From:MAICS-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Application of Genetic Algorithms to
Data Mining

Robert E. Marmelstein
Department of Electrical and Computer Engineering
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-7765

Abstract

Data Mining is the automatic search for interest-
ing and useful relationships between attributes in
databases. One major obstacle to effective Data Min-
ing is the size and complexity of the target database,
both in terms of the feature set and the sample set.
While many Machine Learning algorithms have been
applied to Data Mining applications. There has been
particular interest in the use of Genetic Algorithms
(GAs) for this purpose due to their success in large
scale search and optimization problems. This pa-
per explores how GAs are being used to improve the
performance of Data Mining clustering and classifica-
tion algorithms and examines strategies for improving
these approaches.

What is Data Mining?

Data Mining is an umbrella term used to describe the
search for useful information in large databases that
cannot readily be obtained by standard query mech-
anisms. In many cases, data is mined to learn infor-
mation that is unknown or unexpected (and therefore
interesting). To this end, Data Mining applications
typically have as their goals one or more of the follow-

ing:

Finding Patterns: Patterns are clusters of samples
that are related in some way relative to the database
attributes. Discovered patterns can be unconstrained
(“Identify all clusters consist of at least 10 percent of
the population”) or directed (“Find population clus-
ters that have contracted cancer”).

Deriving Rules: Rules describe associations be-
tween attributes. Accordingly, clusters provide a good
source for rules. Rules are typically defined in terms
of IF/THEN statements. An example rule might be:

IF ((Age > 60) AND (Smoker = TRUE))
THEN Risk(Cancer) = 0.7;

Classifying Unknown Samples: In many cases,
users seek to apply Data Mining algorithms to catego-
rize new data samples into existing classes (i.e., “What
kind of car is a 35 year old, white, suburban, single,
female teacher most likely to drive?”).

The Curse of Dimensionality

While Data Mining is a relatively new branch of Artifi-
cial Intelligence, it involves many of the same problems
as more established disciplines like Machine Learning
(ML) and Statistical Pattern Recognition (SPR). One
of the most vexing of these problems is that of high di-
mensionality in data. High dimensionality refers to the
situation where the number of attributes in a database
is large (nominally 20 or more). A highly dimensional
data set creates problems in terms of increasing the
size of the search space in a combinatorially explosive
manner (Fayyd, Piatetsky-Shapiro, & Smyth 1996).
In addition, the growth in the search space as more
features are added increases the number of training
samples required to generate reliable results. In order
to develop effective Data Mining algorithms, the curse
of dimensionality must be overcome.

One way to remove the curse of dimensionality is
to reduce the list of attributes to those that are really
important for distinguishing between distinct classes
within the data. This process (called feature selec-
tion) attempts to find the set of features that results
in the best classifier performance (i.e., the set that has
the fewest mis-classifications). In addition, it is pos-
sible to further improve classifier performance by as-
signing relative weights to each feature vector. Each
feature can then be multiplied by its assigned weight
in order to optimize the overall classifier performance.
Thus, the contribution of those features that help sep-
arate classes will be enhanced while the contribution
of those that don’t will be diminished. The result of
this transform is illustrated in Figure 1. Note that the
classes in (a) are better separated after the transform
is applied in (b). The process of computing such a

Marmelstein 53

Flgure 1 - Effect of KNN Transform

(a) Pre-Transform (b} Post-Translorm

]

: . :

3 3

L 3

O
Feature X1 Featura X1

ClassA- B — Increase X1 Conldbution
ClassB-O — Decrease X2 Contribution

Figure 1: Effect of KNN Transform

weighting vector for a given attribute is called feature
extraction. While there are a number of conventional
feature selection algorithms, such as forward selection
(Lippman 1993), these techniques are greedy in nature
and do not accomplish feature extraction.

Why use Genetic Algorithms?

GAs are global search algorithms that work by using
the principles of evolution. Traditionally, GAs have
used binary strings to encode the features that com-
pose an individual in the population; the binary seg-
ments of an individual that represent a specific feature
are known as chromosomes. Binary strings are conve-
nient to use because they can be easily manipulated
by GA operators like crossover and mutate. Binary
chromosomes can also be used to represent non-binary
numbers that have integer and floating point types.
Given a problem and a population of individuals, a
GA will evaluate each individual as a potential so-
lution according to a predefined evaluation function.
The evaluation function assigns a value of goodness
to each individual based on how well the individual
solves a given problem. This metric is then used by
a fitness function to determine which individuals will
breed to produce the next generation. Breeding is done
by crossing existing solutions with each other in order
to produce a better solution. In addition, a mutation
factor is present which will randomly modify existing
solutions. Mutation helps the GA break out of local
minima, thus aiding the search for a globally optimum
solution. While there is no guarantee that GAs will
find an optimal solution, their method of selection and
breeding candidate solutions means a pool of “good”
solutions can be developed given enough generations.

GAs are of interest because they provide an alterna-

54 MAICS-97

tive to traditional ML algorithms, which begin to show
combinatorial explosion (and therefore poor computa-
tional performance) for large search spaces. GAs have
been shown to solve problems that were considered
intractable due to an excessively large search space
(Punch et al. 1996). In short, GAs can help lift the
curse of dimensionality.

A Hybrid Approach - GAs and the
K-Nearest Neighbor Classifier

One approach that combines both feature selection and
extraction was developed by the Genetic Algorithms
and Research Application Group (GARAGe) at Michi-
gan State University (MSU) (Punch et al. 1993).
Based on the earlier work of (Sklansky & Siedlecki
1989), this technique uses a hybrid approach that com-
bines a GA with a K-Nearest Neighbor (KNN) classi-
fier. The KNN algorithm works by assigning a vec-
tor to the class most frequently represented by the K
nearest samples of known classification (Duda & Hart
1973). For example, if K=>5 then we assign class based
on the five nearest neighbors of a given vector. Of
the five closest neighbors, if three belong to class A
and two to class B, then the vector will be assigned
w class A {the wajotiiy ciassy. The KNN technique
is non-parametric is nature because it is not necessary
to assume a form for the probability density function
(PDF) in advance. While KNN is a powerful classifica-
tion technique, it is suboptimal in that it will usually
lead to an error rate greater than the minimum possi-
ble (Bayes error rate) (Therrien 1989). The accuracy
of the KNN algorithm can be improved, however, by
using feature extraction to tune the attribute weights
used to compute distance between samples. In this
case, the distance (D) between distinct feature vectors
is computed as:

D= \f(X -Y)W(X-Y)

where,
X and Y are distinct feature vectors and
W is the weighting vector

A GA can be utilized to derive the optimal weighting
vector (W) for the feature set. The weighting vector is
modeled by encoding each feature as a distinct chro-
mosome in the GA’s schema. The evaluation function
can then measure the performance of each candidate
weighting vector based on the error achieved with the
KNN classifier. The KNN error is measured by mul-
tiplying each known feature vector by the weighting
represented by the GA candidate. If the KNN clas-
sifier maps the feature vector to the incorrect class,
then this counts as an error. When all known vec-

tors are processed, the total KNN error for the can-
didate weighting vector is computed. Only the most
promising weighting vectors are selecting for breeding

by the GA. Using this process, the weights for features -

that help distinguish between classes will be increased;
conversely, the weights for irrelevant features will de-
crease (toward zero). The goal is to produce a weight-
ing vector that minimizes the KNN classifier error for
the given training data set.

Algorithm Improvements

While the above approach works, it can be very ex-
pensive computationally. According to (Punch et al.
1993), processing a large feature set (96 features) took
14 days on a SPARC workstation. Clearly, this type
of performance is unacceptable when compared to ex-
isting greedy techniques. While results were obtained
faster using a parallel configuration, it is possible to
modify the algorithm to produce results more quickly.

The primary modification is to break the GA search
up into two phases. The first phase conducts a binary
(0/1) search for the most promising features. The GA
structure for this phase also contains a chromosome
that encodes the value of K. After the first phases is
complete, the features that reduce the KNN classifier
error are assigned a 1; those that are irrelevant or detri-
mental to classification are assigned a 0. The second
phases uses the results of the first phase to evaluate
each individual in its gene pool. In this phase, each
feature is encoded in a chromosome with multiple bits
(in this case four bits are used). The binary value of
each chromosome is then scaled by a factor based on

the results of the previous phase. The basic concept’

is to scale good features to enhance their contribution
(i.e., greater than one) and scale bad features to di-
minish their contribution (i.e., less than one). In this
phase, the optimal K value derived from the first phase
in utilized. Since the search space of the first phase
is much smaller than that of the second phase, fewer
generations are needed to search the first phase. The
result can then be used to better focus the search for
the optimal feature weights in the second phase. By
using the results of the shorter binary search in the
first phase, we can speed up the overall progress of the
GA search.

Mining for Edible Mushrooms

" To test my proposed improvements, I chose an often
referenced SPR, benchmark, the Mushroom database.
This database (constructed by the Audobon Society)
identifies 22 features that can help determine if a mush-
room is poisonous or edible; in all, the database con-
tains 8124 samples. Both the MSU GA/KNN hybrid

and my modified version were run against this data.
While both algorithms eventually achieved a 0% error
rate against the training set (508 samples), the MSU
hybrid took fifteen generations to achieve this result,
while my version took a maximum of three generations
(see Table 1). Even though my algorithm reached its
goal quickly, I let it run for 5 generations in order to
get a diverse set of candidate weighting vectors. Dur-
ing this period, a total of 8 distinct feature sets were
produced that achieved a training error of 0.0%.
After the feature extraction process was finished, the
Link Net classifier system was used to process the se-
lected features on both the training and data sets. The
results of this experiment are shown in Table 2. The
first three entries in Table 2 are the results achieved
with the reduced feature set derived from the hybrid
GA/KNN classifier. Obviously, not all the feature sets
performed equally well. The best feature set had a test
error rate of 0.39% while the worst had a test error rate
of 1.65%. The lesson to be learned from this is not to
settle for the first set of promising results. The GA
should be run long enough to get a pool of candidates;

- from these, the best set can be derived by evaluating

it against the test data.

Table 2 illustrates how the results on this dataset
compared to other types of classifiers. A Gaussian
classifier was also applied to the dataset. This clas-
sifier was likewise run using Link Net with a full co-
variance matrix for each training class. Good results
were achieved using the full feature set and a 50/50
division of samples between the training and test data
sets. The results with the derived feature set were
much less promising. The best overall performance on
this data set were achieved with the REGAL classifier
system (Neri & Saitta 1996). REGAL is a genetic-
based, multi-modal concept learner that produces a set
of first order predicate logic rules from a given data set.
These rules are, in turn, used to classify subsequent
data samples. While REGAL was able to completely
eliminate test error, it did so with a much larger train-
ing set (4000 samples). It must also be noted that
REGAL took 164 minutes (using 64 processors) to de-
rive the rule set that optimized its performance. In
addition, when REGAL processed a comparable train-
ing set (500 samples), its performance was much closer
to that of the modified GA/KNN classifier. Lastly, a
neural network classifier (Yeung 1991) achieved a 0.9%
error rate with a significantly reduced training set (300
samples).

Conclusion

Several important points can be inferred from the
above results. First, the modified GA/KNN algorithm

Marmelstein 55

56

Table 1: GA Parameters for Mushroom Data Set

Approach GA Parameters Description
Original (MSU) Population Size = 20 Took up to 15 generations to converge
GA/KNN Hybrid | Probability of Mutation = 0.01 | to 0.0% training error
Probability of Cross Over = 0.9
Modified Population Size = 20 Took up to 3 generations to converge
GA/KNN Hybrid | Probability of Mutation = 0.01 | to 0.0% training error
Probability of Cross Over = 0.9
Table 2: Mushroom Data Set Results for KNN Classifier
K Value | Feature Set Size | Training/Test Set Size | Training Error (%) | Test Error (%)
K=1 12 508/7616 0.0 0.39
K=1 12 508/7616 0.2 1.65
K=1 10 508/7616 0.59 0.93
K=1 22 508/7616 0.0 0.47
K=3 22 508/7616 0.0 0.54

Table 3: Comparison to Other Classifiers

Classifier Type

Feature Set Size

Training/Test Set Size

Training Error (%)

Test Error (%)

(Yeung 1991)

Gaussian g22 4062/4062 0.17 0.221
Gaussian 12 508/7616 2.76 2.991
REGAL 22 500/7624 N/A 0.42
(Neri & Saitta 1996)

REGAL 22 400074124 N/A 0.00
Neural Network 22 300/7824 N/A 0.92

MAICS-97

/CNK

German Japanese GM Ford Chrysler

/)

/‘rorla Nissan Mazda C/hevy\ Buikck Pontiac
Cavalier Camero

Camry 4Runner

Figure 2: Auto Manufacturer Taxonomy

is able to successfully reduce the dimensionality of the
data set while actually improving classification accu-
racy. Second, the classification accuracy was improved
using a smaller data set for training. This is impor-
tant because training (and testing) a classifier with a
smaller data set is much more efficient using a larger
one. Third, because the initial phase of the algorithm
had a smaller search space (as compared to the second
phase), this approach was able to minimize training
error faster than the MSU algorithm. In addition, in-
corporation of the K parameter into the GA schema,
helped to further improve classification accuracy.

Future Directions

While the above results look promising, the basic ap-
proach has weaknesses for data sets that are not ho-
mogeneous and/or unimodal within a given class. By
using a single weighting distribution for all the data,
we are making the underlying assumption that all class
distributions have the same basic shape for a given fea-
ture set; this is obviously not the case in most real
world data sets. In addition, the distribution within
~ a given class is often multi-modal. For example, there
may exist different subclasses of poisonous mushrooms
that are characterized by mutually exclusive features.
Under these circumstances, using a single weighting
vector as a transform will not produce optimal results.
Instead, an approach for evolving weighting vectors tai-
lored to each data class and/or subclass needs to be
explored.

Using GAs to perform domain taxonomy substitu-
tions as part of the search process may also improve
feature selection and classification. In any domain, a
taxonomy can be constructed that describes hierarchi-
cal relationships between objects in the domain. Fig-
ure 2 contains an example of such a taxonomy. This

figure shows the hierarchical relationship between car
brand, company, and brand origin (foreign vs domes-
tic). When searching for the best feature set, the GA
functionality could be modified to substitute the GM
label for its related brands. An alternative substitution
would be the domestic label for all car brands produced
in North America. Performing such substitutions may
reveal clusters that go undetected when viewing the
data through the lens of a label at the bottom of the
taxonomy hierarchy. For example, substituting brand
origin for the brand itself may reveal a tendency for
twentysomethings to buy Japanese cars. As a result,
performing these substitutions can find a feature set
that yields rules with better support. Because multiple
hierarchies may describe a given data set, its important
that the search take these into account as well. Since
examining these relationships substantially increases
the size of the search space, continuing to use GAs as
the search mechanisms is the logical choice.

References

Duda, R., and Hart, P. 1973. Pattern Classification
and Scene Analysis. John Wiley & Sons. pages 95-99.

Fayyd, U.; Piatetsky-Shapiro, G.; and Smyth, P.
1996. Advances in Knowledge Discovery and Data
Mining. The MIT Press.

Lippman, R. 1993. Link Net Users Guide. MIT
Lincoln laboratories.

Neri, F., and Saitta, L. 1996. Exploring the power of
genetic search in learning symbolic classifiers. JEEE
Transactions on Pattern Analysis and Machine Intel-
ligence 18(11):1135-1141.

Punch, W.; Goodman, E.; Pei, M.; Lai, C.-S.; Hov-
land, P.; and Enbody, R. 1993. Furthe research on
feature selection and classification using genetic algo-
rithms. In Proceedings of the International Confer-
ence on Genetic Algorithms, 557-564.

Punch, W.; Goodman, E.; Raymer, M.; and Kuhn,
L. 1996. Genetic programming for improved data
mining-application to the biochemistry of protein in-
teractions. Downloaded from MSU CS Dept WWW
Site.

Sklansky, J., and Siedlecki, W. 1989. A note on ge-
netic algorithms for large-scale feature selection. Pat-
tern Recognition Letters 10:335-347.

Therrien, C. W. 1989. Decision Estimation and Clas-
sification. John Wiley & Sons. page 130.

Yeung, D. 1991. A neural network approach to con-
structive induction. In Proceedings of the Eighth In-
ternational Conference on Machine Learning, 228-
232.

Marmelstein 57

