fragment of the logic ofOR introduced by Lake-
meyer and Levesque. This logic is capable of representing
default logic with the advantage of itself being monotonic,
with a clearly defined semantics and a separation of the object
level and the meta level. The procedure prepares the ground
for efficient implementations as it clearly separates the SAT-
solving part of the reasoning problem from the modal aspects
that are specifically caused by defaults. We sketch an exten-
sion of the logic to cover confidence levels and show that the
resulting system can accommodate ordered default theories
with a prescriptive interpretation of preference between de-
faults.

Introduction
In (Lakemeyer and Levesque 2005) a new logic of only-
knowing is introduced which allows a faithful encoding of
default logic. A default theory can be encoded as a for-
mula of the formORϕ, with roughly the same size as the
default theory, and whose models exactly match the exten-
sions of the default theory. For the propositional fragment
the authors state a modal reduction theorem to the effect
that a formulaORϕ is logically equivalent to a disjunction
Oϕ1 ∨ · · · ∨ Oϕn, where eachϕk is a propositional for-
mula. Because each such disjunctOϕk has a unique model,
it is possible, within the logic itself, to break down a for-
mulaORϕ into a form from which one can directly exhibit
its models.

As an example, consider a simple supernormal default
theory with two extensions:

({¬(p ∧ q)}, { : p

p
, : q

q
}).

To determine the set of extensions “theOR-way”, three steps
must be carried out. The first step is to represent the default
theory as a formula of the formORϕ. Under the Konolige-
style translation introduced in (Lakemeyer and Levesque
2005) the example above receives the representation

OR( ¬(p ∧ q) ∧ (Mp ⊃ p) ∧ (Mq ⊃ q) )
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whereM is a possibility operator further discussed in the
following sections. The second step is to carry out an
equivalence-preserving reduction of theOR-formula to a
disjunction of modalized propositional formulae of the form
Oϕk. TheOR-formula in the example reduces toOp ∨ Oq.
The third step is to determine the set of extensions of the de-
fault theory from the simpler formula obtained in the second
step. This task is trivial, since each disjunct has a unique
model. In our example,Op∨Oq represents two distinct ex-
tensions: The extension corresponding toOp is the set of
consequences ofp, whereasOq corresponds to the set of
consequences ofq.

The logic of OR builds on the contribution to only-
knowing in (Levesque 1990) where the logic of the “All
I Know”-operatorO is first introduced. Like the logic of
OR, the original logic ofO also admits a reduction theorem
for the propositional fragment, stating that a formulaOϕ is
equivalent to a disjunction of modalized propositional for-
mulae of the formOϕk. WhereasOR is designed for the
representation of default theories, the logic ofO allows a
smooth representation of an autoepistemic theory. And as
with default logic, it is possible to directly pick out the stable
expansions of the autoepistemic theory from the equivalence
Oϕ ≡ Oϕ1 ∨ · · · ∨ Oϕn, because eachOϕk corresponds
to a stable expansion. Default logic and autoepistemic logic
do not differ in the way they treat the example discussed
above, hence both theOR-representation of the default the-
ory and theO-representation of the corresponding autoepis-
temic theory are equivalent toOp ∨Oq.

The logics of only-knowing are themselves monotonic
and have a clear separation between object level and meta
level concepts, which is arguably a great conceptual advan-
tage compared to the fixed-point definitions of extensions in
both default and autoepistemic logics. Only-knowing logics
have, moreover, a standard Kripke semantics. Encodings of
default and autoepistemic theories into only-knowing log-
ics thus provide the non-monotonic formalisms with formal
semantics and conceptual clarity.

But the translations provide more than just semantics,
they also provide anothermodel for computation. By trans-
lating non-monotonic formalisms into only-knowing logics
the problem of determining expansions is recast into the
problem of finding a proof in the only-knowing logic of the
equivalence of, sayOϕ, with Oϕ1 ∨ · · · ∨ Oϕn for an ap-
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propriaten; for computing default logic extensions this is
what we refer to as “the second step” above. The existence
of a logical equivalence of this sort is guaranteed by the
Modal Reduction Theorem, and algorithms for determining
the equivalence can be extracted from proofs of that theo-
rem.

There are three different proofs of the Modal Reduction
Theorem for the original logic ofO. The idea behind one
proof is to take the setΓ of subformulae ofOϕ and use this
as a filtration set for the canonical model (using standard
techniques from modal logic). Algorithmically, this boils
down to computing all the maximal consistent subsets ofΓ
and use these to build models. This proof was introduced in
(Waaler 1994), refined in (Segerberg 1995) and published in
(Waaler et al. 2007). An implementation of this method can
take advantage of the tableau method for only-knowing log-
ics in (Rosati 2001), more precisely the tableau method may
be used to efficiently check if a given subset ofΓ is max-
imally consistent. Another proof, published in (Levesque
and Lakemeyer 2001), is based on the idea of enumerating
all ways of valuating modal atoms and use this to gradu-
ally approximate the models. From a computational point of
view, the two methods amount to roughly the same kinds
of computation. The two above-mentioned methods may
be compared to a truth-table method for propositional logic:
Traverse all interpretations and select those that are models
of the formula at hand.

The third proof, also in (Waaler et al. 2007), is reminis-
cent of the proof in (Levesque and Lakemeyer 2001), but
approximates the models in a more careful way. If the for-
mer algorithms are reminiscent of a truth-table method, the
algorithm behind the third proof is reminiscent of a tableau
method: Use information in the formula to constrain the set
of potential models as much as possible. In worst-case sce-
narios, the two methods are of course equally bad, but the
latter method is computationally superior in virtually any
other situation.

The main contribution of this paper is to generalize the
latter procedure to the logic ofOR. Because the procedure
is what is needed to carry out the second step in the “OR-
way” of computing default extensions, as explained above,
we thereby provide a new method for computing default ex-
tensions over propositional logic.

We do this by introducing a rewriting system, where each
rewrite rule reflects a logical equivalence inOR-logic. Pre-
senting the procedure in this way provides us with acalculus
for computing default extensions. The proposed calculus has
a clear operational semantics, and it is, we believe, easy to
use. An advantage of rewriting systems is that they are well
understood; compared to more high-level (pseudo-code) al-
gorithmic specifications they are easier to reason about and
may be implemented more directly.

The calculus that we present is a formal system that is just
strong enough for establishing the Modal Reduction Theo-
rem: It is sound and complete for reductions ofOR-formulae
into disjunctions ofOϕk ’s of the appropriate type. It is,
however, not complete for the logic ofOR itself. From the
point of view of computing default extensions this is harm-
less, because only a subset of the logic ofOR is actually

needed for the Modal Reduction Theorem. Our approach to
formalizing default logic is complementary to the approach
in (Lakemeyer and Levesque 2006), in which it is the logic
of OR that is axiomatized. Although this is, from the point
of view of theoremhood, a stronger system than the rewrit-
ing system that we propose, it gives an indirect route to the
Modal Reduction Theorem. The system in (Lakemeyer and
Levesque 2006) is formulated as a Hilbert-style axiom sys-
tem, which is natural given the author’s focus on axioma-
tization. Although axiom systems of this kind give logical
characterizations that are simple in terms of number of ax-
ioms and inference rules, they are of course not equally ap-
propriate as bases for implementation, simply because their
formal proofs do not enjoy the subformula property.

The rewrite rules introduced in this paper exhibit a sharp
separation of the SAT-solving component and the modal-
logic component. This will, we think, make it easier to adopt
recent developments in SAT-solving technologies for use in
default-logic applications. The treatment of modalities in
terms of formula rewriting captures the part of the problem
of computing default extension known as conflict resolution,
and the procedure that we propose presents a solution to
conflict resolution in a concise way. We thus believe that
the rewriting system proposed in this paper can form the
basis for efficient implementation, although empirical evi-
dence for or against this claim remains to be established.
At the time of writing, we do not know how this procedure
for computing defaults compares, in terms of efficiency, to
methods that are not based on translation intoOR (further
addressed in the Conclusion).

In the first part of the paper we present a logic ofOR with
essentially the same semantics as the one presented in (Lake-
meyer and Levesque 2005). However, to facilitate the for-
mulation of the rewrite rules, we slightly modify the syntax,
most importantly by introducing a new modal operator to
express minimality constraints, and then establish the Modal
Reduction Theorem constructively.

Conflicts among defaults may be avoided by adding a par-
tial order among defaults. If the order relation is used to con-
strain the generation of extensions, i.e. if the partial order is
interpreted prescriptively (Delgrande and Schaub 2000), it
may significantly prune the search space. In the last part of
the paper, we add confidence layers to the logic ofOR along
the lines of (Waaler et al. 2007) and sketch how to encode
ordered default theories into this logic with a prescriptive in-
terpretation of defaults. This builds on the encoding of this
kind of default theories into a standard logic ofO with confi-
dence layers in (Engan et al. 2005). A shortcoming with the
encoding in their work is that theO-representation of the de-
fault theory effectively enumerates all possible ways of con-
structing extensions, hence it is hopelessly intractable from
the point of view of computation. The encoding sketched in
this paper remedies the situation by mapping defaults into
the context ofOR rather thanO.

Syntax and Semantics
Since the proof system introduced in this paper is a rewriting
system, it is natural to include a rich set of logical symbols in
the formal language (rather than introducing as few symbols
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as possible and define the rest). The propositional connec-
tives include the constants⊥ and⊤ and usual symbols for
negation, disjunction and conjunction. The conditional⊃
and biconditional≡ are taken as defined connectives. The
set of propositionalobjectiveformulae is then defined over
a finite set of propositional variables in the usual way. If
ϕ1, . . . , ϕn are propositional,SAT{ϕ1, . . . , ϕn} is the state-
ment thatϕ1 ∧ · · · ∧ ϕn is propositionally satisfiable.

There are in total six unary modal operators:B (belief),
C (co-belief)1, M (possibility),O (only knowing),OR and
�. M andORwere introduced in (Lakemeyer and Levesque
2005);M is a possibility operator that may, or may not, be
dual ofB. It should not be confused with¬B¬, which is al-
ways the dual ofB (and for which one could invent a defined
symbol). OR is an only-knowing operator that is stronger
thanO and capable of representing Reiter-style defaults.�

is a necessity operator introduced in this paper to express
minimality constraints on models;3· ϕ is¬�¬ϕ.

The set of formulae is generated from the propositional
variables, propositional connectives and modal operators,
with the following provisos. Firstly, in the formation of
�ϕ, ϕ must be completely modalized (i.e. all propositional
variables must occur within the scope of a modal operator).
Secondly,�ϕ andORϕ are not allowed to occur within the
scope of any modal operator. Thus�ORϕ is not a formula,
neither is�p for a propositional variablep.

Following the literature on only-knowing we call proposi-
tional formulaeobjectiveand completely modalized formu-
lae subjective. A formula isM-free if it does not contain
M. It is M-basic if it is subjective and only contains the
modalityM. It is prime if it is subjective and contains no
nested modalities. A formula is amodal atomif it is of the
formBϕ, Cϕ orMϕ. A modalliteral is a modal atom or its
negation.

A default theory is a tuple(W,D), whereW is a finite
set of objective formulae andD is a finite set of defaults.
The defaultα : β / γ is represented by its Konolige trans-
lation Bα ∧ Mβ ⊃ γ. If α or β are⊤, i.e. the default
is prerequisite-free or justification-free resp., we drop that
conjunct. Hence⊤ : β / γ translates toMβ ⊃ γ, while
α : ⊤ / γ translates toBα ⊃ γ. To translate the whole de-
fault theory, take the conjunction of all formulae inW and
of the translations of the defaults inD, and put this conjunc-
tion in the context ofOR. We may define an autoepistemic
translation of a default theory into only-knowing logic in es-
sentially the same way as the translation intoOR-logic, ex-
cept that that autoepistemic translation usesO instead ofOR

and¬B¬ instead ofM.

Example 1. The theory(∅, {p : ⊤ / p}) has as its unique
extension the set of all tautologies. The representation of the
default theory isOR(Bp ⊃ p). The corresponding autoepis-
temic translation isO(Bp ⊃ p), which has an additional au-
toepistemic expansion: The set of formulae following from
p.

Relative to the universal setU of all propositional valuations,
a modelis defined as a tuple(U, V ) such thatV ⊆ U and

1The notion of co-belief is discussed at length in Sect. 3 of
(Waaler et al. 2007).

U ⊆ U . The� modality quantifies over models by means
of a binary relation>. If M = (U, V ), M′ > M iff M′ =
(U ′, U) andU is aproper subset ofU ′. Note that> is not
an order, as it is not transitive; in fact it has the following
property: ifM1 >M2 andM2 >M3, thenM1 6>M3.

Example 2. Let{a, b, c} ⊆ U . Then

({a, b, c}, {a, b}) > ({a, b}, {a}) > ({a}, {a})

but ({a, b, c}, {a, b}) 6> ({a}, {a}), as{a, b} 6= {a}.

Truth is defined for a model relative to each pointx ∈ U .
If ϕ is a propositional variable,M |=x ϕ iff the valuation
x makesϕ true. Connectives are taken as truth functions in
the usual way. In the following definition of truth conditions
for modalities,M = (U, V ):

• M |=x Bϕ iff M |=y ϕ for eachy ∈ U

• M |=x Cϕ iff M |=y ϕ for eachy ∈ U \ U

• M |=x Mϕ iff M |=y ϕ for ay ∈ V

• M |=x Oϕ iff for all y ∈ U , M |=y ϕ iff y ∈ U

• M |=x �ϕ iff M′ |=x ϕ for everyM′ >M;

• M |=x ORϕ iff M |=x Oϕ and there is noM′ > M
such thatM′ |=x Oϕ.

We writeM |= ϕ if M |=x ϕ for eachx ∈ U . Relative
to a modelM, ‖ϕ‖ denotes the set of pointsx in U such
that M |=x ϕ. Note that ifϕ is objective,‖ϕ‖ is given
independently ofM, as it only depends on the points inU .
Also note that in the clauses that define truth for the modal
operators, the pointx plays no active role in the definition.
Whenϕ is subjective, it is immediate thatM |=x ϕ iff M |=
ϕ, i.e. we can safely skip the reference to the pointx. This
is also the reason why the following observation holds.

Lemma 3. If ϕ is subjective andM is any model, either
M |= ϕ ≡ ⊤ or M |= ϕ ≡ ⊥.

U

‖ϕ‖

U = ‖ϕ‖

Figure 1: Left:¬Oϕ ∧ 3· Oϕ. Right:Oϕ ∧ ¬3· Oϕ.

Example 4. Fig. 1 illustrates the truth conditions relative
to a modelM = (U, V ) for an arbitrary V ⊆ U and an
objectiveϕ.

• If M is the model to the left,U ⊂ ‖ϕ‖. ThenC¬ϕ does
not hold inM, hence neither doesOϕ. Oϕ is, however,
true in M′ = (‖ϕ‖, U), and sinceM′ > M, 3· Oϕ is
true inM.
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• If M is the model to the right,U = ‖ϕ‖, in which case
Oϕ is true. But as there is noM′ > M that makesOϕ
true,3· Oϕ is not true. HenceORϕ holds inM.

A formulaϕ is strongly valid, written |≡ ϕ, if M |= ϕ for
every modelM. There is also a weaker notion of validity,
which is the notion of validity that we are primarily inter-
ested in. It is defined relative to the set ofweak models:
(U, V ) is a weak model ifU = V . ϕ is valid, written |= ϕ,
if M |= ϕ for every weak modelM.

Example 5. LetM⊤ = (U , ‖p‖) andMp = (‖p‖, ‖p‖). If
ϕ isBp ⊃ p, then

• M⊤ is a model ofOϕ sinceBp is false at every point;
• M⊤ is a model ofORϕ since there can be noM′ >M⊤;
• Mp is a model ofOϕ since‖ϕ‖ = ‖Bp‖ = ‖p‖;
• Mp is not a model ofORϕ sinceM⊤ is a model ofOϕ

andM⊤ >Mp.

(U ,U) is the only weak model ofORϕ, henceORϕ ≡ O⊤
is valid. Oϕ has two weak models:(U ,U) and(‖p‖, ‖p‖).
HenceOϕ ≡ (O⊤ ∨ Op) is valid. These validities reflect
the default and autoepistemic extensions of the theories in
Example 1.

Clearly, strong validity implies validity, but not conversely.
For formulae that do not containM, the two notions coin-
cide.

Lemma 6. If ϕ isM-free, then|= ϕ iff |≡ ϕ.

A weak model corresponds directly to a model for the logic
of O in (Levesque 1990). For formulae that do not contain
M,OR or �, the set of models is essentially the same as the
set of models defined for the logic ofO in (Levesque 1990).

For theM-free fragment of the language, the weak mod-
els ofORϕ are exactly the models(U,U) with the largest
belief stateU that satisfyOϕ. As pointed out in (Lakemeyer
and Levesque 2005), these models correspond to Konolige-
type minimization of the weak models ofOϕ, which in their
system can be syntactically expressed by theOK-modality.
The function thatOK serves in their axiomatization is in our
formulation taken over by�.

As explained in (Lakemeyer and Levesque 2005), the mo-
tivation behind theM-operator is that the possibility opera-
tor implicit in default theories is not the dual of the corre-
sponding belief modality. The models that we in the end are
interested in are the weak ones, in whichM andB are du-
als. However, a number of inferences require that we do not
limit ourselves to weak models. One can only in certain lim-
ited cases substitute¬B¬ for M, and the rewriting system
in the next section is carefully designed to rewrite the input
formula as much as required for substitutions of this kind to
hold.

TheV ⊆ U condition on a model(U, V ), which is re-
quired by the definition above, is not imposed on the models
in (Lakemeyer and Levesque 2005). Whether or not this
condition is imposed has no effect on the set of valid for-
mulae. It does, however, affect the set of strongly valid for-
mulae, and from the point of view of formula rewriting, it is
desirable that the set of strongly valid formulae is as large
as possible. The conditionV ⊆ U makesMϕ ⊃ ¬B¬ϕ

strongly valid. The converse implication is valid but not
strongly. A more general result, which is essential for the
rewriting system, is given in the following lemma.

Lemma 7. Letϕ andψ be objective.

1. If notSAT{ϕ, ψ}, then|≡ Oϕ ⊃ ¬Mψ.
2. If SAT{ϕ, ψ}, then|= Oϕ ⊃Mψ.

Proof. 1. The assumption that notSAT{ϕ, ψ} implies that
‖ϕ‖ ⊆ ‖¬ψ‖. Let (U, V ) |= Oϕ. ThenU = ‖ϕ‖. As V ⊆
U in any model,V ⊆ ‖¬ψ‖, i.e. (U, V ) |= ¬Mψ. 2. The
assumption thatSAT{ϕ, ψ}, implies that there is a pointx in
‖φ‖ ∩ ‖ψ‖. Let (U, V ) |= Oϕ. ThenU = ‖ϕ‖. AsU ⊆ V
in any weak model,x ∈ V . Hence(U, V ) |= Mψ.

From the point of view of formula rewriting, the significance
of strong validity is that it is required for general substitution
of equivalents. To this end,ϕ〈ψ1/ψ2〉 denotes the result of
replacing every occurrence ofψ1 in ϕ with ψ2. The next
lemmata are proved by induction on formulae. Note that
the former addresses strong equivalence, while the latter ad-
dresses the weaker notion of equivalence.

Lemma 8. If |≡ ψ1 ≡ ψ2, then|≡ ϕ ≡ ϕ〈ψ1/ψ2〉.

Lemma 9. If |= ψ1 ≡ ψ2 andψ1 does not occur within the
scope of� or OR, then|= ϕ ≡ ϕ〈ψ1/ψ2〉.

Substitution of strong equivalents makes the following
equivalence strongly valid. This equivalence underlies a ba-
sic inference rule in the rewriting system.

Lemma 10. |≡ Oϕ ≡ (Oϕ〈β/⊤〉∧β)∨ (Oϕ〈β/⊥〉∧¬β)
for a prime modal atomβ.

Proof. Let M be an arbitrary model. By Lemma 3, either
M |= β ≡ ⊤ or M |= β ≡ ⊥. By Lemma 8, eitherM |=
Oϕ ≡ Oϕ〈β/⊤〉 orM |= Oϕ ≡ Oϕ〈β/⊥〉, resp. In either
case, we haveM |= ((β ≡ ⊤) ∧ (Oϕ ≡ Oϕ〈β/⊤〉)) ∨
((β ≡ ⊥) ∧ (Oϕ ≡ Oϕ〈β/⊥〉)), which is tautologically
equivalent to the formula in the lemma.

In the rest of the section, we identify some useful strong
equivalents. The first two follow directly from the defini-
tions.

Lemma 11. |≡ Oϕ ≡ (Bϕ ∧ C¬ϕ).

Lemma 12. |≡ ORϕ ≡ (Oϕ ∧ �¬Oϕ).

The idea underlying the next lemma can be illustrated with
the help of Fig. 1 and Example 4. In the proof of Lemma
13 we argue that any model of3· Oϕ must have the shape of
the leftmost model in Fig. 1, in which there must be a point
x 6∈ U at whichϕ is true. As we show in Example 4,Bϕ and
¬C¬ϕ are both true in the model. Conversely, any model of
Bϕ∧¬C¬ϕ must also have the shape of the leftmost model
in Fig. 1, satisfying3· Oϕ.

Lemma 13. |≡ 3· Oϕ ≡ (Bϕ ∧ ¬C¬ϕ) if ϕ is objective.

Proof. As ϕ is objective,M |= Oϕ iff M′ |= ¬Oϕ for
eachM′ > M. This is used in both directions below.(⇒
) Assume thatM |= 3· Oϕ. ThenM′ |= Oϕ for some
M′ > M, i.e.M |= ¬Oϕ. SinceM′ |= Bϕ, M |= Bϕ.
ThusM |= ¬C¬ϕ by Lemma 11.(⇐ ) Assume thatM |=
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Bϕ ∧ ¬C¬ϕ. As M |= Bϕ andϕ is objective, there is
someM′ > M such thatM′ |= Oϕ, and asM |= ¬C¬ϕ,
M |= ¬Oϕ, thusM′ 6= M. HenceM |= 3· Oϕ.

We let [·] denote the function that replacesM with ¬B¬,
and (for the service of the rewriting rules) puts the resulting
formula on negation normal form, e.g.[Mψ] = ¬B[¬ψ],
[¬Mψ] = B[¬ψ] and[¬(ϕ ∧ ψ)] = [¬ϕ] ∨ [¬ψ].

Lemma 14. |≡ 3· β ⊃ [β] if β isM-basic.

Proof. It is immediate that ifM′ |= β andM′ > M, then
M |= [β]. The lemma follows from this.

The setΩ contains formulae of a normal form wrt. one of
rewriting relations introduced below. It is defined as the least
set such that

• Oϕ ∈ Ω if ϕ is objective;

• ϕ∧Mψ,ϕ∧¬Mψ,ϕ∧⊤ ∈ Ω if ϕ ∈ Ω andψ is objective.

The next lemma is essential for the rewriting process, as it
justifies a reduction of a formula which contains occurrences
of � andM to a formula which does not contain any of these
modalities.

Lemma 15. LetOψ ∧ β ∈ Ω. Then

|≡ �¬(Oψ ∧ β) ≡ ((Bψ ∧ ¬C¬ψ) ⊃ [¬β]).

Proof. By Lemma 13 and Lemma 8, we have to show that

|≡ �¬(Oψ ∧ β) ≡ (3· Oψ ⊃ [¬β]).

(⇒ ) Assume thatM |= �(Oψ ⊃ ¬β) andM |= 3· Oψ.
ThenM |= 3· (Oψ ∧ ¬β), thusM |= 3· ¬β, henceM |=
[¬β] by Lemma 14.(⇐ ) We want to show that for eachM,

M |= (�¬Oψ ∨ [¬β]) ⊃ �¬(Oψ ∧ β)

Now there are two cases. IfM |= �¬Oψ, thenM |=
�¬(Oψ ∧ β). If M |= [¬β], thenM |= ¬[β], thusM |=
�¬β by Lemma 14, thusM |= �¬(Oψ ∧ β).

The Rewriting System
The rewriting system introduced in this section consists of
two rewriting relations on formulae. The rules of the relation
→ are based on strong equivalences, whereas some of the
equivalences underlying the relation̂→ are not strong. The
rewriting process applies the→ relation exhaustively before
→̂ is applied.

We first define the reduction relation→, and say thata
reducesto b if a ։ b, where։ is the reflexive transitive
closure of→. Reduction can be performed on any subfor-
mula, e.g. ifp→ q is a rewrite rule, thenp∨ q → q∨ q. The
same notation is used for thê→ relation, i.e.։̂ denotes its
reflexive transitive closure.

Reduction is performed modulo an equivalence relation∼
under which∧ and∨ are commutative and associative, and
⊤ and⊥ are the empty conjunction and disjunction resp.,
i.e.ϕ∧⊤ ∼ ϕ andϕ∨⊥ ∼ ϕ. Also¬⊥ ∼ ⊤ and¬⊤ ∼ ⊥.
As we neglect confluence, we will also assume that some
simple propositionally sound reductions, likeϕ ∨ ϕ → ϕ,
are allowed. These are, however, not needed for correctness;

their role is to hide low-level details and thus allow more
readable reduction sequences.

Although we want to reduce formulae of the formORϕ,
there is only one rule whereOR occurs:ORϕ is rewritten to
Oϕ ∧ �¬Oϕ. Hence we need rules to reduce boxed for-
mulae and formulae of the formOϕ, and whatever they are
reduced to. A set of such rules for the language without�

andM is found in (Waaler et al. 2007). In this paper, we
skip the rules that treat occurrences ofO andC within the
scope ofO. We assume thatB andM are the only modali-
ties occurring inϕ, and thatC only occurs when generated
from the rules. The resulting set of rules is sufficient for
reducing encoded default theories.

Rules pertaining toOR and �

R1 : ORϕ→ Oϕ ∧ �¬Oϕ

R2 : �¬(ϕ ∨ ψ) → �¬ϕ ∧ �¬ψ

R3 : �⊤ → ⊤

R4 : �¬(Oϕ ∧ β) → ¬Bϕ ∨ C¬ϕ ∨ [¬β] if Oϕ ∧ β ∈ Ω

Since we assume that the input formula will always be either
of the formORϕ or Oϕ, R1 is the only rule that generates
a formula with an occurrence of� from a formula with no
such occurrence. Observe that this has the pattern�¬, a
form which bothR2 andR4 assume.R2 generates a formula
in which this pattern occurs twice, whereasR4 removes the
�.

Example 16. Let us first examine the formula�¬Oϕ. R4

can be used to rewrite this formula modulo∼:

�¬Oϕ ∼ �¬(Oϕ ∧⊤)

→ ¬Bϕ ∨ C¬ϕ ∨ [¬⊤]

∼ ¬Bϕ ∨ C¬ϕ.

Thus�¬Oϕ→ ¬Bϕ ∨ C¬ϕ.

Rules pertaining toO

M1 : Oϕ→ (Oϕ〈β/⊤〉 ∧ β) ∨ (Oϕ〈β/⊥〉 ∧ ¬β)
if β is a prime modal atom that occurs inϕ

M2 : ϕ ∧⊥ → ⊥

M3 : (ϕ ∨ µ) ∧ ψ → (ϕ ∧ ψ) ∨ (µ ∧ ψ)

M4 : For objectiveϕ andψ,

• Oϕ ∧Bψ → Oϕ if not SAT{ϕ,¬ψ}

• Oϕ ∧Bψ → ⊥ if SAT{ϕ,¬ψ}

• Oϕ ∧ ¬Bψ → ⊥ if not SAT{ϕ,¬ψ}

• Oϕ ∧ ¬Bψ → Oϕ if SAT{ϕ,¬ψ}

• Oϕ ∧ Cψ → Oϕ if not SAT{¬ϕ,¬ψ}

• Oϕ ∧ Cψ → ⊥ if SAT{¬ϕ,¬ψ}

• Oϕ ∧Mψ → ⊥ if not SAT{ϕ, ψ}

• Oϕ ∧ ¬Mψ → Oϕ if not SAT{ϕ, ψ}

M1 is called theexpand rule,M2 thecontradiction rule,M3

thedistribution rule, whereas the rules in theM4 group are
calledcollapse rules.

Example 17. Let us once again address the default theory
in Example 1, in whichϕ isBp ⊃ p. In Example 5, we give
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a semantic analysis of the models ofOϕ andORϕ. Here we
show the same results syntactically. To reduceOϕ we first
apply the expand rule. Then we apply the first and the fourth
rule in theM4 group:

Oϕ→ (Op ∧Bp) ∨ (O⊤ ∧ ¬Bp)

→ Op ∨ (O⊤ ∧ ¬Bp)

→ Op ∨O⊤

The same reductions also apply in a boxed context, after
which one can applyR2 andR4 twice:

�¬Oϕ ։ �¬(Op ∨O⊤)

→ �¬Op ∧ �¬O⊤

։ (¬Bp ∨ C¬p) ∧ (¬B⊤ ∨ C⊥)

Having reducedOϕ and�¬Oϕ, we reduceORϕ.

ORϕ→ Oϕ ∧ �¬Oϕ

։ (Op ∨O⊤) ∧ (¬Bp ∨ C¬p) ∧ (¬B⊤ ∨ C⊥)

→ (Op ∧ (¬Bp ∨ C¬p) ∧ (¬B⊤ ∨C⊥)) ∨

(O⊤ ∧ (¬Bp ∨ C¬p) ∧ (¬B⊤ ∨ C⊥))

Distributing conjunctions over disjunctions, and collapsing
inconsistent conjuncts, we obtain

։ (O⊤ ∧ ¬Bp ∧ C⊥) ∨ (O⊤ ∧C¬p ∧ C⊥)

։ O⊤.

Theorem 18. If ϕ ։ ψ then|≡ ϕ ≡ ψ.

Proof. By Lemma 8, it is sufficient to show that|≡ l ≡ r
for each rulel → r, in which case we say that the rule is
strongly valid. ForR1, this follows from Lemma 12, forR2

from the fact that|≡ �(ϕ ∧ ψ) ≡ (�ϕ ∧ �ψ), forR3 from
|≡ �⊤, and forR4 from Lemma 15. Strong validity ofM1

follows from Lemma 10. Strong validity of the last two rules
in theM4 group follows from Lemma 7; that the other rules
are strongly valid can be proved by arguments similar to the
proof of Lemma 7. The rest are trivial.

The rules of the→ relation reduce an only-knowing formula
to a disjunction of formulae inΩ. We prove this, first for
input of the formOϕ, and then for input of the formORϕ.

Lemma 19. For somen > 0, there areOϕk ∧ βk ∈ Ω for
1 6 k 6 n such that

Oϕ ։ (Oϕ1 ∧ β1) ∨ · · · ∨ (Oϕn ∧ βn).

Proof. For additional details, cf. (Lian, Langholm, and
Waaler 2004; Waaler et al. 2007). The basic procedure is
as follows.

1. Expand the formula by repeatedly applyingM1 until there
are no modal subformulae left;

2. put the resulting formula on DNF usingM3;
3. collapse the conjunctions usingM4;
4. remove inconsistent conjunctions withM2.

Let Oϕ → (Oϕ〈β/⊤〉 ∧ β) ∨ (Oϕ〈β/⊥〉 ∧ ¬β), and as-
sume that the procedure has been applied toOϕ〈β/⊤〉 and
Oϕ〈β/⊥〉, i.e. that there are conjunctionsµ⊤

1 , . . . , µ
⊤
m and

µ⊥
1 , . . . , µ

⊥
n such that

Oϕ〈β/⊤〉 ։ µ⊤
1 ∨ · · · ∨ µ⊤

m, and

Oϕ〈β/⊥〉 ։ µ⊥
1 ∨ · · · ∨ µ⊥

n .

Then

Oϕ ։ ((µ⊤
1 ∨ · · · ∨ µ⊤

m) ∧ β) ∨

((µ⊥
1 ∨ · · · ∨ µ⊥

n ) ∧ ¬β)

։ (µ⊤
1 ∧ β) ∨ · · · ∨ (µ⊤

m ∧ β) ∨

(µ⊥
1 ∧ ¬β) ∨ · · · ∨ (µ⊥

n ∧ ¬β).

Now eachµ⊤
i ∧ β andµ⊥

k ∧ ¬β contains exactly one con-
junctOψ for some objectiveψ, while the other conjuncts are
B-, C-, andM-literals, of which theB- andC-literals are
collapsed. Hence we are left with a disjunction of formulae
from Ω.

Use of the distribution rule should be postponed whenever
possible, as this may cause an exponential blowup. The
proof of Lemma 19 reduces to DNF before the collapse rules
are used; this strategy is simply used to make the proof eas-
ier. A more clever strategy would be to collapse as much as
possible before using the distribution rule. In fact, there are
cases where the distribution is not needed at all.

Example 20. Let ϕ = d1 ∧ d2, whered1 = Bp ⊃ q and
d2 = Bq ⊃ p. Then

Oϕ→ (O(q ∧ d2) ∧Bp) ∨ (Od2 ∧ ¬Bp) byM1

։ [((O(q ∧ p) ∧Bq) ∨ (Oq ∧ ¬Bq)) ∧Bp] ∨

[((Op ∧Bq) ∨ (O⊤ ∧ ¬Bq)) ∧ ¬Bp] byM1

։ [((O(q ∧ p) ∧Bq) ∨ ⊥) ∧Bp] ∨

[(⊥ ∨ (O⊤ ∧ ¬Bq)) ∧ ¬Bp] byM2

∼ [(O(q ∧ p) ∧Bq) ∧Bp] ∨ [(O⊤ ∧ ¬Bq) ∧ ¬Bp]

։ O(q ∧ p) ∨O⊤ byM4.

M3 was not needed at any point in the reduction.

Lemma 21. For somen > 0, there areOϕk ∧ βk ∈ Ω for
1 6 k 6 n such that

ORϕ ։ (Oϕ1 ∧ β1) ∨ · · · ∨ (Oϕn ∧ βn).

Proof. By Lemma 19, for somen > 0, there areOϕk∧βk ∈
Ω for 1 6 k 6 n such that

Oϕ ։ (Oϕ1 ∧ β1) ∨ · · · ∨ (Oϕn ∧ βn), thus

�¬Oϕ ։ �¬((Oϕ1 ∧ β1) ∨ · · · ∨ (Oϕn ∧ βn))

։ �¬(Oϕ1 ∧ β1) ∧ · · · ∧ �¬(Oϕn ∧ βn))

։ (¬Bϕ1 ∨C¬ϕ1 ∨ [¬β1]) ∧ · · · ∧

(¬Bϕn ∨C¬ϕn ∨ [¬βn]) = µ,

whereµ = ν1 ∧ · · · ∧ νn andνk = ¬Bϕk ∨C¬ϕk ∨ [¬βk].

ORϕ→ Oϕ ∧ �¬Oϕ ։ Oϕ ∧ µ

։ (Oϕ1 ∧ µ ∧ β1) ∨ · · · ∨ (Oϕn ∧ µ ∧ βn)

EachOϕk ∧ µ ∧ βk reduces to eitherOϕk ∧ βk or⊥.
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When we reach the situation of Lemma 21 in the rewriting
process, we are left with disjunctions of elements inΩ. Note
that the→ relation has only two rules for collapsingM-
formulae. The two collapse rules that are missing do not
preserve strong equivalence and are hence not sound in all
contexts. Hence we define a new reduction relation→̂ that
includes the→ relation defined above and extends it with the
twoM-collapsing rules that are missing in the→ relation:

• Oϕ ∧Mψ →̂ Oϕ if SAT{ϕ, ψ}

• Oϕ ∧ ¬Mψ →̂ ⊥ if SAT{ϕ, ψ}

Example 22. In this example, we examine the prerequisite-
free default theory(∅, {⊤ : p / p}), which has the same
unique expansion and extension. It translates intoORϕ,
whereϕ is (Mp ⊃ p). Note that in contrast to the previous
example, the translation introduces an occurrence ofM.

Oϕ→ (Op ∧Mp) ∨ (O⊤ ∧ ¬Mp)

�¬Oϕ ։ �¬((Op ∧Mp) ∨ (O⊤ ∧ ¬Mp))

→ �¬(Op ∧Mp) ∧ �¬(O⊤ ∧ ¬Mp)

։ (¬Bp ∨ C¬p ∨ [¬Mp]) ∧

(¬B⊤ ∨ C⊥ ∨ [¬¬Mp])

= (¬Bp ∨ C¬p ∨B¬p) ∧

(¬B⊤ ∨ C⊥ ∨ ¬B¬p)

ORϕ ։ ((Op ∧Mp) ∨ (O⊤ ∧ ¬Mp)) ∧

(¬Bp ∨ C¬p ∨B¬p) ∧

(¬B⊤ ∨ C⊥ ∨ ¬B¬p)

։ (Op ∧Mp) ∨ (O⊤ ∧ ¬Mp)

։̂ Op

The next example does not correspond to any default theory;
it is included as a simple example of the case whereORϕ has
more than one weak model.

Example 23. Letϕ = (¬M¬p ⊃ p).

Oϕ→ (O⊤ ∧M¬p) ∨ (Op ∧ ¬M¬p)

�¬Oϕ ։ �¬((O⊤ ∧M¬p) ∨ (Op ∧ ¬M¬p))

→ �¬(O⊤ ∧M¬p) ∧ �¬(Op ∧ ¬M¬p)

։ (¬B⊤ ∨ C⊥ ∨ [¬M¬p]) ∧

(¬Bp ∨ C¬p ∨ [¬¬M¬p])

= (¬B⊤ ∨ C⊥ ∨Bp) ∧ (¬Bp ∨ C¬p ∨ ¬Bp)

ORϕ ։ ((O⊤ ∧M¬p) ∨ (Op ∧ ¬M¬p)) ∧

(¬B⊤ ∨ C⊥ ∨Bp) ∧ (¬Bp ∨ C¬p ∨ ¬Bp)

։ (O⊤ ∧M¬p) ∨ (Op ∧ ¬M¬p)

։̂ O⊤ ∨Op

Lemma 24. Letϕ =
∨

Φ for someΦ ⊆ Ω. If ϕ ։̂ ψ then
|= ϕ ≡ ψ.

Proof. We first show that all rules of̂→ are valid. That the
rules of→ are valid is obvious, given that they are strongly
valid. It follows immediately that for anM-literal β,

Oϕ ∧ β →̂ ψ if Oϕ ∧ [β] → ψ,

from which validity of the rewrite rules listed above follows.
The theorem follows from these observations and the fact
that formulae inΩ do not contain� andOR, and Lemma
9.

Theorem 25. For some n > 0, there are objective
ϕ1, . . . , ϕn such that for someΦ ⊆ Ω,

ORϕ ։
∨

Φ ։̂ (Oϕ1 ∨ · · · ∨Oϕn).

Proof. Follows from first applying Lemma 21, and then col-
lapsing the conjunctions inΦ using→̂.

Corollary 26. For some n > 0, there are objective
ϕ1, . . . , ϕn such that|= ORϕ ≡ (Oϕ1 ∨ · · · ∨Oϕn).

Proof. By Theorem 18, Lemma 24 and Theorem 25.

Adding Simplification Rules
On the one hand, we wish to reduceOϕ to a formula on
DNF; on the other, we wish to avoid applying the distribu-
tion rule unless strictly necessary. The fact that→ cannot
collapse all formulae inΩ means that we have to apply the
distribution rule to a formula expanded to prime form which
containsM. To illustrate this point, let

ϕ = (Mp ⊃ q) ∧ (Mq ⊃ q).

ReducingOϕ, applying only the expand rule, we get

([(Oq ∧Mq) ∨ (Oq ∧ ¬Mq)] ∧Mp) ∨

([(Oq ∧Mq) ∨ (O⊤ ∧ ¬Mq)] ∧ ¬Mp).

The only rule that now applies is the distribution rule. But
the formula as it stands can clearly be simplified more di-
rectly. We introduce three simplification rules to this end.
ForM-literalsα andβ,

S1 : Oϕ ∨ (Oϕ ∧ β) → Oϕ

S2 : (Oϕ ∧ β) ∨ (Oϕ ∧ β) → Oϕ

S3 : (Oϕ ∧ β) ∨ (Oϕ ∧ β ∧ α) → (Oϕ ∧ β) ∨ (Oϕ ∧ α),

whereβ denotes the complement ofβ, i.e.Mψ = ¬Mψ and
¬Mψ = Mψ. Now the above formula reduces to

(Oq ∧Mp) ∨ (Oq ∧Mq) ∨ (O⊤ ∧ ¬Mp ∧ ¬Mq).

The last example is taken from (Gottlob 1995), and is the
translation of the default theory

(∅, { p⊃q : p

p
, p : q

q
}).

As W = ∅ and both defaults have prerequisites, the only
extension is the set of tautologies.

Example 27. Letϕ = d1 ∧ d2, where

d1 = B(p ⊃ q) ∧Mp ⊃ p;

d2 = Bp ∧Mq ⊃ q.

If we substitute theM’s first, we can collapse the leaf nodes.
Then we can use the simplification rules.Oϕ reduces to

([((O⊤ ∨O(p ∧ q)) ∧Mq) ∨ (O⊤ ∧ ¬Mq)] ∧Mp) ∨

([(O⊤ ∧Mq) ∨ (O⊤ ∧ ¬Mq)] ∧ ¬Mp)
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→ ([((O⊤ ∨O(p ∧ q)) ∧Mq) ∨ (O⊤ ∧ ¬Mq)] ∧Mp) ∨

(O⊤ ∧ ¬Mp) byS2;

→ ((O⊤ ∨O(p ∧ q)) ∧Mq ∧Mp) ∨

(O⊤ ∧ ¬Mq ∧Mp) ∨ (O⊤ ∧ ¬Mp) byM3;

→ ((O⊤ ∨O(p ∧ q)) ∧Mq ∧Mp) ∨

(O⊤ ∧ ¬Mq) ∨ (O⊤ ∧ ¬Mp) byS3;

→ (O⊤ ∧Mq ∧Mp) ∨ (O(p ∧ q) ∧Mq ∧Mp) ∨

(O⊤ ∧ ¬Mq) ∨ (O⊤ ∧ ¬Mp) byM3;

→ (O⊤ ∧Mq) ∨ (O(p ∧ q) ∧Mq ∧Mp) ∨

(O⊤ ∧ ¬Mq) ∨ (O⊤ ∧ ¬Mp) byS3;

→ O⊤ ∨ (O(p ∧ q) ∧Mq ∧Mp) ∨ (O⊤ ∧ ¬Mp) byS2;

→ O⊤ ∨ (O(p ∧ q) ∧Mq ∧Mp) byS1.

Hence

Oϕ→ O⊤ ∨ (O(p ∧ q) ∧Mq ∧Mp)

�¬Oϕ ։ �¬(O⊤ ∨ (O(p ∧ q) ∧Mq ∧Mp))

→ �¬O⊤ ∧ �¬(O(p ∧ q) ∧Mq ∧Mp)

։ (¬B⊤ ∨ C⊥) ∧

(¬B(p ∧ q) ∨ C¬(p ∧ q) ∨B¬q ∨B¬p)

ORϕ ։ O⊤.

Adding Confidence Levels
To enable the representation of ordered default theories, we
extend the only-knowing system by introducing a partial or-
der(I,4), intuitively representing confidence levels, and for
each indexk ∈ I, adding modal operatorsBk, Ck,Mk,Ok,
OR

k , and�k to the signature of the logic. A formula of the
form

∧
k∈IOkϕk is called anOI -block. An OR

I -block is de-
fined similarly.ΩI is defined as the least set such that

• ϕ ∈ ΩI if ϕ is a primeOI -block;

• ϕ ∧Mkψ, ϕ ∧ ¬Mkψ, ϕ ∧⊤ ∈ ΩI if k ∈ I, ϕ ∈ ΩI and
ψ is objective.

A model for the logic with confidence levels is a set of tu-
ples{(Uk, Vk) | k ∈ I} such thatUk ⊆ Ui for eachi ≺ k,
and with a satisfaction relation which generalizes the satis-
faction relation of the logic without confidence levels in the
obvious way. To generalize the rewrite rules, it is in many
cases sufficient to add subscripts to the modalities.

R′
1 : OR

kϕ→ Okϕ ∧ �k¬Okϕ

R′
2 : �k¬(ϕ ∨ ψ) → �k¬ϕ ∧ �k¬ψ

R′
3 : �k⊤ → ⊤

R′
4 : �k¬(Okϕ ∧ α ∧ β) → ¬Bkϕ ∨Ck¬ϕ ∨ [¬α] ∨ [¬β]
if ϕ is propositional, andα andβ are conjunctions ofB-
andM-literals resp.

The collapse rules are more intricate, as for a givenOkϕ and
modal literalβ, it might be the case thatOkϕ neither implies
β nor its negation. AlsoOiϕ ∧ Okψ might be inconsistent.
The following rules are sufficient.

M ′
4 : For objectiveϕ andψ,

• Oiϕ ∧Bkψ → Oiϕ if i 4 k and notSAT{ϕ,¬ψ}
• Oiϕ ∧Bkψ → ⊥ if k 4 i andSAT{ϕ,¬ψ}

• Oiϕ ∧ ¬Bkψ → ⊥ if i 4 k and notSAT{ϕ,¬ψ}
• Oiϕ ∧ ¬Bkψ → Oiϕ if k 4 i andSAT{ϕ,¬ψ}

• Oiϕ ∧ Ckψ → Oiϕ if k 4 i and notSAT{¬ϕ,¬ψ}
• Oiϕ ∧ Ckψ → ⊥ if i 4 k andSAT{¬ϕ,¬ψ}
• Oiϕ ∧Okψ → ⊥ if i 4 k andSAT{¬ϕ, ψ}
• Oiϕ ∧Mkψ →̂ ⊥ if i 4 k and notSAT{ϕ, ψ}

• Oiϕ ∧ ¬Mkψ →̂ Oiϕ if i 4 k and notSAT{ϕ, ψ}

As before, the reduction relation→ is extended tô→ to deal
with Mk.

• Oiϕ ∧Mkψ →̂ Oiϕ if k 4 i andSAT{ϕ, ψ}

• Oiϕ ∧ ¬Mkψ →̂ ⊥ if k 4 i andSAT{ϕ, ψ}

Lemma 28. For any primeOI -block and propositionalψ,

1. either
• ϕ ∧Bkψ ։ ϕ andϕ ∧ ¬Bkψ ։ ⊥, or
• ϕ ∧Bkψ ։ ⊥ andϕ ∧ ¬Bkψ ։ ϕ;

2. either
• ϕ ∧Mkψ ։̂ ϕ andϕ ∧ ¬Mkψ ։̂ ⊥, or
• ϕ ∧Mkψ ։̂ ⊥ andϕ ∧ ¬Mkψ ։̂ ϕ.

Proof. For anyk ∈ I, one ofϕ’s conjuncts is of the form
Okµ, and eitherOkµ ∧Bkψ → Okµ (in which caseOkµ ∧
¬Bkψ → ⊥) or Okµ ∧ Bkψ → ⊥ (in which caseOkµ ∧
¬Bkψ → Okµ). Similarly forMk.

Theorem 29. For anyOR
I -blockϕ, there is aΦ ⊆ ΩI and

primeOI -blocksϕ1, . . . , ϕn, n > 0, such that

ϕ ։
∨

Φ ։̂ (ϕ1 ∨ · · · ∨ ϕn).

Proof. For each ofϕ’s conjunctsOR
kψ,

OR
kψ → Okψ ∧ �k¬Okψ.

Use the basic procedure given in the proof of Lemma 19 for
showing that for each suchOkψ, for somenk > 0, there are

• propositionalψi,
• conjunctions ofM-literalsβi, and
• conjunctions ofB-literalsαi (as collapsing is not always

possible when confidence levels has been added),

such that

Okψ ։ (Okψ1 ∧ α1 ∧ β1) ∨ · · · ∨ (Okψnk
∧ αnk

∧ βnk
).

Letωk denote this reduct. Now

�k¬ωk ։ �k¬ωk,1 ∧ · · · ∧ �k¬ωk,nk
,

such that for1 6 i 6 nk,

�k¬ωk,i = �k¬(Okψi ∧ αi ∧ βi)

→ ¬Bkψi ∨ Ckψi ∨ [¬αi] ∨ [¬βi].

Let τk,i denote this reduct. UsingM3, we can reduce∧
k∈I ωk to a formula on DNF, whose disjuncts are of the

form
∧

k∈I Okψk ∧ α ∧ β, whereα is a conjunction ofB-
literals, andβ is a conjunction ofM-literals. By Lemma
28(1),

∧
k∈IOkψk ∧ α ∧ β ։

∧
k∈IOkψk ∧ β,
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which is inΩI . Hence for someΓ ⊆ ΩI ,

OR
kψ ։

∨
Γ ∧

∧
k∈I

∧
16i6nk

τk,i

We are done by putting this formula on DNF usingM3, ap-
plying Lemma 28(1), then Lemma 28(2).

Corollary 30. For anyOR
I -block ϕ, there are primeOI -

blocksϕ1, . . . , ϕn, n > 0, such that|= ϕ ≡ (ϕ1∨· · ·∨ϕn).

Proof. Theorem 18 can be generalized along the lines of
(Waaler et al. 2007). Lemma 24 is easily seen to generalize.
Conclude by Theorem 29.

With reasonable assumptions about∼, both→ and→̂ are
terminating. They are not confluent as they stand, because
this requires some additional rules and restrictions.

Example 31. Letϕ1 = (B1p ⊃ p), ϕ2 = (q ∧ B2p ⊃ p).
Then

O1ϕ1 ։ O1⊤ ∨O1p

O2ϕ2 ։ O2q ∨O2(p ∧ q)

O1ϕ1 ∧O2ϕ2 ։ (O1⊤ ∧O2q) ∨ (O1⊤ ∧O2(p ∧ q)) ∨

(O1p ∧O2q) ∨ (O1p ∧O2(p ∧ q))

All but the third disjunct are consistent:O1p ∧O2q → ⊥.

Complexity
Applying the distribution rule can cause an exponential in-
crease in the size of the formula, and should as such be
avoided unless strictly necessary.

After expanding, if collapsing is impossible, the distribu-
tion rule is the only applicable rule. Imagine a block where
each conjunct is expanded until prime, and where no leaf
nodeOkψ ∧ β may be collapsed:

O1ϕ1 ∧O2ϕ2 ∧O3ϕ3 ։ ψ1 ∧ ψ2 ∧ ψ3

Then we may have to put each reductψk on DNF in order to
collapse:

ψ1 ∧ ψ2 ∧ ψ3 ։ ψDNF

1 ∧ ψDNF

2 ∧ ψDNF

3

EachψDNF

k consists of disjuncts of the form

Okµ ∧ β1 ∧ · · · ∧ βn,

but even this formula may not be collapsable, hence we may
have to put it on DNF:

ψDNF

1 ∧ ψDNF

2 ∧ ψDNF

3 ։ (ψDNF

1 ∧ ψDNF

2 ∧ ψDNF

3 )DNF

Now we may collapse, as each disjunct will be of the form

O1µ1 ∧O2µ2 ∧O3µ3 ∧ β1 ∧ · · · ∧ βn.

In some cases, collapsing is always possible; a singletonI is
a trivial case. In other cases, astrategyis needed in order to
be guaranteed that collapsing is possible. We examine one
such case. We say thatK ⊆ I is a downsetif for every
k ∈ K, i ≺ k impliesi ∈ K.

Definition 32 (Downset property). If for every downset
K ⊆ I,

∧
k∈K Okϕk only containsK-modalities, we say

that
∧

k∈I Okϕk has thedownset property.

A formula that has the downset property can be reduced by
reducing singleton blocks from “below.” Assume that

O1ϕ1 ∧O2ϕ2 ∧O3ϕ3

has the downset property for1 ≺ 2 ≺ 3, and assume, for the
sake of simplicity, that there are no occurrences ofMk. As
O1ϕ1 only containsB1-modalities, it may be reduced to a
disjunction of primeO1-formulae:

O1ϕ1 ∧O2ϕ2 ∧O3ϕ3

։ (O1µ1 ∨ · · · ∨O1µn) ∧O2ϕ2 ∧O3ϕ3

If we expandO2ϕ2, it may be impossible to collapse the
leaf nodes –O2p ∧ B1p is an example of this – but if we
distribute inthe reduct ofO1ϕ1, we get

(O1µ1 ∨ · · · ∨O1µn) ∧ (O2p ∧B1p)

։ (O1µ1 ∧B1p ∧O2p) ∨ · · · ∨ (O1µn ∧B1p ∧O2p),

and eachO1µk ∧B1p may be collapsed. Hence

O1ϕ1 ∧O2ϕ2 ∧O3ϕ3

։ ((O1µ
′
1 ∧O2ν1) ∨ · · · ∨ (O1µ

′
m ∧O2νm)) ∧O3ϕ3.

The argument may be repeated forO3ϕ3. Thus, when we
have the downset property, we avoid the DNF reductions de-
scribed above.

The default logic translation given in the next section has
the downset property.

Example 33. Let I = {1, 2, 3, 4}, and

1 ≺ 2 ≺ 4 and1 ≺ 3 ≺ 4.

The non-empty downsets are{1}, {1, 2}, {1, 3} andI. We
want to reduce

O1ϕ1 ∧O2ϕ2 ∧O3ϕ3 ∧O4ϕ4.

Assume that this formula has the downset property, i.e.

• ϕ1 contains only1-modalities;
• ϕ2 contains only1- and2-modalities;
• ϕ3 contains only1- and3-modalities;
• ϕ4 may contain any modality.

Then we may reduceO1ϕ1, to let us sayO1p. If ϕ2 =
B1p ⊃ p, then

O2ϕ2 → (O2p ∧B1p) ∨ (O2⊤ ∧ ¬B1p)

→ (O2p ∧B1p) ∨O2⊤.

This cannot be reduced further but

O1ϕ1 ∧O2ϕ2 ։ O1p ∧ ((O2p ∧B1p) ∨O2⊤)

→ (O1p ∧O2p ∧B1p) ∨ (O1p ∧O2⊤)

։ O1p ∧O2p.

We could also have reducedO1ϕ1 ∧ O3ϕ3 but in any case
we may have to reduceO1ϕ1 ∧O2ϕ2 ∧O3ϕ3 beforeO4ϕ4,
since1 ≺ 4, 2 ≺ 4 and3 ≺ 4.
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Ordered Default Logic
The procedure of translating ordered default theories into a
standard only-knowing logic given in (Engan et al. 2005)
is as follows. Given an ordered default theory(W,D,<),
wheren = |D|, the index set of the signature is defined to
beI = {0, . . . , n} with 4 equal to the usual number order
on I. This defines the modalities of the only-knowing logic
that the theory translates into. Then, for every topological
orderingσ of (D,<), let

ϕσ = O0ϕ0 ∧ · · · ∧Onϕn ∧ IC(σ),

where

• ϕ0 =
∧
W ;

• ϕk+1 = ϕk ∧ trk+1(δk+1);

• trk(δ) = Bkα ∧ ¬Bk¬β ⊃ γ (asMk is not a part of the
standard language,¬Bk¬ is used instead);

• IC(σ) is a formula that expresses anintegrity constraint,
assuring a prescriptive interpretation on the preference or-
der.

The encoding is the disjunction ofeverysuchϕσ. Note that
the representation spans all ways in which extensions can
potentially be generated as long as the partial order on de-
faults is respected. This very large formula can then be col-
lapsed into a much smaller one, which directly reflects all
the models. Also note that the representation contains mas-
sive amounts of redundancy. E.g., if two defaultsδ andδ′ are
unrelated, then for each topological ordering, there will be
another that is equal except thatδ andδ′ have swapped posi-
tions. These two orderings will generate the same extension
but both of them will have to be reduced in isolation.

In the reduction process, reducing a conjunctOk+1(ϕk ∧
trk+1(δk+1)) (in conjunction with theOiϕi’s for i ≺ k) ba-
sically amounts to reducing withexactlyone default. In this
way conflicts are avoided, which is the reason why the trans-
lation works forO. UsingOR instead ofO provides a cor-
rect treatment of conflicting defaults which, as we shall see,
allows a much more economical representation.

Example 34. LetW = {κ},D = {δ1, δ2, δ3}, andδ3 < δ1.
Then there are three topological orderings of(D,<), one of
which isδ3δ2δ1, whose translation is

O0κ ∧O1(κ ∧ δ3) ∧O2(κ ∧ δ2 ∧ δ3) ∧

O3(κ ∧ δ1 ∧ δ2 ∧ δ3) ∧ IC(δ3δ2δ1).

Example 35. LetD = {1, 2, 3, 4, 5}, and

1 < 2, 1 < 3, 2 < 4, and 2 < 5.

See Fig. 2 for the tree of topological orderings of(D,<).

The New Translation
Departing from the encoding given above, the new transla-
tion first collapses the tree of topological orders and then en-
codes the resulting tree usingOR rather thanO. The general
procedure for collapsing the tree is as follows.

1. For any nodea, replace it with{a}.

2. For any nodeΓ, let Γ1, . . . ,Γm denote its children. Now
if everya ∈ Γ is unrelated to everyb ∈ Γk for every child
nodeΓk, replaceΓ and its children with the new node
Γ ∪ Γ1 ∪ · · · ∪ Γm.

Let CD denote the collapsed tree and< the corresponding
order onCD induced from the tree of topological orders.

4 5 5 3 4 3 5 4

5 4 3 5 3 4 4 5

3 4 5 2

2 3

1

Figure 2: The tree of topological orderings of(D,<) from
Example 35. A dotted line betweena andb denotes that nei-
thera < b norb < a. If every line from a node to its children
is dotted, we may collapse that node and its children.

4 5

2 3

1

{3,4,5} {4,5}

{2} {2,3}

{1}

Figure 3:(D,<) and(CD,<) from Example 35.

Two particularly interesting cases are these.

• When< is empty, we may collapse the entire tree, hence
we get the single element{D}with an empty order, which
means that we do not need confidence levels to represent
(unordered) default logic.

• When< is linear, there is only one branch in the tree,
1 < · · · < n, hence we get{1} < · · · < {n}.

UsingOR
i andMk instead ofOi and¬Bk¬, a new transla-

tion can be specified as follows. Given a theory(W,D,<),
for every collapsed branchσ = Γ1 · · ·Γn, generate a for-
mulaOR

0ϕ0 ∧ · · · ∧OR
nϕn ∧ IC(σ), where

• ϕ0 =
∧
W ,

• ϕk+1 = ϕk ∧
∧
{trk+1(δ) | δ ∈ Γk+1},

• trk(δ) = Bkα ∧Mkβ ⊃ γ, and

• IC(σ) =
∧

k<n

∧
{Pk,n(δ) ∧ Jk,n(δ) | δ ∈ σ(k)}, s.t.

– Pk,n(δ) = Bnα ⊃ Bkα,
– Jk,n(δ) = Bkα ∧Mkβ ⊃Mnβ.

The following example is also found in (Engan et al. 2005;
Brewka and Eiter 2000; Delgrande and Schaub 2000).

Example 36. LetW = ∅ andD = {δ1, δ2, δ3}, where

δ1 = ⊤ : q
q
, δ2 = ⊤ : p

p
, and δ3 = ⊤ : ¬q

p
.
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These translate to

trk(δ1) = Mkq ⊃ q;

trk(δ2) = Mkp ⊃ p;

trk(δ3) = Mk¬q ⊃ p.

If the order is empty, this translates to

OR(tr(δ1) ∧ tr(δ2) ∧ tr(δ3)) ։ · ։̂ O(p ∧ q).

Note that in this particular case,OR andO give the same
expansions. If we letδ3 < δ1, we get two branches in the
collapsed tree:σ1 = {δ2, δ3}{δ1} andσ2 = {δ3}{δ1, δ2}.
The translation is now, if we letdk

i denote trk(δi):

(OR
0⊤ ∧OR

1 (d1
2 ∧ d

1
3) ∧O

R
2 (d2

1 ∧ d
1
2 ∧ d

1
3) ∧ IC(σ1)) ∨

(OR
0⊤ ∧OR

1d
1
3 ∧O

R
2 (d2

1 ∧ d
2
2 ∧ d

1
3) ∧ IC(σ2)).

Reducing this formula yields

(O0⊤ ∧O1p ∧O2(p ∧ q) ∧

(¬M1p ∨M2p) ∧ (¬M1¬q ∨M2¬q)) ∨

(O0⊤ ∧O1p ∧O2(p ∧ q) ∧ (¬M1¬q ∨M2¬q)).

Both disjuncts are inconsistent as

O1p ∧ ¬M1¬q →̂ ⊥ andO2(p ∧ q) ∧M2¬q →̂ ⊥.

Hence(W,D, δ3 < δ1) has no extension.

Conclusion
We have in this paper established a Modal Reduction The-
orem for the propositional only-knowing logic ofOR by
means of a rewriting system. Since the logic is capable of
representing default theories asOR-formulae, the rewriting
system can be used as a calculus to determine the extensions
of a default theory. A novelty of the rewriting system is that
it clearly separates SAT-solving parts of the algorithm from
the modal parts that deal with conflict resolution, and that it
thus makes logical structures explicit that are only implicitly
present in default theories.

We have also generalized the only-knowing logic to cover
confidence levels and sketched a way to represent prescrip-
tively ordered default theories. It is beyond the scope of this
paper to treat the representation of ordered default logic in
full depth; this is planned in a follow-up paper.

The present work is entirely within the “only-knowing
camp” of non-monotonic reasoning. Even though we be-
lieve that the rewriting system that we propose gives a better
way of computing default extensions than previously known
methods within this tradition, we do of course not claim that
our method is superior to other approaches to computing de-
faults.

Future work includes an implementation of the rewriting
system in the Rewriting Logic tool Maude, thereby provid-
ing a high-level prototype implementation of default logic.
This requires a terminating and confluent rewriting system.
A more low-level implementation that exploits state of the
art incremental SAT-solving techniques is also planned. An
implementation of this sort can be compared to implementa-
tions using complementary approaches, which may give an

indication of how well-suited the proposed rewriting system
is for the task of computing default extensions.

Moreover, the logic of� has not yet been axiomatized.
The propositional fragment of the original logic of only-
knowing is very well understood, both model-theoretically
in terms of, e.g. the finite model property, and proof-
theoretically in terms of cut-elimination results (Waaler
2005). It would be of interest to reach the same level of
understanding for the logic addressed in this paper.
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