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Abstract
Logic-based preference representation languages are promis-
ing for expressing preferences over combinatorial domains.
Sets of weighted formulas, called goalbases, can be used to
define several such languages. How goalbases are translated
into utility functions—that is, by what aggregation function
this is done—is a crucial component of this type of language.
In this paper, we consider the properties of several goal-
base languages which use max as their aggregation function.
In particular, we examine the expressivity, succinctness and
complexity of such languages.

Introduction
Combinatorial domains present a challenge for preference
representation. A feature which makes combinatorial auc-
tions, multiwinner voting, multiagent resource allocation,
and recommender systems attractive—their ability to handle
synergies among items—is the same feature which makes
representing the preferences of agents taking part in them
difficult. Explicit representation of agent preferences over
states generated by subsets of the available items is impracti-
cal for all but the smallest sets of items. Real agents (people)
will balk at being asked to rank all the subsets of five items;
even a computer will become overwhelmed when faced with
keeping an explicit representation for as few as 32 items.1

We can overcome this difficulty by using implicit repre-
sentations of agent preferences, which can often be given
more succinctly than an explicit representation can. Implicit
representations achieve this by taking advantage of the struc-
ture of the preferences being represented. Examples are CP-
nets (Boutilier et al. 2004) for ordinal preferences, GAI-nets
for utility functions which are decomposable in certain ways
(Gonzales & Perny 2004), and a host of methods for dealing
with voting on interdependent choices (Lang 2004).

Using weighted formulas for preference representation is
an idea which originated in penalty logic (Pinkas 1995) and
has been applied in voting theory (Lang 2004). In this paper,
we focus on languages which use sets of weighted propo-
sitional formulas to represent utility functions, following

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Storing one four-byte integer for each of 232 states requires
16GB of storage, which is at least four times the amount of RAM
usually found in new desktop computers as of the date of writing.

(Chevaleyre, Endriss, & Lang 2006). This framework of-
fers a rich array of languages, far more than are explored
there (or here). Chevaleyre, Endriss, & Lang (2006) focus
on one particular class of languages, namely those which
aggregate their goalbases by summing the weights of satis-
fied goals. Here, we turn to languages which instead aggre-
gate by taking the maximum-valued satisfied goal. As we
shall see, these max languages have quite different proper-
ties from the sum languages treated in (Chevaleyre, Endriss,
& Lang 2006) and (Uckelman & Endriss 2007).

Interesting properties of goalbase languages are their ex-
pressivity, succinctness, and complexity—these tell you
what utility functions are available in a language, how ef-
ficiently they can be represented, and how difficult you can
expect computational tasks using the goalbases as input to
be. After presenting our framework and discussing related
work, we present one section of results for max languages
for each of expressivity, succinctness, and complexity; and
finally offer some concluding remarks. Please refer to the
appendix for proofs of the propositions.

Preference Representation Languages
In this section we define the languages for representing util-
ity functions that are the object of study in this paper and
introduce some basic notation. We also discuss related ap-
proaches to modeling utility functions and state some simple
facts about our languages.

Basic definitions and notation
Fix a finite set PS of propositional variables. These vari-
ables may, for instance, represent goods that the agent whose
preferences we wish to model may or may not own: p ∈ PS
is true if the agent possesses the corresponding good, and
false otherwise (but other interpretations are possible as
well). Let LPS denote the language of propositional logic
over PS, using negation (¬), conjunction (∧), and disjunc-
tion (∨). This language can be used to express goals (for-
mulas the agent would like to hold). A model for a formula
in this language is a set M ∈ 2PS , containing exactly those
propositional variables that are true in the model. We are
interested in modeling utility functions u : 2PS → R which
map models (which we are also going to refer to as states
or alternatives) to the reals. Utility functions will be repre-
sented using goalbases.
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Definition 1 (Weighted goals and goalbases). A weighted
goal is a pair (ϕ,w), where ϕ is a satisfiable formula in
the language LPS and w ∈ R. A goalbase is a finite set
G = {(ϕi, wi)}i of weighted goals.

Goalbases can be interpreted in a variety of ways. For in-
stance, if the weights are taken to represent a ranking of the
importance of goals, then this information can be used to de-
fine an ordinal preference relation (see e.g., Coste-Marquis
et al., 2004). In this paper we are only interested in car-
dinal preferences (utility functions); still, there are several
ways of interpreting a given goalbase (Lang 2004). First,
we may either derive utility from goals that are satisfied or
incur penalties for goals that are violated by an alternative.
Here we shall opt for the former: If (ϕ,w) ∈ G and an al-
ternative satisfies ϕ, then this goal yields utility w. Second,
we have to decide how to aggregate the weights if more than
one goal is satisfied. In principle, any aggregation function
F : 2R → R could be used. Lafage and Lang (2000) dis-
cuss the basic properties (e.g., commutativity) that such an
aggregation function should satisfy.

Definition 2 (Goal bases and utility functions). A goalbase
G and an aggregation function F : 2R → R generate a
utility function uG,F by mapping each model M ∈ 2PS to
uG,F (M) = F ({w : (ϕ,w) ∈ G and M |= ϕ}).
Natural choices for F include summation and max. Given
the same goalbase, these two operators produce dramati-
cally different utility functions. E.g., if G = {(a, 1) : a ∈
PS}, then uG,max is the simple unit-demand utility function
(u(X) = 1 if X 6= ∅, 0 otherwise) while uG,Σ is the sim-
ple additive utility function (u(X) = |X|). In case max is
used, we assume max ∅ = −∞, i.e., it is often useful to in-
clude, say, (>, 0) in any goalbase by default, so as to obtain
well-defined utility functions for all states. We sometimes
write uG rather than uG,F if F is clear from the context. We
writeG ≡F G′ if goalbasesG andG′ define the same utility
function when F is used for aggregation.

Weighted propositional formulas provide a framework for
defining entire families of languages for representing prefer-
ences (Chevaleyre, Endriss, & Lang 2006). Any restriction
we might impose on goals (e.g., we may only want to allow
clauses as formulas) or weights (e.g., we may not want to
allow negative weights) and any choice we make regarding
F gives rise to a different language.

Definition 3 (Languages and classes of utility functions).
Let Φ ⊆ LPS be a syntactic restriction on formulas, W ⊆
R a restriction on weights, and F an aggregation function.
Then L(Φ,W, F ) is the language defined by these choices
and U(Φ,W, F ) is the class of utility functions that can be
generated by goalbases belonging to L(Φ,W, F ).

We say that a languageL is expressively complete for a given
class of utility functions if it can represent any function in
that class. To construct languages, we shall consider the fol-
lowing types of restrictions on formulas:

• cubes (conjunctions of literals) and clauses;

• positive formulas (without negation); and

• k-formulas (formulas with at most k atoms).

We also use combinations of these, e.g., 2-clauses are
clauses of length at most 2, while pcubes (short for “posi-
tive cubes”) are conjunctions of atoms. We write “atoms”
and “literals” instead of 1-pcubes and 1-cubes.

Regarding weights: We consider weights without any re-
striction (“all”) and positive weights (“pos”, which we shall
take to include zero2). Concerning aggregation, we concen-
trate on the max-operator, but also consider summation. For
example, U(cubes, pos,Σ) is the class of utility functions
that can be expressed by means of goalbases consisting of
conjunctions of literals with positive weights, using summa-
tion as the aggregator.

In this paper we analyze max languages (with F = max)
and draw some comparisons with sum languages (F = Σ).
When using a max language, only the weight of the most
important goal satisfied by a given alternative matters. An
example of a simple max language is L(atoms, all,max),
which allows us to assign a value to any atomic proposition
and the utility of a state is equal to the value of the most valu-
able proposition that is true in that state. L(atoms, all,max)
is known as the unit-demand valuation (of which the afore-
mentioned simple unit-demand valuation is a special case)
in the literature on combinatorial auctions (Nisan 2006).

Related languages
Much work on preference modeling using weighted goals
has concentrated on representing ordinal preferences (Lang
2004; Coste-Marquis et al. 2004). Here we shall limit our
discussion to languages for representing utility functions.

Chevaleyre, Endriss, & Lang (2006) have analyzed the ex-
pressivity of sum languages in detail and given several suc-
cinctness results. Further succinctness as well as complexity
results are proved in (Uckelman & Endriss 2007).

Boutilier and Hoos (2001) suggest a variant of
L(pos, pos,Σ), the sum language of positive formulas with
positive weights, as a means for communicating bids in a
combinatorial auction. There are two differences between
their language and L(pos, pos,Σ). First, they also allow for
the logic connective XOR, which we do not consider here.
Including additional connectives can improve succinctness,
so is attractive from a pragmatic point of view, but it does
not make an important difference as far as the basic princi-
ples of the approach are concerned. Second, Boutilier and
Hoos (2001) also allow for weights to be assigned to subfor-
mulas of goals. The utility of an alternative is then computed
as the sum of the weights of all the subformulas satisfied.
This does allow us to express some utility functions more
concisely, but it does not affect succinctness in the technical
sense to be defined later in this paper (to be precise, goal-
base size decreases by at most a quadratic factor), nor does
it affect the expressivity of the language.

Lafage and Lang (2000) discuss the definition of utility
functions in terms of weighted goals from an axiomatic point
of view. These authors have considered different aggrega-
tors, including summation and max. An important differ-
ence from our languages is that they aggregate disutilities of

2Zero is not needed as a weight for sum languages becauseP
∅ = 0, but is needed for max languages because max ∅ = −∞.
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violated goals rather than utilities of satisfied goals. In the
case of summation, for a given goalbase G, both approaches
lead to the same utility function (modulo “shifting” by a con-
stant).3 However, for max there are important differences:
If we compare alternatives M and M ′, we may prefer M if
we go by the most important goal satisfied but M ′ if we go
by the most important goal violated.

Another important group of languages for modeling car-
dinal preferences are the OR/XOR family of bidding lan-
guages for combinatorial auctions (Nisan 2006). While
these languages also use logical connectives, the connectives
are interpreted differently there. In the OR language, a set
of atomic bids 〈B, p〉, each consisting of a bundle of goods
and a price, is taken to represent a function that maps any set
of goods X to the maximal sum of prices that is achievable
by accepting any set of non-overlapping bids so that X cov-
ers all the goods mentioned in those accepted bids. We now
give a possible translation of the OR bidding language into
a sum language in our framework:

1. Interpret goods as propositional variables and replace
each bid 〈B, p〉 by the weighted goal (

∧
B, p).

2. For each variable q in the resulting goalbase, replace the
ith occurrence of q by the new variable qi.

3. For any i 6= j, add (qi ∧ qj ,−Ω) to the goalbase, with
some excessively large value Ω.

The last step ensures that satisfying any two goals corre-
sponding to overlapping bundles is never an attractive op-
tion. For all other alternatives, the utility values induced by
this goalbase (using summation for the aggregation) are the
same as the those defined by the original OR-bid.

The XOR bidding language is easier to interpret in our
framework. For this language, the auctioneer may accept at
most one atomic bid per bidder. This means that the value
of a set of goods X is the highest price attached to any of
its subsets within the atomic bids submitted. This is equiv-
alent to L(pcubes, pos,max) in our framework. Combina-
tions of XOR and OR have also been considered in the liter-
ature (Nisan 2006; Sandholm 2002).

Superfluous goals
For max languages, some weighted goals in a goalbase may
never contribute to the utility of an alternative. We con-
clude this section by introducing the terminology for speak-
ing about this kind of situation and stating some simple facts
about potentially superfluous goals.

Definition 4 (Properties of weighted goals).

• Call (ϕ,wϕ) ∈ G dominated if there exists a (ψ,wψ) ∈
G such that ϕ |= ψ and wϕ < wψ .

• Call (ϕ,wϕ) ∈ G active in a state M when M |= ϕ and
for all ψ, if M |= ψ then wψ ≤ wϕ.

3Under summation, for a given goalbase G, in our setting we
have uG(M) =

P
{w : (ϕ, w) ∈ G and M |= ϕ}, while in

the penalty framework the disutility of M is duG(M) =
P
{w :

(ϕ, w) ∈ G and M |= ¬ϕ}. The sum uG(M) + duG(M) is
constant; it is equal to

P
{w : (ϕ, w) ∈ G} for any M .

• Call (ϕ,wϕ) ∈ G superfluous if for every state M
where (ϕ,wϕ) is active, the set {(ψ,wψ) : M |= ψ
and wψ is maximal} is not a singleton.

Note that if there are no models for which (ϕ,w) is ac-
tive, then the superfluity condition is fulfilled vacuously, so
(ϕ,w) is superfluous in that case.

Fact 1. Fix (ϕ,wϕ) ∈ G. Then:

1. If (ϕ,wϕ) is dominated, then (ϕ,wϕ) is never active.
2. If (ϕ,wϕ) is never active, then (ϕ,wϕ) is superfluous.
3. If (ϕ,wϕ) is superfluous, then G ≡max G \ {(ϕ,wϕ)}.

Note, however, that superfluous does not imply never ac-
tive: For example, in {(a, 1), (b, 1), (a ∧ b, 1)}, (a ∧ b, 1) is
superfluous but nonetheless active in the state {a, b}.

Fact 2. If G contains no superfluous formulas, then every
(ϕ,w) ∈ G has a state in which it is uniquely active.

We will be interested in goalbases that are minimal in the
sense of there being no smaller goalbase that would generate
the same utility function.

Fact 3. If G is a minimal goalbase for a utility function u ∈
U(Φ,W,max), then G contains no superfluous formulas.

Expressivity
In this section we present several expressivity results, an-
swering the question what classes of utility functions can be
represented using which languages. We concentrate on max
languages. For similar results for sum languages we refer
to (Chevaleyre, Endriss, & Lang 2006). We begin by estab-
lishing some simple results regarding equivalences between
languages, which allow us to narrow down the range of lan-
guages to be considered in the remainder of the section. We
then characterize the expressivity of the most important (dis-
tinct) languages.

Equivalences
We are interested in comparing languages generated by
different types of goalbases, such as positively weighted
clauses or literals with arbitrary weights. Next we establish
several equivalences amongst languages and thereby show
that we actually only need to consider a subset of all the lan-
guages that can be defined in this manner. Furthermore, if
we are interested only in monotone utility functions, then we
can further reduce the range of languages to consider.

We first show that disjunction is not a helpful connective
for max languages:

Proposition 4. G∪{(ϕ1∨· · ·∨ϕn, w)} ≡max G∪{(ϕi, w) :
1 ≤ i ≤ n}.

This tells us that with max as our aggregator, disjunctions as
main connectives do not contribute to a language’s expres-
sivity. In fact, as any formula has an equivalent representa-
tion in disjunctive normal form, this tells us that disjunction
can never increase expressive power of a language. In partic-
ular, we get the following equivalences between languages:

Corollary 5. Fix W ⊆ R. Then:

1. U(pclauses,W,max) = U(atoms,W,max).
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2. U(clauses,W,max) = U(literals,W,max).
3. U(pos,W,max) = U(pcubes,W,max).
4. U(all,W,max) = U(cubes,W,max).
The same is not true for sum languages. E.g., under summa-
tion clauses are more expressive than literals: For W = R,
clauses can express all utility functions, while literals can
express only modular functions (Chevaleyre, Endriss, &
Lang 2006). For each of the above equivalences, there is
a set of weights W which violate it under summation.

A utility function u is called monotone if M ⊆ M ′ im-
plies u(M) ≤ u(M ′). Monotonicity is a reasonable as-
sumption for many applications, in particular if proposi-
tional variables are interpreted as goods. Next we show that
negation is not a helpful operation in case we are only inter-
ested in modeling monotone functions.
Proposition 6. FixG. If uG∪{(V

X∧¬a,w)},max is monotone,
then G ∪ {(

∧
X ∧ ¬a,w)} ≡max G ∪ {(

∧
X,w)}.

The following result shows that we can further reduce the
range of languages to consider if we limit ourselves to mono-
tone utility functions. It follows immediately from Proposi-
tion 6 and Corollary 5. (Note that

∧
∅ = >.)

Corollary 7. Let MONO be the class of monotone utility
functions. Fix W ⊆ R. Then:

1. U(clauses,W,max) ∩ MONO =
U(atoms ∪ {>},W,max) ∩ MONO.

2. U(all,W,max)∩MONO = U(pcubes,W,max)∩MONO.

Correspondence results
Corollary 5 tells us that the interesting languages,
expressivity-wise, are those based on cubes, positive cubes,
literals, and atoms. We prove that cubes are expressively
complete for the full range of utility functions and that pos-
itive cubes correspond to the class of monotone functions:
Proposition 8. U(cubes, all,max) is the class of all utility
functions.

Proposition 9. U(pcubes, all,max) is the class of monotone
utility functions.

As mentioned earlier, U(atoms, all,max) is the class of unit-
demand valuations. We are not aware of a property of utility
functions referred to in the literature that would characterize
U(literals, all,max). This is a generalization of the unit-
demand valuation which also allows us to specify a value
for not receiving a particular item.

By restricting the set of weights W we can cap-
ture classes of utility functions with a particular range.
U(pcubes, pos,max), for instance, is the class of non-
negative monotone functions. This class is known to
be equal to U(pos, pos,Σ) (Chevaleyre, Endriss, & Lang
2006).4 This is a case where a syntactically simple lan-
guages is more expressive with max than with sum.

On the other hand, some very simple classes of utility
functions are hard to capture using max aggregation. For

4To be precise, U(pcubes, pos, max) ⊇ U(pos, pos, Σ), be-
cause in the max language we can also express partially defined
functions returning −∞ for some states.

instance, a utility function u is called modular iff u(M ∪
M ′) = u(M)+u(M ′)−u(M ∩M ′) for all M,M ′ ∈ 2PS .
Modular functions are nicely captured by U(literals, all,Σ)
(Chevaleyre, Endriss, & Lang 2006). However, there is no
natural restriction to formulas that would allow us to charac-
terize the modular functions under max aggregation. On the
contrary, among the max languages considered here, only
L(cubes, all,max) can express all modular functions, and
this language is so powerful that it can actually express all
utility functions.

Succinctness
An important criterion for selecting one language over an-
other for some application is, as mentioned previously, the
size of the representations of utility functions in that lan-
guage. (Recall that this is why we seek to avoid explicit rep-
resentations of utility functions.) In this section, we present
both absolute and comparative notions of succinctness, so
that we can make precise claims about the efficiency of var-
ious goalbase languages.

Absolute succinctness
Definition 5. The length of a formula ϕ is the number of
occurrences of atoms it contains. The size of a weighted
goal (ϕ,w) is the length of ϕ plus the number of bits needed
to store w (logw bits). The size of a goalbase G, written as
size(G), is the sum of the sizes of the weighted goals in G.

Often we consider families of utility functions {un}n∈N
where n = |PSn|. (PSn is a set containing n propositional
variables.) Suppose that we have a corresponding family of
goalbases {Gn}n∈N for which un = uGn

. Unless the num-
ber of bits required to represent the weights in Gn grows
superexponentially in n, the size contributed by the weights
can be safely ignored when considering how size(Gn) grows
with n, since log cp(n) is polynomial in n for fixed constants
c and polynomials p. Every family of utility functions con-
sidered here has weights which are independent of n, and
so we disregard the size of the weights in our succinctness
results.

In absolute terms, there is a strong dependency of the size
of representations in max languages on the size of the range
of the utility function being represented:

Proposition 10. |G| ≥ |ranuG,max|.
While the size of range of a utility function serves as a lower
bound on the size of its representation in any max language,
there is no such relationship for sum languages: E.g., ifG =
{(ai, 2i) : ai ∈ PS}, then uG,Σ has a large range (every
value in 0, . . . , 2|PS|−1) despite thatG is itself small (using
only |PS| atoms).

Proposition 11. Let {Gn}n∈N be a family of minimal goal-
bases such that Gn ∈ L(pcubes, pos,max) and |PSn| = n.
Then size(Gn) is polynomial iff |Gn| is polynomial.

Furthermore, by Proposition 10 we have that if |Gn| is poly-
nomial then |ranuGn

| is polynomial. However, the converse
does not hold: Let Gn = {(

∧
X, 1) : |X| =

(
n
n/2

)
} ∪
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{(>, 0)}. Here, |ranuGn
| = 2 but |Gn| =

(
n
n/2

)
is super-

polynomial and Gn is minimal in L(pcubes, pos,max).
Several sum languages are sufficiently restrictive as to

have exactly one minimal representation of each repre-
sentable utility function, a property we call unique repre-
sentations. This also occurs for at least one max language:
Proposition 12. Minimal representations in the language
L(pcubes, pos,max) are unique.
Furthermore, the proof of this proposition shows how to con-
struct the minimal representation for any representable util-
ity function.

Relative succinctness
Frequently one language contains shorter representations of
the same utility functions than does another language. Here
we offer a definition of relative succinctness to make this
notion precise:
Definition 6. Let L and L′ be goalbase languages, F
and F ′ aggregators, and U a class of utility functions for
which (L, F ) and (L′, F ′) are expressively complete. Then
(L, F ) �U (L′, F ′) iff there exists a function f : L → L′
and a polynomial p such that for all G ∈ L, if uG,F ∈ U
then uG,F = uf(G),F ′ and size(f(G)) ≤ p(size(G)).

Read (L, F ) �U (L′, F ′) as: (L′, F ′) is at least as suc-
cinct as (L, F ) over the class U . When (L′, F ′) is strictly
more succinct than (L, F )—that is, in no case are represen-
tations more than polynomially worse, and in at least one
case, they are exponentially better in (L′, F ′)—we write
(L, F ) ≺U (L′, F ′). When we have nonstrict succinctness
in both directions, we write (L, F ) ∼U (L′, F ′); when we
have nonstrict succinctness in neither direction, i.e., incom-
parability, we write (L, F ) ⊥U (L′, F ′). Whenever a suc-
cinctness relation appears unsubscripted (i.e., without an ex-
plicit class of comparison), then implicitly

U = {uG,F : G ∈ L} ∩ {uG′,F ′ : G′ ∈ L′},

which is the expressive intersection of (L, F ) and (L′, F ′).
This definition of succinctness is a generalization of those

given in (Chevaleyre, Endriss, & Lang 2006) and (Uckelman
& Endriss 2007). The definition from the former does not
permit comparison of languages which differ in expressive
power, while the latter fixes the class of comparison U as
the expressive intersection of the two languages. Later in
this section we give an illustration of circumstances in which
being explicit about the class of comparison is important.

Succinctness between max languages
When comparing the succinctness of any two max lan-
guages, notice that the available weights play no role in the
outcome. If L(Φ,W,max) and L(Ψ,W ′,max) are the lan-
guages under comparison, then for any utility function u rep-
resentable in both languages, ranu ⊆W ∩W ′. Due to this,
any weighted formula (ϕ,w) where w /∈ W ∩W ′ will be
superfluous when it occurs in a representation of u in either
language. Since only minimal representations are relevant
for succinctness, we can disregard all representations of u
which use weights outside of W ∩W ′:

Proposition 13. L(Φ,W,max) � L(Ψ,W ′,max) iff
L(Φ,W ∩ W ′,max) � L(Ψ,W ∩ W ′,max), for � ∈
{�,≺,∼,⊥}.

The same does not hold for arbitrary sum languages.

Proposition 14. For k ∈ N, L(k-pcubes,W,max) ∼
L(k-cubes,W ′,max).

Recall that Proposition 4 shows that disjunctions as main
connectives do not affect succinctness, because the trans-
lation required to eliminate disjunction does not affect the
size of a goalbase. However, the same is not necessarily true
for disjunctions that occur within the scope of other con-
nectives. Therefore, for our analysis of expressivity we can
safely ignore disjunction, but for succinctness we cannot.

Proposition 15. L(pcubes, pos,max) ≺ L(pos, pos,max).

Succinctness between max and sum languages
Here we examine the succinctness of some max languages
with respect to some sum languages. These results indicate
that each aggregator favors short representations for certain
kinds of utility functions; whether max or sum is better for a
particular application will depend on what utility functions
agents are likely to have.

Proposition 16. L(pcubes, pos,max) ⊥ L(pcubes, all,Σ).

Proposition 17. L(pcubes, pos,max)⊥L(pclauses, all,Σ).

Proposition 18. L(pcubes, all,Σ) ≺ L(atoms, all,max).

Proposition 19. L(pclauses, all,Σ) ∼ L(atoms, all,max).

Proposition 20. L(cubes, pos,max) ≺ L(atoms, pos,Σ).

We are now in a position to demonstrate why a more gen-
eral definition of succinctness (subscripted by the com-
parison class) was needed: In Proposition 18 we showed
that L(pcubes, all,Σ) ≺ L(atoms, all,max), while in
Proposition 20, we showed that L(cubes, pos,max) ≺
L(atoms, pos,Σ). It is obvious that L(pcubes, all,Σ) ∼
L(atoms, pos,Σ), since the expressive intersection of the
two languages is the whole of the latter, and in the latter ev-
ery representation is small. Finally, L(atoms, all,max) ∼
L(cubes, pos,max) because their expressive intersection
is the class of nonnegative unit-demand utility functions,
which have small representations in both languages. We
now have the following situation:

L(pcubes, all,Σ) ≺ L(atoms, all,max)

∼ ∼

L(atoms, pos,Σ) � L(cubes, pos,max)

From this it can be seen that the unsubscripted succinctness
relation is not transitive. This comes about because no two
pairs of these four languages have the same expressive in-
tersection. Because the expressive intersection of the lan-
guages can shift from comparison to comparison, we must
make explicit the class of utility functions over which the
comparison is being made if we wish to do more than pair-
wise comparison.

583



Complexity
Besides expressivity and succinctness, another important
property of a preference representation language is the com-
plexity of associated tasks. In this section we discuss the
complexity of checking whether a certain level of utility is
achievable for a given representation as well as the complex-
ity of the winner determination problem of finding an allo-
cation that maximizes overall utility for a group of agents.5

Maximal utility
A natural question to ask is which alternative will yield max-
imal utility for a given compact representation of a utility
function. Here we formalize the related decision problem
asking whether a certain level of utility is achievable.
Definition 7 (Maximal utility problem). The decision prob-
lem MAX-UTIL(L, F ) is defined as: Given a goalbase
G ∈ L, an aggregator F , and an integer K, check whether
there is a model M ∈ 2PS such that uG,F (M) ≥ K.
MAX-UTIL is known to be NP-complete for most sum lan-
guages; only under severe restrictions on the syntax of for-
mulas can we hope to get a polynomial decision problem
(Chevaleyre, Endriss, & Lang 2006; Uckelman & Endriss
2007). In contrast to this, solving MAX-UTIL for any max
language is trivial:
Fact 21. MAX-UTIL(Φ,W,max) is linear in the size of the
goalbase, for any Φ ⊆ LPS and any W ⊆ Q.6

An algorithm solving MAX-UTIL simply has to iterate over
the formulas in the goalbase, answer affirmatively as soon
as it encounters a (ϕ,w) for which w ≥ K, and answer
negatively otherwise. (Recall that, by Definition 1, ϕ must
be satisfiable, so any state M |= ϕ has value ≥ w.)

This complexity result requires some discussion. First, if
we drop the condition that goalbases may only include sat-
isfiable formulas, then MAX-UTIL becomes NP-complete,
as we would then have to solve a satisfiability problem for
each and every goal. Second (if we do not drop the satisfi-
ability condition), we need to be careful about how we in-
terpret the low complexity result for MAX-UTIL. Note that
our algorithm does not compute the actual model M yield-
ing the desired level of utility; it only checks whether such
anM exists. If we also requireM itself, then we still need to
extract a satisfying model M from the goal ϕ with the high-
est weight. In general, the problem of finding a satisfying
assignment for a formula that is already known to be satis-
fiable is intractable. Hence, in general, the low complexity
of MAX-UTIL for max languages does not imply low com-
plexity of actually finding the best alternative. In contrast
to this observation, for sum languages, we are not aware of
any case where the complexity of checking existence of an
alternative giving utility ≥ K and computing that alterna-
tive differ: For languages with an NP-complete MAX-UTIL

5We shall assume basic familiarity computational complexity;
see (Papadimitriou 1994) for one of several good introductions.

6MAX-UTIL has different parameters in Definition 7 and
Fact 21: L in Definition 7 is the combination of Φ and W from
Fact 21. We do not write Φ, W in Definition 7 because the compo-
nents of L are not used in the definition.

this is a non-issue; for all sum languages with polynomial
MAX-UTIL the proofs are constructive and directly show the
computation of the top alternative to be polynomial (Uckel-
man & Endriss 2007). Finally, we stress that both our quali-
fications of Fact 21 (regarding the assumption of goals being
satisfiable and the differences between MAX-UTIL and the
problem of computing the best alternative) vanish for the re-
stricted languages considered in this paper. For both cubes
and clauses (and any of their sub-languages) satisfiability
checking and extracting a model from a given (satisfiable)
formula are trivial tasks.

Winner determination
When there are several agents, each with a utility function
encoded using the same language, then the winner determi-
nation problem (WDP), the problem of finding a solution
maximizing collective utility, is of interest. By “solution”
we mean a partition of the set of propositional variables
among the agents, thereby fixing a model for each of them.
This definition is natural, for instance, if we think of vari-
ables as goods (other types of solutions, such as finding a
single model that maximizes collective utility, are also of
interest, but shall not be considered here).

There are a number of ways in which to define collective
utility (Moulin 1988). For instance, the utilitarian collec-
tive utility of an alternative is the sum of the individual util-
ities. Optimizing with respect to utilitarian collective utility
is equivalent to the winner determination problem in combi-
natorial auctions, where it is interpreted as finding an allo-
cation of goods to bidders that would maximize the sum of
the prices offered (Sandholm 2002). Egalitarian collective
utility is defined as the utility of the agent worst off. Other
options include maximizing the utility of the agent that is
best off (elitist collective utility) and maximizing the product
of individual utilities (Nash product). Formally, a collective
utility function is a function σ : Rn → R mapping vectors
of individual utilities to the reals.
Definition 8 (Winner determination problem). The deci-
sion problem WDP(L, F, σ) for n agents is defined as:
Given goalbases Gi ∈ L for i ∈ {1..n}, an aggregator
F , a collective utility function σ, and an integer K, check
whether there exists a partition 〈M1, . . . ,Mn〉 of PS such
that σ(uG1,F (M1), . . . , uGn,F (Mn)) ≥ K.
Clearly, the WDP is in NP for any of the collective utility
functions mentioned before, because computing the collec-
tive utility for a given alternative can be done in polyno-
mial time in all these cases. It is also easy to see that the
WDP(L, F, σ) is NP-hard whenever MAX-UTIL(L, F ) is.
This follows from the fact that the two problems coincide
for n = 1 (for any reasonable choice of σ). So the inter-
esting cases to investigate are languages that give rise to an
easy MAX-UTIL problem. (In the remainder of this section
we focus again on the case of F = max only.)

For the elitist collective utility function σ = max, winner
determination is easy for the same reasons as those stated in
support of Fact 21.
Fact 22. WDP(Φ,W,max,max) is linear in the combined
size of the goalbases, for any Φ ⊆ LPS and any W ⊆ Q.
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For the egalitarian collective utility function σ = min, NP-
completeness follows immediately from results of Bouveret
et al. (2005; 2007). As they do not consider negation, their
result applies to positive formulas (NP-hardness transfers
upwards to superlanguages). However, for atomic formulas
the problem does become polynomial.
Fact 23. WDP(pos,Q,max,min) is NP-complete.
For the utilitarian collective utility function σ = Σ, we also
get NP-completeness. The proof of NP-completeness of the
WDP for combinatorial auctions (using, for instance, SET
PACKING) is well-known. We state here a variant of the re-
sult, due to van Hoesel and Müller (2001), that directly cor-
responds to one of the simplest languages in our framework.
Fact 24. WDP(2-pcubes, {0, 1},max,Σ) is NP-complete.
Finally, we consider the Nash collective utility function σ =
Π (product). For the Nash product to be a meaningful met-
ric of social welfare we need to restrict ourselves to positive
utilities. So in this context we assume that all weights are
positive and that only goalbases specifying fully defined util-
ity functions are used (e.g., by including (>, 0) in all goal-
bases). To the best of our knowledge, the complexity of this
variant of the WDP has not been studied before. In the case
of max languages, it is possible to give a simple reduction
from the utilitarian case to this one.
Proposition 25. WDP(2-pcubes,Q+,max,Π) is NP-
complete.
The simple reduction in the proof is possible because we are
working with max languages. In this setting, the utility of
any model M will always be equal to one of the weights in
the goalbase. For a sum language, for instance, it is not im-
mediately clear how to translate the weights, as utilities will
end up being sums of several weights (so this proof would
not go through, but the corresponding WDP can still be ex-
pected to be NP-complete).

Conclusion
We have analyzed the expressivity, succinctness and com-
plexity of languages for representing utility functions that
are based on weighted propositional formulas. For this
analysis, we have focused on the case where the utility of
an alternative is given by the maximum weight among the
weights of formulas that are satisfied by the alternative. Our
results show that there are substantial differences in view of
all three of these properties when comparing languages us-
ing summation for aggregation with those using max.

For expressivity, we were able to give a complete picture
for the most important languages. This is due to the fact that
including disjunction into the propositional language used
to specify goals was found not to affect expressivity. More
fine-grained results could probably still be obtained by con-
sidering languages generated by specific weight sets or by
looking into formulas of limited length (although in some
cases such results will be obvious consequences of what is
known already). Concerning relative succinctness, we have
established the most important relationships within the max
languages and have also given several results that show how
they relate to the sum languages. However, here a number of

questions are still open and deserve attention in future work.
Lastly, concerning complexity, we have observed that find-
ing an alternative maximizing utility is computationally easy
for max languages for all practical purposes. We have then
discussed to what extent known results apply to our frame-
work when analyzing the complexity of the problem of max-
imizing collective utility for a group of agents, and we have
also proved a new result regarding the complexity of find-
ing an allocation that maximizes the product of individual
utilities (the Nash product).
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Appendix
Proof of Proposition 4
Proof. Fix a state X . If wϕ1∨···∨ϕn

is not the maximum wψ
such that X |= ψ, then some other (ψ,wψ) ∈ G is. Since
wϕi

= wϕ1∨···∨ϕn
, then wψ > wϕi

for all i. In this case, G
alone determines the value of the left and right goalbases.

If wϕ1∨···∨ϕn
is the maximum wψ such that X |= ψ, then

some ϕi are such that X |= ϕi. For each such ϕi, we have
wϕi

= wϕ1∨···∨ϕn
in the goalbase on the right, and so both

the left and right have the same maximum.

Proof of Proposition 6
Proof. First, observe that goalbases contain only satisfiable
formulas, so a /∈ X—otherwise

∧
X ∧ ¬a would not be

satisfiable. There are two cases to consider: States which
are supersets of X , and states which are not.

• Write u for uG∪{(V
X∧¬a,w)},max. In states M ⊇ X , we

have that M |=
∧
X . It must be the case that u(M) ≥

w because u(X) ≥ w and u is monotone. Therefore,
substituting (

∧
X,w) for (

∧
X ∧ ¬a,w) cannot change

the value at M , since the value in M is already at least w.
• In states M + X , we have that both

∧
X ∧ ¬a and∧

X are false, and so cannot be active. Thus substitut-
ing (

∧
X,w) for (

∧
X ∧¬a,w) cannot change the value

at M , as inactive formulas do not affect the value of a
utility function.

Therefore, in all states M we have that
uG∪{(

V
X∧¬a,w)},max(M) = uG∪{(

V
X,w)},max(M).

Proof of Proposition 8
Proof. Given a utility function u, define

G =
{(∧

X ∧
∧
{¬p : p ∈ PS \X}, u(X)

)
: X ⊆ PS

}
Since the formulas are the states, and as such are mutually
exclusive, exactly one weight will be active in each state,
and so u(X) = uG(X).

Proof of Proposition 9
Proof. (=⇒) If u ∈ U(pcubes, all,max), then u is mono-
tone because positive cubes are monotone formulas and max
is a monotone function.

(⇐=) If u is monotone, then let G = {(
∧
X,u(X)) : X ⊆

PS}. Note that for Y ⊆ X , u(Y ) = wV
Y ≤ wV

X =
u(X) follows directly from the monotonicity of u. In state
X , uG(X) = max{wV

Y : Y ⊆ X} = wV
X . Hence

uG(X) = u(X).

Proof of Proposition 10
Proof. uG,max(X) = max{wϕ : X |= ϕ}, so for every
state X there must be some wϕ = u(X).

Proof of Proposition 11
Proof. From left to right is obvious. From right to left: Sup-
pose that |Gn| = p(n) grows polynomially in n. The longest
positive cube for each n is

∧
PS, which contains n atoms.

Therefore, the p(n) longest pcubes contain no more than
n · p(n) ≥ size(Gn) atoms, which is also a polynomial.

Proof of Proposition 12
Proof. Fix u ∈ U(pcubes, pos,max). Let G0 = ∅.
While uGi,max 6= u: Choose a least state X for which
uGi,max(X) 6= u(X). Let Gi+1 = Gi ∪ {(

∧
X,u(X))}.

Call G the Gi at which the algorithm terminates.
Correctness: uG,max = u because each iteration ends

with one more state correct than in the previous iteration,
and there are finitely many states. Setting a weight for

∧
X

cannot disturb the value of any state Y ⊂ X , as X is the
least state where

∧
X is true, and cannot prevent us from

correctly setting the value of any state Z ⊃ X during sub-
sequent iterations because u is monotone. Note also that the
order of choice of cubes of the same size makes no differ-
ence in the outcome.

Minimality: For any state X , either
∧
X receives a

weight or not. If
∧
X receives a weight, then there is no state

Y ⊂ X for which (
∧
Y, u(Y )) dominates (

∧
X,u(X)).

Furthermore, there is no state Z ⊃ X for which X |=
∧
Z.

Hence, if the algorithm assigns a weight to
∧
X , then this is

the sole way in which we can make uG,F (X) = u(X). If,
on the other hand, the algorithm produces a G where

∧
X

receives no weight, then at some step i in the construction
uGi,F (X) became correct before we reached state X . If we
were to set a weight for

∧
X , it would be superfluous and

so G would not be minimal. In summary: Any smaller G
will give an incorrect value for some state, and any differ-
ent, yet still correct,Gwill necessarily contain a superfluous
formula.

Note that this is not an efficient algorithm for finding rep-
resentations, as it requires us to check exponentially many
states in order to set weights for them.

Proof of Proposition 14
Proof. L(k-pcubes,W,max) � L(k-cubes,W ′,max)
since the formulas of latter language are a superset of the
formulas of the former. Because k-pcubes are monotone, by
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Proposition 6, we have that any G ∈ L(k-cubes,W ′,max)
expressible in both languages is equivalent to some G′ ∈
L(k-pcubes,W,max) such that G′ is formed from G by re-
moving all of the negative literals fromG. Thus, size(G′) ≤
size(G), so it follows that L(k-pcubes,W,max) �
L(k-cubes,W ′,max).

Proof of Proposition 15
Proof. L(pcubes, pos,max) � L(pos, pos,max) because
every pcube is a positive formula. For strict succinctness:
The family of utility functions represented by

{((p1 ∨ p2) ∧ (p3 ∨ p4) ∧ · · · ∧ (pn−1 ∨ pn), 1)}
in L(pos, pos,max) grows linearly with n, while the mini-
mal representation in L(pcubes, pos,max) is

{(n/2∧
k=1

pik , 1
)

: i1, . . . , in/2 ∈

{1, 2} × {3, 4} × · · · × {n− 1, n}
}

which has size 2n−1 for any (even) n.

Proof of Proposition 16
Proof. [�] Let un(X) =

∑
ai∈X 2i. Then |ranun| =

2n, and so if Gmax represents un, then by Proposition
10, |Gmax| ≥ 2n. In U(atoms, pos,Σ), we have GΣ =
{(ai, 2i) : 0 ≤ i < n} which represents un. Hence
U(pcubes, pos,max) � U(pcubes, all,Σ).

[�] Let

u(X) =
{

1 if X 6= ∅
0 otherwise

which has a large representation in U(pcubes, all,Σ.
In U(pcubes, pos,max), u is represented by G =
{(p, 1) : p ∈ PS}. Therefore U(pcubes, pos,max) �
U(pcubes, all,Σ).

Proof of Proposition 17
Proof. [�] Let

u(X) =
{

1 if X = PS
0 otherwise

which is large in the language L(pclauses, all,Σ). In
L(pcubes, pos,max), u is represented by {(

∧
PS, 1)}.

[�] Same argument as for U(pcubes, all,Σ).

Proof of Proposition 18
Proof. U(atoms, all,max) corresponds to the class of unit-
demand utility functions. Every unit-demand utility
function is expressible linearly in L(atoms, all,max) as
{(a, u(a))}a∈PS . In L(pcubes, all,Σ) (which is fully
expressive and has uniqueness (Chevaleyre, Endriss, &
Lang 2006, proof of Prop. 13)), u is represented by
{(

∧
X,wV

X) : X ⊆ PS} where

wV
X = (−1)|X|+1 min

a∈X
u(a).

For any unit-demand u which is also single-minded (i.e., ex-
actly one a ∈ PS is such that u(a) 6= 0), G = {(a, u(a))},
the same as in L(atoms, all,max). For non-single-minded
u, let X ⊆ PS be the items which u assigns nonzero value.
Then G will contain a nonzero weight for wV

Y whenever
Y ⊆ X . So, for the family of simple unit-demand utility
functions

u(X) =
{

1 if X 6= ∅
0 otherwise

we have that representations in L(pcubes, all,Σ) are expo-
nential in |PS|.

Proof of Proposition 19
Proof. Recall that U(atoms, all,max) is the class of unit-
demand utility functions. Simple unit-demand utility
functions are expressible linearly in L(pclauses, all,Σ) as
{(

∨
PS, 1)}. Consider complex unit-demand utility func-

tions u (where items may differ in value but the value of a
bundle is the value of the best item contained in it) expressed
in L(pclauses, all,Σ). Without loss of generality, suppose
that the items are ordered a1 ≤ · · · ≤ an in value. Then{(∨

(PS \ {a1, . . . , ai−1}
)
, u(ai)− u(ai−1)

}
1≤i≤n

is the unique minimal representative of u in
L(pclauses, all,Σ), containing n(n− 1)/2 atoms.

Proof of Proposition 20
Proof. [�] From (Chevaleyre, Endriss, & Lang 2006, Prop.
8) we have that U(atoms, pos,Σ) is the class of normal-
ized nonnegative modular utility functions. From Proposi-
tion 9, L(cubes, pos,max) is the class of nonnegative mono-
tone utility functions, so U(atoms, pos,Σ) is the expressive
intersection of the two languages. Every representation in
L(atoms, pos,Σ) is linear in |PS|. If u({a}) ≥ 0, then the
atom a will appear somewhere in any representation of u in
L(cubes, pos,max), so no representations which grow log-
arithmically in |PS| are possible there.

[�] Consider the family of utility functions u(X) = |X|. In
L(atoms, pos,Σ), u is represented by {(a, 1) : X ∈ PS},
which is linear in |PS|, while the unique representation in
L(cubes, pos,max) is {(

∧
X, |X|) : X ⊆ PS}, which is

exponential in |PS|.

Proof of Proposition 25
Proof. We show NP-hardness by reduction from Fact 24.
Suppose we are given an instance of the problem
WDP(2-pcubes, {0, 1},max,Σ), with goalbases Gi and
bound K. We construct new goalbases G′

i by replacing
each weight w in G with 2w. Now consider the instance
of WDP(2-pcubes,Q+,max,Π) with the new goalbases
G′
i and bound 2K . Note that w1 + · · · + wn ≥ K iff

2w1 × · · · × 2wn ≥ 2K . Hence, a model M achieves util-
itarian collective utility ≥ K with respect to goalbases Gi
iff M achieves Nash collective utility ≥ 2K with respect to
goalbases G′

i. So the Nash WDP must be at least as hard as
the utilitarian WDP.
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