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Abstract

Based on a set of simple logical equivalences we define a
rewriting procedure that computes extensions in the propo-
sitional fragment of the logic oD% introduced by Lake-
meyer and Levesque. This logic is capable of representing
default logic with the advantage of itself being monotonic,
with a clearly defined semantics and a separation of the object
level and the meta level. The procedure prepares the ground
for efficient implementations as it clearly separates the SAT-
solving part of the reasoning problem from the modal aspects
that are specifically caused by defaults. We sketch an exten-
sion of the logic to cover confidence levels and show that the
resulting system can accommodate ordered default theories
with a prescriptive interpretation of preference between de-
faults.

Introduction

In (Lakemeyer and Levesque 2005) a new logic of only-
knowing is introduced which allows a faithful encoding of
default logic. A default theory can be encoded as a for-
mula of the formOZ%p, with roughly the same size as the
default theory, and whose models exactly match the exten-
sions of the default theory. For the propositional fragment
the authors state a modal reduction theorem to the effect
that a formulaD%p is logically equivalent to a disjunction
Opy V --- V Og,, Where eachp;, is a propositional for-
mula. Because each such disjutib;, has a unique model,
it is possible, within the logic itself, to break down a for-
mulaO%y into a form from which one can directly exhibit
its models.

As an example, consider a simple supernormal default
theory with two extensions:

{~eAra} {55 1)

To determine the set of extensions “thé&-way”, three steps
must be carried out. The first step is to represent the default
theory as a formula of the for@%p. Under the Konolige-
style translation introduced in (Lakemeyer and Levesque
2005) the example above receives the representation

Of(~(pAg)A(Mp>p)A(Mg>q))
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where M is a possibility operator further discussed in the
following sections. The second step is to carry out an
equivalence-preserving reduction of td¥%“formula to a
disjunction of modalized propositional formulae of the form
Oyy,. TheOfformula in the example reduces@@ Vv Oq.

The third step is to determine the set of extensions of the de-
fault theory from the simpler formula obtained in the second
step. This task is trivial, since each disjunct has a unique
model. In our example)p v Oq represents two distinct ex-
tensions: The extension correspondingip is the set of
consequences qf, whereasOq corresponds to the set of
consequences qgf

The logic of O builds on the contribution to only-
knowing in (Levesque 1990) where the logic of the “All
| Know"-operatorO is first introduced. Like the logic of
OF the original logic ofO also admits a reduction theorem
for the propositional fragment, stating that a formGla is
equivalent to a disjunction of modalized propositional for-
mulae of the formOy,. WhereasO* is designed for the
representation of default theories, the logic(ofallows a
smooth representation of an autoepistemic theory. And as
with default logic, it is possible to directly pick out the stable
expansions of the autoepistemic theory from the equivalence
Op = Op1 V ---V Oyp,, because eacy; corresponds
to a stable expansion. Default logic and autoepistemic logic
do not differ in the way they treat the example discussed
above, hence both th@*-representation of the default the-
ory and theD-representation of the corresponding autoepis-
temic theory are equivalent @p Vv Ogq.

The logics of only-knowing are themselves monotonic
and have a clear separation between object level and meta
level concepts, which is arguably a great conceptual advan-
tage compared to the fixed-point definitions of extensions in
both default and autoepistemic logics. Only-knowing logics
have, moreover, a standard Kripke semantics. Encodings of
default and autoepistemic theories into only-knowing log-
ics thus provide the non-monotonic formalisms with formal
semantics and conceptual clarity.

But the translations provide more than just semantics,
they also provide anothenodel for computationBy trans-
lating non-monotonic formalisms into only-knowing logics
the problem of determining expansions is recast into the
problem of finding a proof in the only-knowing logic of the
equivalence of, sapp, with Oy, V --- V Og,, for an ap-



propriaten; for computing default logic extensions this is  needed for the Modal Reduction Theorem. Our approach to
what we refer to as “the second step” above. The existence formalizing default logic is complementary to the approach
of a logical equivalence of this sort is guaranteed by the in (Lakemeyer and Levesque 2006), in which it is the logic

Modal Reduction Theorem, and algorithms for determining
the equivalence can be extracted from proofs of that theo-
rem.

There are three different proofs of the Modal Reduction
Theorem for the original logic of). The idea behind one
proof is to take the sdt of subformulae o) and use this
as a filtration set for the canonical model (using standard
techniques from modal logic). Algorithmically, this boils
down to computing all the maximal consistent subsetE of
and use these to build models. This proof was introduced in
(Waaler 1994), refined in (Segerberg 1995) and published in
(Waaler et al. 2007). An implementation of this method can
take advantage of the tableau method for only-knowing log-

of OR that is axiomatized. Although this is, from the point
of view of theoremhood, a stronger system than the rewrit-
ing system that we propose, it gives an indirect route to the
Modal Reduction Theorem. The system in (Lakemeyer and
Levesque 2006) is formulated as a Hilbert-style axiom sys-
tem, which is natural given the author’s focus on axioma-
tization. Although axiom systems of this kind give logical
characterizations that are simple in terms of number of ax-
ioms and inference rules, they are of course not equally ap-
propriate as bases for implementation, simply because their
formal proofs do not enjoy the subformula property.

The rewrite rules introduced in this paper exhibit a sharp
separation of the SAT-solving component and the modal-

ics in (Rosati 2001), more precisely the tableau method may logic component. This will, we think, make it easier to adopt

be used to efficiently check if a given subsetlbfs max-

recent developments in SAT-solving technologies for use in

imally consistent. Another proof, published in (Levesque default-logic applications. The treatment of modalities in
and Lakemeyer 2001), is based on the idea of enumerating terms of formula rewriting captures the part of the problem
all ways of valuating modal atoms and use this to gradu- of computing default extension known as conflict resolution,
ally approximate the models. From a computational point of and the procedure that we propose presents a solution to
view, the two methods amount to roughly the same kinds conflict resolution in a concise way. We thus believe that
of computation. The two above-mentioned methods may the rewriting system proposed in this paper can form the
be compared to a truth-table method for propositional logic: basis for efficient implementation, although empirical evi-
Traverse all interpretations and select those that are modelsdence for or against this claim remains to be established.
of the formula at hand. At the time of writing, we do not know how this procedure
The third proof, also in (Waaler et al. 2007), is reminis- for computing defaults compares, in terms of efficiency, to
cent of the proof in (Levesque and Lakemeyer 2001), but methods that are not based on translation Db(further
approximates the models in a more careful way. If the for- addressed in the Conclusion).
mer algorithms are reminiscent of a truth-table method, the  In the first part of the paper we present a logicdfwith
algorithm behind the third proof is reminiscent of a tableau essentially the same semantics as the one presented in (Lake-
method: Use information in the formula to constrain the set meyer and Levesque 2005). However, to facilitate the for-
of potential models as much as possible. In worst-case sce- mulation of the rewrite rules, we slightly modify the syntax,
narios, the two methods are of course equally bad, but the most importantly by introducing a new modal operator to
latter method is computationally superior in virtually any express minimality constraints, and then establish the Modal

other situation.

The main contribution of this paper is to generalize the
latter procedure to the logic @P”. Because the procedure
is what is needed to carry out the second step in th&*“
way” of computing default extensions, as explained above,
we thereby provide a new method for computing default ex-
tensions over propositional logic.

We do this by introducing a rewriting system, where each
rewrite rule reflects a logical equivalence@{*logic. Pre-
senting the procedure in this way provides us witakulus

Reduction Theorem constructively.

Conflicts among defaults may be avoided by adding a par-
tial order among defaults. If the order relation is used to con-
strain the generation of extensions, i.e. if the partial order is
interpreted prescriptively (Delgrande and Schaub 2000), it
may significantly prune the search space. In the last part of
the paper, we add confidence layers to the logi©Bflong
the lines of (Waaler et al. 2007) and sketch how to encode
ordered default theories into this logic with a prescriptive in-
terpretation of defaults. This builds on the encoding of this

for computing default extensions. The proposed calculus has kind of default theories into a standard logia@fvith confi-

a clear operational semantics, and it is, we believe, easy to dence layers in (Engan et al. 2005). A shortcoming with the
use. An advantage of rewriting systems is that they are well encoding in their work is that th@-representation of the de-

understood; compared to more high-level (pseudo-code) al- fault theory effectively enumerates all possible ways of con-
gorithmic specifications they are easier to reason about and structing extensions, hence it is hopelessly intractable from

may be implemented more directly.

The calculus that we present is a formal system that is just
strong enough for establishing the Modal Reduction Theo-
rem: Itis sound and complete for reductiongdf-formulae
into disjunctions ofO¢;’s of the appropriate type. It is,
however, not complete for the logic 6f* itself. From the
point of view of computing default extensions this is harm-
less, because only a subset of the logiodt is actually
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the point of view of computation. The encoding sketched in
this paper remedies the situation by mapping defaults into
the context oD% rather tharO.

Syntax and Semantics

Since the proof system introduced in this paper is a rewriting
system, itis natural to include arich set of logical symbols in
the formal language (rather than introducing as few symbols



as possible and define the rest). The propositional connec-U C Y. Thed modality quantifies over models by means

tives include the constants and T and usual symbols for
negation, disjunction and conjunction. The conditiopal
and biconditionak= are taken as defined connectives. The
set of propositionabbjectiveformulae is then defined over
a finite set of propositional variables in the usual way. If
©1,- .., are propositionabAT{¢1, . .., ¢, } is the state-
mentthatp; A --- A @, iS propositionally satisfiable.

There are in total six unary modal operatofs:(belief),
C (co-belief}, M (possibility), O (only knowing),O% and
©. M andO"were introduced in (Lakemeyer and Levesque
2005); M is a possibility operator that may, or may not, be
dual of B. It should not be confused withB—, which is al-
ways the dual of3 (and for which one could invent a defined
symbol). OFis an only-knowing operator that is stronger
thanO and capable of representing Reiter-style defaudts.

is a necessity operator introduced in this paper to express

minimality constraints on models;p is ~E—.
The set of formulae is generated from the propositional

variables, propositional connectives and modal operators,

with the following provisos. Firstly, in the formation of
O, ¢ must be completely modalized (i.e. all propositional
variables must occur within the scope of a modal operator).
Secondlym ¢ andO%yp are not allowed to occur within the
scope of any modal operator. Thug) . is not a formula,
neither is@p for a propositional variablg.

Following the literature on only-knowing we call proposi-
tional formulaeobjectiveand completely modalized formu-
lae subjective A formula is M-freeif it does not contain
M. ltis M-basicif it is subjective and only contains the
modality M. It is primeif it is subjective and contains no
nested modalities. A formula israodal atomif it is of the
form By, Cp or My. A modalliteral is a modal atom or its
negation.

A default theory is a tupléW, D), whereW is a finite
set of objective formulae anf) is a finite set of defaults.
The defaulta : 3/ is represented by its Konolige trans-
lation Ba A M3 D ~. If « or g areT, i.e. the default
is prerequisite-free or justification-free resp., we drop that
conjunct. Hencel : 3/~ translates ta\{3 O -, while
a : T /~translates tdBa D ~. To translate the whole de-
fault theory, take the conjunction of all formulae W and
of the translations of the defaults i, and put this conjunc-
tion in the context oD, We may define an autoepistemic
translation of a default theory into only-knowing logic in es-
sentially the same way as the translation iG8-logic, ex-
cept that that autoepistemic translation uSdsstead o0
and—B- instead ofM.

Example 1. The theory(d, {p : T /p}) has as its unique

extension the set of all tautologies. The representation of the

default theory isO¥(Bp O p). The corresponding autoepis-
temic translation i$D (Bp D p), which has an additional au-
toepistemic expansion: The set of formulae following from
D

Relative to the universal s&tof all propositional valuations,
amodelis defined as a tupl@/, V') such that’ C U and

1The notion of co-belief is discussed at length in Sect. 3 of
(Waaler et al. 2007).
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of a binary relation>. If M = (U, V), M’ > M iff M’ =
(U',U) andU is apropersubset of/’. Note that> is not
an order, as it is not transitive; in fact it has the following
property: if M1 > Mo and My > M3, thenM;y # Ms.

Example 2. Let{a,b,c} CU. Then
({a,b, ¢}, {a,b}) > ({a, b}, {a}) > ({a}, {a})
but({a,b,c},{a,b}) # ({a},{a}), as{a, b} # {a}.

Truth is defined for a model relative to each paint .

If ¢ is a propositional variableM =, ¢ iff the valuation

x makesp true. Connectives are taken as truth functions in
the usual way. In the following definition of truth conditions
for modalities,M = (U, V):

o M=, Byiff M=, pforeachy e U

o M=, Cyiff M=, ¢foreachy e Y\ U

e M, Mpiff M=, pforayeV

o M, Opiffforall y e, M =, piff y €U
o M, Hyiff M’ =, ¢ foreveryM’ > M;

e M |, OFpiff M =, Op and there is no\’ > M
such thatM’ =, Oe.

We write M = ¢ if M =, ¢ for eachz € U. Relative

to a modelM, ||| denotes the set of pointsin ¢/ such
that M =, . Note that ifp is objective,|¢| is given
independently of\M, as it only depends on the pointstifn
Also note that in the clauses that define truth for the modal
operators, the point plays no active role in the definition.
Whengy is subjective, it is immediate thait =, ¢ iff M |

v, i.e. we can safely skip the reference to the painThis

is also the reason why the following observation holds.

Lemma 3. If ¢ is subjective and\ is any model, either
MEp=ToMEep=1.

Figure 1: Left: =O¢p A ©O¢p. Right: Op A = O0¢.

Example 4. Fig. 1 illustrates the truth conditions relative
to a modelM = (U, V) for an arbitrary V' C U and an
objectiveyp.

o If M is the model to the lefly C |¢||. ThenC—¢ does
not hold in M, hence neither doe@¢. Oy is, however,
true in M’ = (Jl¢||,U), and sinceM’ > M, ¢O0p is
true in M.



o If M is the model to the righty = |||, in which case
Oy is true. But as there is na1’ > M that make®p
true, ©O¢ is not true. Henc®y holds in M.

A formula ¢ is strongly valid written = ¢, if M = ¢ for
every modelM. There is also a weaker notion of validity,
which is the notion of validity that we are primarily inter-
ested in. It is defined relative to the setwéak models
(U, V) is aweak model it/ = V. ¢ is valid, written |= ¢,

if M = ¢ for every weak modeM.

Example 5. Let M+ = (U, |[p||) and M, = (||p|[, [Ip])- If
@ is Bp D p, then

M-~ is amodel oDy sinceBp is false at every point;
M- is amodel oD since there can be ndt’ > M+;
M, is a model oDy sincel|p|| = || Bp|| = |Ip/;

M, is not a model of*p since M is a model 0fO¢p
and M+ > M,,.

(U,U) is the only weak model @%p, henceOfpy = OT

is valid. Oy has two weak modelsi/, ) and (||p|], ||»|])-
HenceOyp = (OT V Op) is valid. These validities reflect
the default and autoepistemic extensions of the theories in
Example 1.

Clearly, strong validity implies validity, but not conversely.
For formulae that do not contail/, the two notions coin-
cide.

Lemma 6. If ¢ is M-free, then= ¢ iff = .

A weak model corresponds directly to a model for the logic
of O in (Levesque 1990). For formulae that do not contain
M, OFor @, the set of models is essentially the same as the
set of models defined for the logic 6fin (Levesque 1990).
For theM-free fragment of the language, the weak mod-
els of Oy are exactly the modeld/, U) with the largest
belief statd that satisfyO . As pointed out in (Lakemeyer

and Levesque 2005), these models correspond to Konolige-

type minimization of the weak models 6%, which in their
system can be syntactically expressed byd@{emodality.
The function that serves in their axiomatization is in our
formulation taken over by.

As explained in (Lakemeyer and Levesque 2005), the mo-
tivation behind thel/-operator is that the possibility opera-
tor implicit in default theories is not the dual of the corre-
sponding belief modality. The models that we in the end are
interested in are the weak ones, in whithand B are du-
als. However, a number of inferences require that we do not
limit ourselves to weak models. One can only in certain lim-
ited cases substituteB— for M, and the rewriting system
in the next section is carefully designed to rewrite the input
formula as much as required for substitutions of this kind to
hold.

The V' C U condition on a mode{U, V'), which is re-
quired by the definition above, is notimposed on the models
in (Lakemeyer and Levesque 2005). Whether or not this
condition is imposed has no effect on the set of valid for-
mulae. It does, however, affect the set of strongly valid for-
mulae, and from the point of view of formula rewriting, it is
desirable that the set of strongly valid formulae is as large
as possible. The conditioi C U makesM¢ O —B-y
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strongly valid. The converse implication is valid but not
strongly. A more general result, which is essential for the
rewriting system, is given in the following lemma.

Lemma 7. Lety andiy be objective.

1. If notSAT{¢, v}, thenE Op D M.
2. IfSAT{p, v}, thenE= Op D M.

Proof. 1. The assumption that n6AT{y, ¢/} implies that
lell € [I-]l- Let (U, V) = Og. ThenU = |¢||. AsV C
U in any model,V C |—¢|], i.e.(U,V) = =M. 2. The
assumption tha&AT {, ¢}, implies that there is a pointin
lloll NIl Let (U, V) = Op. ThenU = [|¢||. ASU C V
in any weak model; € V. Hence(U, V) = M. O

From the point of view of formula rewriting, the significance

of strong validity is that it is required for general substitution
of equivalents. To this endz(11 /12) denotes the result of
replacing every occurrence of; in ¢ with 5. The next
lemmata are proved by induction on formulae. Note that
the former addresses strong equivalence, while the latter ad-
dresses the weaker notion of equivalence.

Lemma 8. If = ¢ = 4, then= ¢ = (11 /12).
Lemma 9. If = 41 = 42 and); does not occur within the
scope ofs or OF, thenl= ¢ = (1)1 /1)s).

Substitution of strong equivalents makes the following
equivalence strongly valid. This equivalence underlies a ba-
sic inference rule in the rewriting system.

Lemma 10. = Op = (Op(B/T) AB) V (Op(B/L) A=)
for a prime modal aton®.

Proof. Let M be an arbitrary model. By Lemma 3, either
MESB=ToMEp= 1. BylLemmas, eitheM =
Op =0p(B/TYor M = Op = Op(B/L), resp. In either
case, we haveml |= ((8 = T) A (Op = Op(B/T))) vV
(B = L) A (Op = Op(B/L))), which is tautologically
equivalent to the formula in the lemma. O

In the rest of the section, we identify some useful strong
equivalents. The first two follow directly from the defini-
tions.

Lemmall. E Op = (B A C—p).
Lemma 12. = Ofp = (Op A B-0yp).

The idea underlying the next lemma can be illustrated with
the help of Fig. 1 and Example 4. In the proof of Lemma
13 we argue that any model 6O must have the shape of
the leftmost model in Fig. 1, in which there must be a point
x ¢ U atwhichy is true. As we show in Example 8¢ and
—C—¢ are both true in the model. Conversely, any model of
By A —C—¢ must also have the shape of the leftmost model
in Fig. 1, satisfying®O.

Lemma 13. E ©O¢ = (Bp A ~C—y) if ¢ is objective.

Proof. As ¢ is objective, M = Oy iff M' = =0y for
eachM’ > M. This is used in both directions beloy=
) Assume thatM = ©¢Op. Then M’ = O¢p for some
M > M,ie.M E -Op. SinceM’ = By, M |= Bep.
ThusM E —~C—p by Lemma 11( < ) Assume thaiM =



Bp A =C-p. As M E By andy is objective, there is
someM’ > M such thatM’ = Oy, and asM = ~C—e,
M = =Op, thusM’ £ M. HenceM = ©Oq. O

We let [-] denote the function that replacég with —B—,
and (for the service of the rewriting rules) puts the resulting
formula on negation normal form, e.gW/y] = —B[—],

[=My] = B[=] and[~(¢ A )] = [¢] V [-].
Lemma 14. = & D [3] if B is M-basic.

Proof. It is immediate that itM’ = 8 and M’ > M, then
M E [f]. The lemma follows from this. O

The sef(? contains formulae of a normal form wrt. one of
rewriting relations introduced below. Itis defined as the least
set such that

e Oy € Qif pis objective;
o oAMY, pA=Mip, pAT € Q if ¢ € Q andy is objective.

The next lemma is essential for the rewriting process, as it
justifies a reduction of a formula which contains occurrences
of @ andM to a formula which does not contain any of these
modalities.

Lemma 15. LetOy A 5 € Q. Then
E 8-(0¢ AB) = ((By A —~C—y) D [-]).

Proof. By Lemma 13 and Lemma 8, we have to show that

EB-(0¢%Ap) = (©0y > [=6)).

(=) Assume thatM = @(0y D —fF) and M = 0.
ThenM E &(Oy A =5), thusM = =6, henceM |=
[-5] by Lemma 14 ( <) We want to show that for each,

M = (B-0¢ V [=8]) > B-(0¢ A )

Now there are two cases. ¥ E ©-0v, then M =
(0 A B). If M = [-8], thenM E —[F], thusM =
-6 by Lemma 14, thus\l |= @—(0y A §). O

The Rewriting System

The rewriting system introduced in this section consists of
two rewriting relations on formulae. The rules of the relation

their role is to hide low-level details and thus allow more
readable reduction sequences.

Although we want to reduce formulae of the formfp,
there is only one rule whe@? occurs:0O%y is rewritten to
Op N E-0¢. Hence we need rules to reduce boxed for-
mulae and formulae of the for®y, and whatever they are
reduced to. A set of such rules for the language without
and M is found in (Waaler et al. 2007). In this paper, we
skip the rules that treat occurrences@fand C within the
scope of0. We assume thaB and M are the only modali-
ties occurring inp, and that” only occurs when generated
from the rules. The resulting set of rules is sufficient for
reducing encoded default theories.

Rules pertaining to O and

Ry : OFfp — Op A@-0¢p
Ro: O-(p V) - O-p AE
Rs: @T —T

Ry: @~(OpAB)— —~BoVCapV[-p]if OpApBeQ

Since we assume that the input formula will always be either
of the formO%p or Oy, R, is the only rule that generates
a formula with an occurrence of from a formula with no
such occurrence. Observe that this has the patterna
form which bothR, and R, assume R, generates a formula

in which this pattern occurs twice, whereds removes the

1.

Example 16. Let us first examine the formuta—~Oy. R4
can be used to rewrite this formula modulo
H-O¢p ~ E-(0Op A T)
— —2BpV C-pV [=T]
~ BV C—gp.
ThusE—-0Op — =B V C—.
Rules pertaining to O

My : Op — (0p(B/T) AB)V (Op(B/L) A=3)
if 3 is a prime modal atom that occursgn

My: opN1L — L
Mz : (V)N — (0 AP)V (uAY)

— are based on strong equivalences, whereas some of the

equivalences underlying the relatien are not strong. The
rewriting process applies the relation exhaustively before
= is applied.

We first define the reduction relatior, and say that:
reducesto b if a — b, where— is the reflexive transitive
closure of—. Reduction can be performed on any subfor-
mula, e.g. ifp — ¢ is arewrite rule, thepVv ¢ — ¢V q. The
same notation is used for the relation, i.e. denotes its
reflexive transitive closure.

Reduction is performed modulo an equivalence relation
under whichA andV are commutative and associative, and
T and L are the empty conjunction and disjunction resp.,
i.e.p AT ~pandpV L ~ ¢. Also-L ~ Tand-T ~ L.

As we neglect confluence, we will also assume that some
simple propositionally sound reductions, likev ¢ — ¢,

M, : For objectivep and,
e Op A By — Oy if not SAT{p, -1}
e Op A By — Lif SAT{p, )}
e Op A—-By) — Lifnot SAT{p, )}
e Op A =By — Ogpif SAT{p, )}
e Op A CY — Ogpifnot SAT{—p, )}
e Op ANCY — Lif SAT{—p, )}
e Op AN My — Lifnot SAT{p, ¢}
e Op A~ Mip — Ogp if not SAT{yp, ¥}
M, is called theexpand rule M thecontradiction rule M3

thedistribution rule whereas the rules in the/, group are
calledcollapse rules

Example 17. Let us once again address the default theory

are allowed. These are, however, not needed for correctness;in Example 1, in whickp is Bp D p. In Example 5, we give
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a semantic analysis of the models@p andO%p. Here we
show the same results syntactically. To reddke we first
apply the expand rule. Then we apply the first and the fourth
rule in the M, group:
Op — (Op A Bp)V (OT A —Bp)
— OpV (OT A—Bp)
—OpVvOT

The same reductions also apply in a boxed context, after
which one can applyz. and R, twice:

0-0O¢ — @—(0OpV OT)
— EH-O0p ANE-0T

—» (ﬁBp V Cﬁp) AN (ﬁBT Vv CJ_)

Having reduced)y and@ -0, we reduce) .

O%p — Op AE—Op
— (OpVOT) A

— (Op A (=Bp Vv C—p) A

(OT A (=BpV C—p) A

(=BpV C-p) A (-BT VvV Cl)
(-BTVCLl))V
(=BT Vv Cl))

Distributing conjunctions over disjunctions, and collapsing
inconsistent conjuncts, we obtain

— (OT A=BpACL)V
—- OT.

Theorem 18. If ¢ — ¢ thenE p = 9.

Proof. By Lemma 8, it is sufficient to show th&t | = »

for each rulel — r, in which case we say that the rule is
strongly valid. ForR;, this follows from Lemma 12, foR,
from the fact that= &1 (¢ A ¥) = (B¢ A TY), for R3 from

E @T, and forR, from Lemma 15. Strong validity of/;
follows from Lemma 10. Strong validity of the last two rules
in the M, group follows from Lemma 7; that the other rules
are strongly valid can be proved by arguments similar to the
proof of Lemma 7. The rest are trivial. O

(OTAC—pACL)

The rules of the— relation reduce an only-knowing formula
to a disjunction of formulae if2. We prove this, first for
input of the formO¢, and then for input of the forr® .

Lemma 19. For somen > 0, there areOyy, A S € ( for

1 < k < nsuch that
Op — (01 AB1)V -V (Opn A Br).

Proof. For additional details, cf. (Lian, Langholm, and
Waaler 2004; Waaler et al. 2007). The basic procedure is
as follows.

1. Expand the formula by repeatedly applyiig until there

are no modal subformulae left;
2. putthe resulting formula on DNF usirds;
3. collapse the conjunctions usifgy;
. remove inconsistent conjunctions witlf,.
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Let Op — (Op(B/T) A B) V (Op(8/L) A -B), and as-
sume that the procedure has been applle@gmiﬁ/ﬂ and
Op(3/ L), i.e. that there are conjunctiops , ...,u,} and

pi, ..., such that
Op(B/T) = pi V---V p,, and
OP(B/L) = pi V-V iy
Then
O = (1 V-V ) AB) V
(i V-V ) A=)
= (uf AB)V -V (1 AB)V

(11 A=B)V -V (A =B).

Now eachu; A 3 andui A -3 contains exactly one con-
junctOv for some objective), while the other conjuncts are
B-, C-, and M-literals, of which theB- and C-literals are
collapsed. Hence we are left with a disjunction of formulae
from €. O

Use of the distribution rule should be postponed whenever
possible, as this may cause an exponential blowup. The
proof of Lemma 19 reduces to DNF before the collapse rules

are used; this strategy is simply used to make the proof eas-
ier. A more clever strategy would be to collapse as much as
possible before using the distribution rule. In fact, there are

cases where the distribution is not needed at all.

Example 20. Lety = d; A d2, whered; = Bp D ¢ and
ds = Bq D p. Then
O¢ — (O(g Ndz2) A Bp) V (Ody A —~Bp) by M
(O(g Ap) A Bq) vV (Og A —Bq)) A Bp| v
(Op A Bq) vV (OT A=Bq)) A ~Bp] by My
(O(gAp)ANBgq)V L) A Bp] vV
—Bp| by M,
[(OT A=Bgq) A

—»

(O
adl|
[
[
[

—~ o~~~

LV (OT A=Bg)) A
~ [(O(g Ap) N Bq) A Bp| v
= O(gAp)VOT by M,.
Ms5 was not needed at any point in the reduction.
Lemma 21. For somen > 0, there areOpy A 5i. € € for
1 < k < n such that
ORQD —» (O(pl N 61) \Y

Proof. By Lemma 19, for some >
Q for 1 < k£ < nsuch that

Op — (Op1 A1)V
E-0¢ - A-((Op1 A B1) V-V (Opn A Br))
—» Eﬁ(O(pl /\61)/\ E\ﬁ(OSDn/\ﬁn))
— (=Bp1 VC—1 V [1]) A A
(mBpn V Cpn V [2B4]) = 1,
A v, andvg, = 2By V C—op V [0k].

—Bp]

V (Opn A Br).
0,there ar@pp A\Gr €

V (Opn A Bn), thus

wherey = vy A---
OFp — Op ANE-0¢p - Op A p
= (Opr Ap APV -V (Opn A A Br)

EachOpi A 1 A Bi reduces to eitheDpi A G or L. O



When we reach the situation of Lemma 21 in the rewriting
process, we are left with disjunctions of element8inNote
that the— relation has only two rules for collapsinty/-
formulae. The two collapse rules that are missing do not

preserve strong equivalence and are hence not sound in all

contexts. Hence we define a new reduction relatiothat
includes the— relation defined above and extends it with the
two M-collapsing rules that are missing in therelation:

e Op AN My = Opif SAT{p, v}
e Op A =My = Lif SAT{p, 1}
Example 22. In this example, we examine the prerequisite-
free default theory((,{T : p/p}), which has the same
unique expansion and extension. It translates 6y,
whereyp is (Mp D p). Note that in contrast to the previous
example, the translation introduces an occurrenc@/fof
Op — (Op N Mp) vV (OT A —=Mp)
H-0¢ — E-((Op A Mp) V (OT A =Mp))
— E-(0p A Mp) A@—(OT A -~Mp)
— (=BpV C-p V [=Mp]) A
(=BT VvV CLVI[-=Mp])
= (=BpV C-pV B-p) A
(=BT v CLV-=B-p)
O%p — ((Op A Mp) vV (OT A =Mp)) A
(=BpV C-pV B—p) A
(=BT VvV CLV-B-p)
— (Op A Mp) vV (OT A —=Mp)
= Op
The next example does not correspond to any default theory;

itis included as a simple example of the case wii¢fe has
more than one weak model.

Example 23. Letyp = (=M-p D p).

Op — (OT A M=p)V (Op A =M-p)
0-0¢ - a-((OT A M=p) V (Op A =M-p))
— E-(0OT A M-p) AE-(Op A =M-p)
— (=BT VCLV[-M-p]) A
(~Bp Vv C=p V [~=M—p])
(=BT VCLV Bp)A(=BpV C-pV —Bp)
O%% — ((OT A M=p) V (Op A =M=p)) A
(=BT VCLV Bp)A(=BpV C-pV —-Bp)
— (OT A M=-p) VvV (Op A =M=-p)
% OT V Op

Lemma 24. Lety = \/® for somed C Q. If ¢ = 1 then
Fe=9.

Proof. We first show that all rules of> are valid. That the
rules of — are valid is obvious, given that they are strongly
valid. It follows immediately that for add/-literal 3,

Op NG =it Op A[f] — 1,
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from which validity of the rewrite rules listed above follows.
The theorem follows from these observations and the fact
that formulae inQ2 do not contairl and O and Lemma

9. O

Theorem 25. For somen > 0, there are objective
©1,---,pn such that for somé C Q,

Ofp V@ = (Op1 V-V Opy).
Proof. Follows from first applying Lemma 21, and then col-
lapsing the conjunctions i using—=. O
Corollary 26. For somen > 0, there are objective
©1,- -+, n sUchthat= Ofp = (Op1 V-V Opy,).

Proof. By Theorem 18, Lemma 24 and Theorem 25. [

Adding Simplification Rules
On the one hand, we wish to reduckr to a formula on
DNF; on the other, we wish to avoid applying the distribu-
tion rule unless strictly necessary. The fact thatcannot
collapse all formulae ii2 means that we have to apply the
distribution rule to a formula expanded to prime form which
containsM. To illustrate this point, let
= (Mp>Dq)N(Mg>q).

ReducingDp, applying only the expand rule, we get

([((Og A Mq) v (Og A ~Mq)] A Mp) v

((Og A Mq) Vv (OT A=Mq)] A =Mp).
The only rule that now applies is the distribution rule. But
the formula as it stands can clearly be simplified more di-

rectly. We introduce three simplification rules to this end.
For M-literalsa and 3,

S1: OpV (0pAB) = Op
S2: (Op AB)V (Op AB) — Op
S3: (Op AB)V (Op ABAa) = (Op AB)V (0p Aa),
wheref denotes the complement 6fi.e. M+ = ~M1) and
=M~ = Mr). Now the above formula reduces to

(Og A Mp)V (Og A Mq)V (OT A=Mp A -Mgq).

The last example is taken from (Gottlob 1995), and is the
translation of the default theory

(0, {22, 220y

As W = () and both defaults have prerequisites, the only
extension is the set of tautologies.
Example 27. Letp = dy A da, where
di = B(p>q) AN Mp D p;
dy = Bp AN Mg D q.
If we substitute thé/’s first, we can collapse the leaf nodes.
Then we can use the simplification rulé€sp reduces to
([(OT v O(pAq)) ANMg) Vv (OT A=Mq)] A Mp) v
((OT AMgq) v (OT A=Mgq)] A =Mp)



= ([((OT VO(pAq) ANMg)V (OT A=Mq)] A Mp) v
(OT A —Mp) by S;
(OTVOW@Aq)AMgAMp)V
(OT A=Mg A Mp)V (OT A —=Mp) by Ms;
((OTVO(pAg))NMgA Mp)V
(OT A—=Mgq) Vv (OT A —Mp) by Ss;
— (OT AMgA Mp)V (O(pAqg)ANMgA Mp) Vv
(OT A=Mgq)V (OT A—=Mp) by Ms;
— (OT AMq)V (O(p Aq) N Mg A Mp) vV
(OT A=Mq)V (OT A —Mp) by Ss;
—OTV(O(Aq) ANMgA Mp)V (OT A—=Mp) by Ss;
— OT V(O(pAqg) N Mg Mp) by S;.
Hence
Op — 0TV (O(pAq)ANMgA Mp)
H-0¢ — B-(0OT V (O(p A q) A Mg A Mp))
— @a-0T AE~(O(p Aq) N Mg A Mp)
—» (—\BT V CJ_) A
(=B(pANq)VC=(pAq)V B=qV B-p)
Ofp - OT.

—

—

Adding Confidence Levels

To enable the representation of ordered default theories, we

extend the only-knowing system by introducing a partial or-
der(I, %), intuitively representing confidence levels, and for
each index: € I, adding modal operato8y, Cj,, My, Ok,
OF and@, to the signature of the logic. A formula of the
form /\kezOWk is called anO;-block An Oﬁ-blockis de-
fined similarly.Q2; is defined as the least set such that

e € Qif isaprimeO;-block;
e O ANMpp, o N—-Mptp, o N T € Qrifkel,p e Qrand
1) is objective.

A model for the logic with confidence levels is a set of tu-
ples{(Ux, Vi) |k € I} such thatU;, C U; for eachi < k,

and with a satisfaction relation which generalizes the satis-

faction relation of the logic without confidence levels in the
obvious way. To generalize the rewrite rules, it is in many
cases sufficient to add subscripts to the modalities.

R} : OFp — Opp AER—Opp

Ry Bp=(p V) — Bgmp A By

ng T — T

Ry : Bx=(Okp AaAB) — ~BrpV Crp V [na] V [-4]
if  is propositional, and. andg are conjunctions oB-
and M-literals resp.

The collapse rules are more intricate, as for a givgp and
modal literalg, it might be the case th&l, ¢ neitherimplies
£ nor its negation. Als@;» A Ok might be inconsistent.
The following rules are sufficient.
M : For objectivep and,

e O;p A Bty — O if i < k and notSAT{p, -}

e O;p ANBpyp — Lif k< iandSAT{p, )}
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O N =By — Lif i < k and notSAT{p, -}

Oio N = Brp — O if k < i andSAT {p, ¢}

O;p AN Crtp — O, if k < ¢ and NotSAT{—p, )}
O;p ANCrp — Lif i < kandSAT{—p, )}

Oip ANOptp — Lif i 5 kandSAT{—p, ¥}

O;p AN My = Lif i < kand notSAT{p, ¥}

Oip AN = Mpp = O if i < k and notSAT{p, ¢}

As before, the reduction relation is extended te> to deal
with M;,.

e Oip N My = Oipif k X
e O;p AN Mpyp = Lifk <

i andSAT{p, ¢}
i andSAT {p, ¢}

Lemma 28. For any primeO;-block and propositionad,

1. either

e oA Bpiyp— pandp A —Bpyp — L, or
® 9 AByp - Landp A =By — ¢;

2. either

o oAM= pandp A Mgy = L, or
o o AMpp = Landp A ~Mgyp = .

Proof. For anyk € I, one ofp’s conjuncts is of the form
Ox 1, and eitheOpu A Bty — O (in which case u A
=By — L) or Ogu A Bpyp — L (in which caseOxu A
=By — Og ). Similarly for Mj,. O

Theorem 29. For any Of-block ¢, there is ad C Q; and
prime O;-blocksyp;, . . ., ¢, n > 0, such that

> VO = (p1 V- Voy).
Proof. For each ofy’s conjunctsO/%),
Oh — Oy A B=Op .

Use the basic procedure given in the proof of Lemma 19 for
showing that for each suaby ), for somen; > 0, there are

e propositionak);,
e conjunctions ofM-literals 5;, and

e conjunctions ofB-literals «; (as collapsing is not always
possible when confidence levels has been added),

such that
Ot = (Oppr Nar ABr) V-V (O, Aty A Bry).
Let wy, denote this reduct. Now
Bl wi = B wi,1 A A g Wk ny,
such that forl <7 < ny,
Or—wk,i = Bx(Orths A o A B;)
— 2Bptp; V Crphi V [moy] V [=6i].

Let 7, denote this reduct. Using/s;, we can reduce
Arer wi to a formula on DNF, whose disjuncts are of the
form A\,c; Oxtoe A a A B, Wherea is a conjunction of3-
literals, andg is a conjunction ofM-literals. By Lemma
28(1),

/\ke[okwk ANa A 6 - /\ke[okwk A 67



which is inQ;. Hence for somé& C Qy, A formula that has the downset property can be reduced by
reducing singleton blocks from “below.” Assume that
Offp — T A NierNi<icn, Thi

We are done by putting this formula on DNF usihg;, ap-
plying Lemma 28(1), then Lemma 28(2). O has the downset property for< 2 < 3, and assume, for the
sake of simplicity, that there are no occurrencedff. As
O;1¢1 only containsB;-modalities, it may be reduced to a
disjunction of prime0D;-formulae:

O1p1 A O202 N\ O3p3

Corollary 30. For any Of-block ¢, there are primeO;-
blocksps, ..., pn,n > 0,suchthats ¢ = (p1 V- Vp).

Proof. Theorem 18 can be generalized along the lines of 0101 A Osoo AO
(Waaler et al. 2007). Lemma 24 is easily seen to generalize. 1P1 /A Y292 A Vsa
Conclude by Theorem 29. 0 = (O1p1 V-V O1pn) A O202 A O303

With reasonable assumptions abeytboth — and = are If we expandOsy,, it may be impossible to collapse the
terminating. They are not confluent as they stand, because |€af Nodes -Oxp A Bip is an example of this — but if we

this requires some additional rules and restrictions. distribute inthe reduct oDy 1, we get

Example 31. Lety; = (Bip D p), w2 = (¢ A Bap D p). (O1p11 V- -V O1pn) A (O2p A Byp)

Then = (011 A Bip AO2p) V -+ -V (O1in A Bip A O2p),
O1p1 > O1 TV O1p and eaclO; u, A Bip may be collapsed. Hence

O2¢2 = O2qV O2(p N\ q)
O1901 A Ozp2 = (01T AO2q) V (O1 T AO2(p Ag)) V
(O1p A O2q) V (O1p A O2(p A q))

All but the third disjunct are consistenf;p A O2qg — L.

O101 A O202 A O3p3
= ((O1p4 AN Oav1) V-V (O1 iy, A O2vy)) A O303.

The argument may be repeated t5y3. Thus, when we
have the downset property, we avoid the DNF reductions de-
scribed above.

) o Qomplexﬂy o The default logic translation given in the next section has
Applying the distribution rule can cause an exponential in-  the downset property.

crease in the size of the formula, and should as such be
avoided unless strictly necessary. Example 33. Let = {1,2,3,4}, and
After expanding, if collapsing is impossible, the distribu- 1<2=<4andl <3 < 4.
tion rule is the only applicable rule. Imagine a block where
each conjunct is expanded until prime, and where no leaf The non-empty downsets &}, {1,2}, {1,3} and/. We

nodeO; ) A 5 may be collapsed: want to reduce

O101 N O202 AN O3p3 = Y1 A2 A3 O1p1 A O202 A O303 A\ Oyp4.
Then we may have to put each redygton DNF in order to Assume that this formula has the downset property, i.e.
collapse: e (o, contains onlyl-modalities;

1 A by Athg —» PDPNF A DT A gpPNF ® , contains onlyl- and2-modalities;

e (3 contains onlyl- and3-modalities;
e (4 May contain any modality.
Oppe NBLA -+ N B, Then we may reduc@; 1, to let us sayOp. If py =
but even this formula may not be collapsable, hence we may Bip D p, then
have to put it on DNF: Osps — (Oap A Bip) V (02T A =Bip)
w{)NF /\ wg)NF /\ w?]i)NF — (’l/JlDNF /\ ’l/JE)NF /\ 1/J§)NF)DNF N (O2p /\ Blp) \/ O2T

Now we may collapse, as each disjunct will be of the form This cannot be reduced further but

Eachyp™" consists of disjuncts of the form

O1p01 A Oapiz ANOzpz A By A=+ A By,

| lapsing is al ib| nalBls O1¢1 A Oapa — O1p A ((O2p A Bip) V O2T)

n some cases, collapsing is always possible; a singlei®n

a trivial case. In other casesstiategyis needed in order to = (O1p A Oap A Bip) V (O1p A O T)
be guaranteed that collapsing is possible. We examine one — O1p A Oap.

such case. We say thaf C [ is adownsetf for every We could also have reduce? ¢, A Ozp5 but in any case
ke K,i<Fkimplies: € K. we may have to redud@; ¢; A Ozps A Osp3 beforeO, ¢y,
Definition 32 (Downset property). If for every downset sincel < 4,2 <4 and3 < 4.

K C I, /\keK O only containsK -modalities, we say

that A\, . ; Ox o has thedownset property
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Ordered Default Logic

The procedure of translating ordered default theories into a
standard only-knowing logic given in (Engan et al. 2005)
is as follows. Given an ordered default thed#’, D, <),
wheren = |D|, the index set of the signature is defined to
bel = {0,...,n} with < equal to the usual number order
on I. This defines the modalities of the only-knowing logic
that the theory translates into. Then, for every topological
orderinge of (D, <), let

vo = Oppo A -+ A Oppn ANC(0),

where

o = A\W;

k1 = Pk A1 (Opy1);

tri(0) = Bra A —Bip—3 D v (asMjy is not a part of the
standard language,B— is used instead);

IC(0) is a formula that expresses artegrity constraint
assuring a prescriptive interpretation on the preference or-
der.

The encoding is the disjunction efferysuchy,. Note that

the representation spans all ways in which extensions can
potentially be generated as long as the partial order on de-
faults is respected. This very large formula can then be col-
lapsed into a much smaller one, which directly reflects all
the models. Also note that the representation contains mas-
sive amounts of redundancy. E.g., if two defadlegndd’ are
unrelated, then for each topological ordering, there will be
another that is equal except thiandd’ have swapped posi-
tions. These two orderings will generate the same extension
but both of them will have to be reduced in isolation.

In the reduction process, reducing a conjubigt 1 (¢x A
tri11(dk+1)) (in conjunction with theD;;’s for i < k) ba-
sically amounts to reducing wittxactlyone default. In this
way conflicts are avoided, which is the reason why the trans-
lation works forO. Using O instead ofO provides a cor-
rect treatment of conflicting defaults which, as we shall see,
allows a much more economical representation.

Example 34. LetW = {x}, D = {61, d2, 5}, anddz < 4;.
Then there are three topological orderings(@, <), one of
which isd3261, whose translation is

Ogk A Ol(H A\ 63) A\ OQ(FL A Oy A 63) A\

O3(I<L Ad1 A dg A 63) A\ |C(6362§1)

Example 35. LetD = {1,2,3,4,5}, and
1<2, 1<3, 2<4, and 2<5.
See Fig. 2 for the tree of topological orderings(@f, <).

The New Translation

Departing from the encoding given above, the new transla-
tion first collapses the tree of topological orders and then en-
codes the resulting tree usiGy rather tharO. The general
procedure for collapsing the tree is as follows.

1. For any node, replace it with{a}.
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2. For any nodé’, letT'y, ..

., I',,, denote its children. Now
if everya € T'is unrelated to every € T'y, for every child
nodeT's, replacel’ and its children with the new node
TuruU---Uly,.

Let Cp denote the collapsed tree amdthe corresponding
order onCp induced from the tree of topological orders.

4 5 5 3 4 3 5 4
5 4 3 5 3 4 4 5
3 4 5 2
2 / 3

1

N

Figure 2: The tree of topological orderings @, <) from
Example 35. A dotted line betweerandb denotes that nei-
thera < bnorb < a. If every line from a node to its children
is dotted, we may collapse that node and its children.

4 5 {3,4,5 {4,5}
N 2/ \ | |
{2} (2.3}
N,/ o
{1

Figure 3:(D, <) and(Cp, C) from Example 35.

Two particularly interesting cases are these.

e When< is empty, we may collapse the entire tree, hence
we get the single elemefiD} with an empty order, which
means that we do not need confidence levels to represent
(unordered) default logic.

e When < is linear, there is only one branch in the tree,
1<---<n,hencewegefl}c---C {n}.

Using OZR and M, instead ofO; and—B;,—, a new transla-
tion can be specified as follows. Given a the(Wy, D, <),
for every collapsed branch = I'; ---T',,, generate a for-
mulaOfipg A -+ A OFp, ANIC(c), where

wo =AW,

k1 = o6 AN{trk11(0) [0 € Ty},

tri(8) = Bra A M3 D v, and

IC(0) = Ny M Presn(6) A Jin(6) |6 € a(k)}, st
— Py (0) = Bpa D Bya,

- Jk,n((s) = Bra A M3 D M,[.

The following example is also found in (Engan et al. 2005;
Brewka and Eiter 2000; Delgrande and Schaub 2000).

Example 36. LetW = @ and D = {4, 02, d3}, where

and §; = 179,

_ T:p
02 = p P



These translate to
trp(61) = Mrq O g;
tri(d2) = Myp O p;
trk(ég) = My—q D p.
If the order is empty, this translates to
OR(tr(51) A tr(52) ATr (53)) D O(p A q).
Note that in this particular case&)’* and O give the same
expansions. If we lef; < 41, we get two branches in the
collapsed tree:o; = {d2,03}{d1} andoy = {d3}{d1,02}.
The translation is now, if we Ieﬂ;'? denote tg.(6;):
(OFT NOF(dy A db) A OF(d2 A db A dY) ANIC(a1)) Vv
(OFT N OFdi N OF(d? A d2 A db) AIC(07)).
Reducing this formula yields
(OOT A 01p AN 02(]) AN q) AN
(=Mip V Map) A (=Mi=g V Ma—q)) V
(OoT A\ Olp A\ Og(p A\ q) A\ (ﬁ]\/flﬁq V ]\/fgﬁq)).
Both disjuncts are inconsistent as
O1p A —=My—q = LandOx(p A q) A Ma—g = L.

Hence(W, D, 65 < 41) has no extension.

Conclusion

We have in this paper established a Modal Reduction The-
orem for the propositional only-knowing logic @* by
means of a rewriting system. Since the logic is capable of
representing default theories @é-formulae, the rewriting

indication of how well-suited the proposed rewriting system
is for the task of computing default extensions.

Moreover, the logic ofa has not yet been axiomatized.
The propositional fragment of the original logic of only-
knowing is very well understood, both model-theoretically
in terms of, e.g. the finite model property, and proof-
theoretically in terms of cut-elimination results (Waaler
2005). It would be of interest to reach the same level of
understanding for the logic addressed in this paper.
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