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ABSTRACT

A tactical pilot typically experiences
difficulty in maintaining an accurate lock on
multiple-interacting targets in the presence
of clutter. If the pilot is trained to focus on
object features and predict the relative
motions of targets, the anticipated target
tracking methodology allows the pilot to
identify multiple targets simultaneously. By
assessing features, the paper seeks to
demonstrate how feature recognition
enhances multisensor integration of
multitarget scenarios.

1.0INTRODUCTION

The problem of multitarget tracking in
the presence of clutter has been effectively
explored with unknown scenarios [Bar
Shalom 95]. If, however, mission scenarios
(possible numbers of targets) and target
features (identifiable markers) are known,
tracking algorithms can be enhanced by
learning techniques. Intelligent tracking
would make use of learned associations of
features to targets. The main advantage of
the proposed intelligent algorithm is the
reduction in computations needed to perform
time-critical, space-limited tracking.

The problem of multitarget tracking is a

subset of sensor management which includes
selecting sensors, sensor-detection patterns
and policies, and tracking algorithms for a
given set of mission requirements [Popoli
92]. For example, a typical tactical aircraft
contains sensors with different modes to
detect different features. These sensors make
kinematic and identity measurements to
detect, track, and identify objects of interest
while reducing pilot workload. In a
dynamic and uncertain environment, the
onboard sensor manager must select the
correct sensor to measure the correct target
at a given time. Thus, the automated
reasoning of the sensor manager must
control the measurement sequencing process
for effective tracking. A multi-sensor/multi-
target tracking policy is best described as a
problem in sequential-decision making and
uncertainty. Similar applications include
engineering, management science, and
biology and a wide variety of mathematical
techniques have been developed and applied
to some aspect of parameter tracking and
classification [Kastella 97]. We propose to
leverage human subject experiments for our
mathematical model.

Biological studies have discovered
methodologies on how humans track
multiple objects [Bravo 95]. It was found
that a coarse local speed signal is used for
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object segregation and a precise global
speed signal for discrimination. Thus, speed
of the targets was found to be a
discriminating factor for target
classification. As in these experiments, we
model the multisensor-multitarget tracking
problem by utilizing learned feature
recognition as a pilot would do to
discriminate between targets. In sensor-
target tracking, a sensor is directed to
perform a sequence of measurements that
will detect and track targets. The challenge
is to guide the sensor so it locates the target
"efficiently". Learning tecbafiques such as
reinforcement and association learning have
been applied for searching and detection of
targets [Blasch 97]. Utilizing learned
feature recognition may offer a means to
control some aspects of the computational
burdens experienced by analytical
multitarget optimization techniques while
providing an effective solution for
multitarget tracking in the presence of
clutter.

2.0 INTELLIGENT TRACKING

Intelligence in tracking is the ability of the
agent to discern the salient features in an
image to track and classify targets
simultaneously. Based on human-subject
experiments, where tracking includes
finding a coarse local signal for the target
and a precise global signal for classification,
we model intelligence as shown in Figure 1.
Our model for human motion processing
includes a motion detector, like those of the
primary visual cortex. Other detectors
include spatial and temporal frequency,
orientation, and direction. The motion
detector is used by the association cortex as
a feature with which to classify targets using
association learning [Blasch 98].
Association learning is a biological
technique thought to represent the filtering

of multisensor information by the thalamus
and the processing of information in the
prefrontal association cortex.

Figure 1. Biological Model of Intelligent
Feature-Recognition Tracking.

3.0 PROBLEM FORMULATION

Consider Figure 2 as an environment that
the pilot is monitoring. The pilot’s goal is to
effectively detect, track, and classify any
target that enters the region.

Figure 2. Multitarget Tracking.

Assume that the region in Figure 2, the 2-D
frame, is composed of T targets with f
features. Dynamic target measurements z,
are taken at time steps k, which include
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target kinematics and features z(k) = [xt(k),
fl,... In]" Any sensor can measure
independently of the others, and the outcome
of each measurement may contain
kinematic or feature variables indicating
either target. The probability density of each
measurement depends on whether the target
is actually present or not. Further assume
that a fixed number of kinematic and feature
measurements will be taken at each time
interval, where we model the clutter
composing spurious measurements. A final
decision is rendered as to which [x, y]
measurement is associated with the target,
determined from the learned feature
recognition,

The multisensor-multitarget tracking
problem is to determine which measured
features should be associated with which
kinematics in order to optimize the
probability that the targets are tracked
correctly after z measurements. The
multitarget kinematic tracking problem is
formulated and solved by using concepts
from probability data association. For the
symmetric-target case, the "association
rule", - associate the measurement with the
highest probability of target - produces the
sub-optimal result when making the final
decision.

Two methods are chosen. The first, a
probability data association technique,
which we call Measurement Tracking,
searches through all the measurements and
probabilistically chooses the measurement
most likely to be associated with the target.
The second method, Feature Recognition
Tracking, which is described next, is a
procedure that uses position measurements
as the coarse local signal for believable
target measurements and a precise global
feature signal for discriminating between

targets. In the example, we use speed as the
feature since one target has a positive y
speed and the other target has a negative y
speed when the objects are close together.

4.0 FEATURE TRACKING

4.1 Tracking
The target state and true measurement are
assumed to evolve in time according to:

x(k+ 1):F(k)x(k)+v(k) (1)
z(k) = H(g)x(k) (2)

where, v(k) and w(k) are zero-mean mutually
independent white Gaussian noise sequences
with known covariance matrices Q(k) and
R(k), respectively. False measurements are
uniformly distributed in the measurement
space. Tracks are assumed initialized at an
initial state estimate x(0), contain a known
number of targets determined from the
scenario, and have associated covariances.

A plausible elliptical validation region V,
with a gate threshold, % is set up at every
sampling time around the predicted
measurement and is used to select believable
correct measurements. Measurements from
one target can fall in the validation region of
the neighboring target and is persistent
interference. All feature variables that carry
information useful to discern the correct
measurement from the incorrect ones are
assumed to be included in the measurement
vector. The approaches studied differ in how
feature measurements are used in the
estimation of the kinematic state to the
correct target.

4.2 Tracking Belief Filter

The Tracking Belief Filter is an
intelligent method which devotes equal
attention to every believable measurement
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and cycles through measurement features
until an object classification is reached. The
filter assumes the past is summarized by an
approximate sufficient statistic - state
estimates (approximate conditional mean)
and covariances for each target.

The measurement-to-target association
probabilities are computed across the targets
and these probabilities are computed only for
the latest set of measurements. The
conditional probabilities of the joint-target
association events pertaining to the current
time k is defined as 0(k), where 0it is the
event that measurement j originated from
target t,j = 1..., m(k); t = 0, 1, ..., Nt, where

m(k) is the total number of measurements for
each time step, k is the time of measurements,
and Nt is the known number of targets.

4.3 The Believable Joint Events
A validation gate is used for the selection of
the believable joint events, but not in the
evaluation of their probabilities.

The Plausible validation matrix: f2 = ] o~jtI
is composed of binary elements that indicate
if measurement j lies in the validation gate
of target t. The index t = 0 stands for "none
of the targets" and the corresponding column
of £2 includes all measurements, since each
measurement could have originated from
clutter, false alarm, or the true target.

A joint association event consists of the
values in .(2 corresponding to the

associations in 0,

^
{ 1 ifOj’t~Of2(0) = [~0jt(0)l = 0 otherwise (3)

A believable association event has
i) a single measurement source:

2., &jr(0) = 1 (4)
t=0

ii) and at most one measurement originating
from a target:

5t(0)_A_ £ ~jt(0) < 1 (5)
j=l

A
The generation of event matrices, ~,
corresponding to believable events can be
done by scanning ~ and picking one unit/
row and one unit/column except for t = 0.

The binary variable 6t(0) is called the target

detection indicator since it indicates whether
a measurement is associated with the target t

in event 0, i.e. whether it has been detected.

The measurement association indicator

"cj(O) A= ~jt(0) (6)
t=l

indicates measurement j is associated with
the target t in event 0.

The number of false measurements in event
O, is

~b(0)= ~ [1- xj(O)] (7)
tj=l

The joint association event probabilities
are, using Bayes’ Formula:

p {0(k)lZk} = {O(k)lZ(k),m(k),Zk -1 }

= I p[Z(k) lO(k),m(k),Zk_ll P{O(k) I m(k)}

1 m (k~,k~
= C {fit(k) [zj(k)]} (8)

j=l

where c is the normalization constant.

The number of measurement-to-target
assignment events O(k), is the number of
targets to which a measurement is assigned
under the same detection event, [m(k) - ~b].
The target indicators 5t(O) are used to select
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the probabilities of detecting and not
detecting events under consideration.

the number
Target State Filter t~,~..~ ~.~.a~ Target Belief Filter

I ,

\
\ /

, , <.,.,>

Figure 3. Feature Recognition Tracking Model.

4.4 Feature Recognition Learning
The learning of features is done through a
training network. Although algorithms exist
for solving image recognition problems
using NNs, these algorithms are seldom
implemented with tracking algorithms due
to the computational burdens arising from
the large number of possible hypotheses. By
employing belief states which incorporate
all previous hypotheses, the dynamic-
detection trained network is converted to a
Markov Decision Problem. The MDP
problem is solvable by an association
learning technique that uses a function
approximator for weights and minimizes
computational permutations.

In feature-recognition o’acking, every
measurement in the validation region is
evaluated, based on the features, to
determine the expected reward Rk(t ) for
assessing the measurement. The next
measurement (with the learned association
of features-to-targets) is chosen with the
largest expected reward. For a particular

measurement z(k*), Rk,(t) is evaluated using
an learned association-trained network and

of feature measurements
accumulated in k*.
The procedure for
initializing detection
and proceeding
through the validated
measurement was
shown above.

Association learning
assigns a
reinforcement value,
R : oc * f(V(7)),
which is proportional
to how close the
measurement is to the
center of the gated
validation region. The

agent selects validated measurements and
cycles through until the feature-to-target
belief indicates a true match of measurement
to target. A threshold is used to pick an
acceptable measurement from which to quit
cycling through validated measurements.

4.5 State Estimation
Assuming the targets conditioned on the past
observations are mutually independent, the
decoupled state estimation (filtering) of the
marginal association probabilities, which
are obtained from the joint probabilities, is
obtained by summing over all joint events in
which the marginal event of interest occurs.
The conditional probability of the event (the
association probability) is:

[3jt=A p {Oj (k)lzk}

=~ P{0lZk}&jt(0)= ~ P{0l zk} (9)
0 0:0jtE0

The algorithin decomposes the estimation
with respect to the origin of each element of
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the latest set of validated measurements.

Using the total probability theorem, with
respect to the above events, the conditional
mean of the state at time k can be written as:

where x(k/k) is the update state conditioned
on the event that the i th validated
measurement is correct.

The state estimate, conditioned
measurement i being correct, is:

~i(klk) = ~i(klk- 1) + W(k)vi(k) (11)

vi(k) = zi(k)- fi(klk- 1) (12)

W(k) --- P(klk- 1)H(k)WS(k)-1 (13)

on

The combined state update equation,
combined innovation, and covariance
associated with the state are:

~(k[k) = ~(klk- 1) + W(k)v(k) (14)
m.Ov(k) = ~ 13i(k) vi(k) (15)
i=l

P(klk) = 0o(k)P(klk-1)+[1- o(k)lPc( 

where the covariance of the state is updated
with the correct measurement is:

pc(k[k) = P(klk- 1) W(k)S(k)W(k)T (17)

The prediction of the state and measurement
to time k+l is done as in standard filtering
techniques.

5.0 RESULTS

The two dynamic tracking methods
discussed are compared. The method for
evaluating performance is a Monte Carlo
simulation and the performance metric is
normalized probability of state error. It is
assumed that the feature in question is

speed. As detailed in the Figures 4 and 5, by
the true trajectory, the targets 1) start with
position X -- {(2000,10200), (2000,9900)}

and speeds of +10 x re~s, 2) pass by each
other at a distance of 5 meters and speeds of
-2 and + 2 y m/s, and 3) finish with a speed
of+10 x m/s.

Table 1: Normalized Square Errors
State Error X1 X2 Y1 Y2

Measurement 101.84 98.45 6.63 3.50

Feature Recognition 98.59 97.79 3.40 2.61

1.02

1.015

1.01

- 1.005

Y 1 T_a_rg_et_2_- _tru_e~_ _

0.995

~estimation
0.99

0.985
2000 2100 2200 2300

X

X 104 Measurement TracMng

~’-"-"--~- i Target 1 - estimation

Target 1 - true

2400 2500 2600

Figure 4. Measurement Tracking.

x 104 Feature Tracking
1.02

1.015~IL ~ [~.~et 1 - estimation

1.005

Y ,.
0.995 //Target 2 - estimation

J
0.99

2000 2100 2200 2300 2400 2500 2600

Figure 5. Feature Recognition Tracking.

6.0 DISCUSSION & CONCLUSIONS

The figures above show that
measurement tracking incorrectly associates
some of the measurement data from the
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second target with that of the first target.
The feature-recognition tracking algorithm,
which uses a speed sensor with
measurement uncertainty, detects the speed
feature of each target and correctly assigns
measurements to the targets.

This research included training a
network using the association learning for
feature recognition to guide an imperfect
sensor or a perfect sensor in the presence of
clutter to find a set of dim targets in a
region. In a series of simulation
experiments, the feature recognition network
performed well resulting in a desirable
solution, and at a faster rate than
conventional mutlitarget-multisensor
tracking methodologies. The presented
feature recognition learning technique
demonstrates promise for multitarget
tracking problems and warrants further
exploration in problems where
environmental effects, occlusions, and lost
sensor data can be modeled that are not
readily handled by current tracking
algorithms.
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