The Argus Project: A Binocular Stereovision Head for the Investigation of Distributed Visual Attention

J. Oliver Ross and Douglas S. Blank
Department of Computer Science and Computer Engineering
University of Arkansas
Fayetteville, AR 72701
{joross,dbl}@comp.uark.edu

Abstract
A 5 degree-of-freedom binocular stereovision head, called Argus, is described which has been designed for independent camera control (other than that of ocular vergence). The system was inspired by both the abilities and behaviors of the chameleon visual system. A unique control architecture is described which enables hierarchical learning of visual behaviors, including independent search for an object of interest coupled with dual-camera object fixation upon successful completion of the search.

Introduction
The chameleon is capable of moving its eyes in an independent (i.e., "nonconjugate") manner (Pough, 1998). When a chameleon sees possible prey with one eye, both of its eyes swivel to fixate upon the object (Harkness, 1977). It is believed that the chameleon is using triangulation cues from this dual-eye object fixation to gain depth information in order to judge the distance of its prey. The reason for this dual fixation has not yet been resolved; it has been suggested that depth cues gained from monocular accommodation queues are equally important to the chameleon (Harkness, 1977). In any case, from this interesting visual behavior, many questions arise: Why did the chameleon visual system evolve this way and what evolutionary advantage if any do nonconjugate eye movements provide? Does the chameleon actually have two separate visual attentions, or must it switch back and forth considering visual stimuli from only one eye at a time?

We propose a computational approach to the investigation of these questions. By observing the evolution and self-organization of machine vision systems, we hope to gain an understanding of what parameters are critical to a wide variety of resulting visual behaviors. We have designed and constructed a binocular stereovision head, dubbed Argus, which is capable of independent camera control. In addition, a neural network learning architecture controls the stereohead and allows for the mimicry of the chameleon’s visual behaviors.

Hardware
Currently, Argus is a model with proof-of-concept quality hardware (i.e., built out of spare parts found in our lab; see Figure 1). The stereohead was designed with two independently moving cameras, each with two degrees of freedom. Hence, separate actuators control vertical and horizontal rotations of each camera. The head is also able to rotate left and right via a neck giving an additional degree of freedom, for a total of five. The eyes are composed of low-cost digital cameras (Connectix Quickcams) which enable continuous streams of greyscale images.

Figure 1: The stereovision head, Argus

The system runs on a personal computer running Linux. The PC runs the main software and is responsible for capturing images from the cameras via two parallel ports. In addition, the PC reads sensors from the head and controls the head’s motors through serial interfaces to two MIT HandyBoards based on the Motorola MC68HC11 microcontroller. A wide variety of materials including a fair number of Lego gears and blocks have been used to build the structure of this initial prototype version of Argus.

Figure 2 shows both the range of the monocular vision fields and the degree of binocular overlap of the
Hierarchical Learning Model

We are primarily interested in designing systems in which high-level behavior emerges from low level computational primitives due to interaction with the real-world environment. We must therefore specify knowledge and relationships to be learned at each hierarchical level in such a manner that knowledge learned at lower levels may be exploited by learning subsystems at higher levels. Once knowledge to be learned at each level has been specified, choice of learning algorithms for execution of a particular task then becomes obvious.

At the lowest level, each eye must learn to locate and fixate upon objects of interest. The camera reaches its goal state when a target object is centered in the camera image. If the object is in motion, the camera should attempt to maintain fixation by tracking the object.

At the second level, each eye must learn its vestibulo-ocular response (VOR). VOR is defined as compensatory motion of the eye due to movement of the head. Consider the scenario in which one eye, here referred to as the primary eye, has located and is fixating upon an object of interest. One of the system goals at this point is for the secondary camera to also locate and fixate upon the object. At this point, if the head is allowed to turn in addition to the rotational motion of the secondary camera, the primary camera must compensate for the rotational motion of the head in order to maintain fixation upon the object.

At the third level, the system must learn to center its head such that it is pointed directly toward the object. What information may be exploited to obtain this goal? One answer is for the system to seek to minimize differences between the object’s size in each camera’s image. If the size difference of the object in the two images is minimized, the binocular stereo disparity will in turn be minimized. This is an advantage when trying to extract stereo and depth information from the images, the primary function of the system. The result is that the system minimizes the difference of the distances of its two cameras to the object, thus centering the head facing toward the object.

We have described a set of energy functions which our system should minimize in order to reach a final positional steady-state. Next, we discuss an underlying computational architecture which through learning over time, enables a fluidity of motion to result such that the system appears to be exhibiting a reflex action as opposed to executing a sequential series of separate motions.

Computational Architecture

Image Processing Module

A minimalist image processing module (IPM) is necessary in order for Argus to recognize an object at different distances. First, an image is created of the target object. The image processing module then creates a regular image pyramid, or sequence of images of decreasing resolution from the base image (Bischof, 1995). These images are then used as templates enabling the object to be located at different distances. For this task, a standard correlation algorithm is used to compare a portion of an image captured from a camera to each of the image pyramid templates.

Reinforcement Neural Network Description

A new neural network architecture, the reinforcement neural network (RNN), has been designed for use in the Argus system. The RNN is similar to a Kohonen Self-Organizing Map (Kohonen, 1990) except that instead of creating random spatial patterns as outputs, the network receives both positive and negative reinforcement signals which force the creation of specific spatial patterns corresponding to predefined motor commands for position and velocity control.

The RNN consists of fully connected input and output layers. The output layer is divided into two banks, one controlling the speed command and the other controlling the servo positioning command. Weight matrices W_s and W_p connect the input layer to the respective

Figure 2: Stereohead geometry

Figure 3: Reinforcement Neural Network topology
output layer banks. The weight matrices are initialized with small random values. In this winner-take-all network, the outputs of each bank, \(y_s \) specifying actuator speed and \(y_p \) specifying actuator servo position are the neurons in each bank with the highest activation, defined to be the weighted sum of the inputs:

\[
y_s = \sum_{i=1}^{n} w_{s,i} I_i \\
y_p = \sum_{i=1}^{n} w_{p,i} I_i
\]

where \(W_s = \{w_{s,i}\} \), \(W_p = \{w_{p,i}\} \) are the weight matrices, and \(I \) represents the vector of inputs.

Reinforcement Signal Module

The reinforcement signals are used to modulate the weight matrices in such a way that the network self-organizes to find both the proper servo motor position and speed control commands for each of the input state vectors. These reinforcement signals are generated based on the output of the image processing system. Hence, the target object must be found by at least one camera before any reinforcement may be given. When the target object is found, the reinforcement signal is based upon how close that camera is to achieving its goal state. The camera is in its goal state when the object is centered in the image. The position reinforcement signal is a function of the Euclidean distance, \(G(t) \) of the object from the center of the image.

The reinforcement signal module (RSM) receives the RNN's speed and position outputs and the motor position as well as \(G(t) \) from the Image Processing Module as inputs and generates speed and position reinforcement signals as outputs. As the motor is turning to the specified position, the reinforcement signal module collects a series of \(G(t) \) values from the IPM. It also receives an acknowledgement when the motor has reached its position as specified by the network. From the time the network issues the servo control command to the time of its completion, if at any time \(G(t) \) is less than a user specified error value, \(\delta \) then at that time, \(t_s \) the camera is defined to be in its goal position. In the case that the camera actuator overshot the goal state, the time of acknowledgement, \(t_{ack} \) is greater than \(t_s \). In this case, a reinforcement signal should be generated which modulates the weight matrix such that the motor rotates less so as to servo to the proper position. This signal, \(R(t) \) is defined as follows:

\[
R(t) \propto \int_{t_s}^{t_{ack}} G(t) dt
\]

Since \(G(t) \) is a function of discretized sensor readings, the above integral may be instead expressed as a Riemann Sum:

\[
R(t) \propto \sum_{i=t_s}^{N} G_i(t) dt
\]

where \(N \) is equal to the number of sensor readings between \(t_s \) and \(t_{ack} \). We are now able to write a set of difference equations which describe the modulation of the weight matrices:

\[
w_{p,i}(t + 1) = w_{p,i}(t) + \eta I_i w_{p,j}(t) \\
w_{p,j}(t + 1) = w_{p,j}(t) - \eta I_i w_{p,j}(t)
\]

where \(w_{p,i} \) is an element of the weight vector connecting the input vector to the new position output, and \(w_{p,j} \) connects the input vector to the old position output. The spatial distance from the new to the old position output is a function of the reinforcement signal. Also, \(\eta \) is a parameter which controls the speed of the weight modulation. The weights are modulated until the weighted sum of the inputs to the new position output are greater than their sum to the old output (so the new output will be the new "winner" when a new vector of state inputs is propagated through the network).
In the case that $G(t)$ never falls below the value δ, the position weight matrix is simply modulated in the opposite spatial direction, increasing the angular distance through which the motor rotates.

Fully Connected Multi-RNN Control System

The Argus control system architecture consists of five fully connected reinforcement neural networks, one controlling each actuator with each receiving the others’ current position, servo position and speed outputs as its input. As described above, reinforcement signals are provided to the RNNs controlling horizontal and vertical actuators by their respective reinforcement signal module using image data from its camera.

The self-organization of the system may be viewed as the gradual creation of a discrete vector field which specifies the trajectory of the system for any initial state. Under this view of the system, the goal states are represented as asymptotically stable equilibria toward which the vector field flows converge.

Conclusion and Future Work

Currently, we have just completed the stereohead hardware and are finishing implementation of the control architecture. In the next few months, we will begin gathering experimental data as we train the system to mimic the chameleon's visual behavior.

In the future, we hope to create a more advanced image processing front-end for the system. Image processing, while not the research topic of interest, is still of great importance to the performance of the system. Cellular neural networks are being considered as an augmentation to the template matching scheme currently used (Chua, 1988). Cellular neural networks could be used to perform low-level textural image comparisons providing information with which to constrain the high-level template matching correlation algorithm yielding higher performance.

The Argus system hardware will be able to be used for a variety of machine learning experiments in the future and provides a general platform for computer vision research.

References

