
Forecasting of Options in the Car Industry

Using a Multistrategy Approach

Stefan Ohl

Daimler-Benz AG, Research and Technology, F3S/E
P.O. Box 2360

D-89013 Ulm, Germany
ohl(~.dbag, ulm.DaimlerBenz.com

Abstract
In recent years, car options like air-conditioning,
automatic gears, car stereo, power windows, sunroof
etc. were getting more and more important for car
manufacturers. Especially at those car manufacturers
which offer cars individually according to customer
requirements, the options affect 30% - 40% of the
parts by now. Therefore, very detailed planning and
forecasting of options becomes more and more
important. Because customer behavior concerning the
options varies from model to model and from country
to country, it seems necessary and reasonable to
forecast each option for each model and each country
separately. The resulting huge number of data sets
requires an automatic forecasting tool that adapts
itself to the actual data sets and that requires almost
no user interaction. Because depending on the
characteristics of a time series the quality of the
forecasting results varies a lot, and because "N heads
are better than one," the basic idea is m select in a first
step the most appropriate forecasting procedures. This
selection is done by a decision tree which is generated
by using a symbolic machine learning algorithm.
Those selected forecasting methods produce different
results that are in a second step combined to get a
common forecast. In this approach there are integrated
univariate time series used in the first step for running
the prediction as well as symbolic machine learning
algorithms for generating the decision trees as well as
multivariate statistical methods and neural networks
used in the combination step.

Introduction

Relevance of Options and Extras
In recent years, options of a car like air-conditioning,
automatic gears, car stereo, power windows, sunroof etc.
have become more and more important for car
manufacturers (Dichtl et al., 1983). On the one hand, big
business around the options and extras arises, but on the

other hand, the huge number of extras ofl~red optionally
causes high costs as well. Mostly, these enormous costs
result of a diversity of different parts and production
processes that are influenced by the different options
(Br[indli et al., 1994; Br’~indli and Dumschat, 1995). 
particular, at car manufacturers that offer cars individually
according to customer requirements, the options affect
30% - 40% of the parts by now. Therefore, very detailed
planning and forecasting of options becomes more and
more important.

Situation at Mercedes-Benz
In the case investigated in this paper, the car manufacturer
Mercedes-Benz offers about 400 different options for more
than 100 different models structured into 4 different classes
(C-, E-, S-, and SL-class) sold in more than 250 countries.
In average, each customer orders about 10 - 20 options per
car. Based on almost 600,000 produced cars per year, in
average, only 1.4 cars are identical (Hirzel, 1995). That
means there exist only a few identical cars, and in most
cases these cars belong to bulk buyers like rental car
companies.

Recently, even an increase in variety of models and
options is expected, since new classes never offered before
by Mercedes-Benz will be presented (Stegemanm 1995).
Moreover, already existing classes will be extended by
additional models, and completely new options like
automatic windshield wipers or different kinds of
navigation systems will be sold.

Analysis of Customer Behavior: Cumulated

vs. Single Data

Ad Hoc Analysis

Since some options are not available for each class and
because identical options differ quite often from class to
class (e.g. air conditioning of C-class is different to air
conditioning of E-class), it is necessary to differentiate
extras per each single class. With regard to monthly
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Fig. l: Time series of single options.

cumulated data for about two years (e.g. all automatic
gears sold per month in the C-class), cumulated time series
of single options that represent absolute selling figures do
not contain any systematic pattern as shown in figure 1.
Therefore, it seems to be very difficult to forecast such
kinds of time series as monthly data to a prediction horizon
of 12 or even more months.

Utilizing Descriptive Statistics

However, looking at the data in a more detailedway using
descriptive statistics some systematic pattern may be
discovered. By analyzing the distribution of single options
over different models and different coun~es where these
options are sold, a lot of differences concerning the
installation rate of an option to the total number of cars
sold occur. For the options air conditioning (AC),

automatic gears (AG), power windows (PW), heated seats
(HS), sunroof (SR), and traction system (TS) this analysis
for Mercedes C-class (Germany), and for the model C 220
(world wide), respectively, is presented in figure 

As it is shown in the left part of figure 2, for example, if
more models C 280 and less models C 180 are produced in
comparison to the previous month, the cumulative absolute
number of air conditioning will increase, whereas the
installation rate of air conditioning for each model will not
fluctuate unsystematically a lot. Similarly, if in the current
month more cars of the type C 220 are produced for
Switzerland (CH) and less for Sweden (S) in comparison 
the previous month, the cumulative absolute number of
traction systems will increase and the cumulative
installation rate of heated seats will decrease, whereas the
single installation rate per model and country for these
options will not vary randomly a lot (see right part of
figure 2).

Based on this analysis, we detected that customer
behavior concerning options varies a lot from model to
model and from country to country (Oh[, 1995). Therefore,
it seems reasonable to forecast and plan each single option
as an installation rate for each model and each country
where the option is available separately.

The less systematic kind of time series mentioned in the
previous subsection of ad hoc analysis and presented in
figure 1 is mainly due to the monthly shifting cars from
one country to another country or from one model to
another model as described before. Whereas the total
number of cars produced per month is more or less stable,
the number of one single model produced for one single
country may vary much more (Hirzel and Ohl, 1995).

installation rate (C-class. Germany) installation rate (C 220)
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Fig. 2: Installation rates of different options at different models (Mercedes C-Class, Germany) and different
countries (Mercedes C 220, world wide).
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But this variation from one month to another month
concerning one country or one model is in most cases
planned and therefore well known, because there are
seasonal effects, for instance, varying from one market to
another market or from one model to another model.
During summer time for instance, the number of
convertibles sold is much larger than during winter time,
and in markets like North America the selling figures
increase when the first cars of a new model year are
presented and sold in fall.

In contrast to the cumulative time series regarded in the
previous subsection, analyzing single time series that
represent not the absolute number but the installation rote
of an option per model and country shows much more
regular and systematic behavior as illustrated in figure 3.

Obviously, forecasting the single options as installation
rates per model and country and multiplying these
installation rates with the more or less well known planned
absolute numbers of cars to be sold per model and country
will yield better results than forecasting the absolute selling
figures of options. This idea is illustrated in figure 3 where
the time series of figure ! is shown as the result of
forecasting the single installation rates per model and
country multiplied by the planned absolute number of cars
as described before.

A Multistrategy Forecasting Approach
The resulting huge number of data sets requires an
automatic forecasting and planning tool that adapts itself to
the current data sets and that requires almost no user
interaction. Another need concerning such a tool is
performance, i.e. algorithms should not be too complex to

avoid long computation times tbr doing the forecasts. The
reason is that the forecasted selling figures of options are
needed in a fixed company wide planning time table for
further steps of the total planning process such as planning
capacities of the different plants or planning the disposition
of materials and parts for the next months (Ohl, 1996).
This is due to the fact that the time needed for replacement
of some parts and materials is longer than delivery time
customers would accept. Therefore, frequently in the
automotive industry it is necessary to do the disposition of
parts and materials that will be delivered by internal and
external suppliers before customers place their real orders.

Selection of Existing Methods

Classical Statistical Approaches. In general, four
different ways of quantitative forecasting are yet well
established (Makridakis et al., 1984):
¯ Purely judgmental or intuitive approaches.
¯ Causal or explanatory methods such as regression or

econometric models (multivariate approaches).
¯ Time series methods (extrapolative univariate).
¯ Combinations of above mentioned techniques.
Purely judgmental or intuitive approaches are not
appropriate because the user has to forecast each time
series manually. The multivariate approach does not work
at the application presented in this paper as well, since it is
almost impossible to identify impact factors for different
options for different countries. For example, what are the
impact factors influencing the sunroof of the model C 220
in Italy? Therefore, only extrapolative univariate time
series approaches are taken into consideration in the
following.

~li~
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Fig. 3: Installation rates and absolute selling figures of options.
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Reviewing extrapolative univariate time series analysis
results in quite a lot of different methods. The most
important and most popular are listed below (Jarrett,
1991):
¯ Naive forecast
¯ Moving averages
¯ Exponential smoothing
¯ Time series decomposition
¯ Adaptive filtering
¯ The Box-Jenkins methodology (ARIMA modeling)
From the scientific point of view, the most interesting
approach of these methods listed above is the ARIMA
modeling (Box and Jenkins, 1976). However, there are two
very crucial disadvantages: The most important point in
ARIMA modeling is model identification. As shown in
different forecasting competitions (Makridakis et al., 1984;
Makridakis and Hibon, 1979; Schwarze and Weckerle,
1982) even experts differ in choosing the most appropriate
ARIMA model. And beyond, there exist forecasting
methods producing in average better forecasts than
ARIMA modeling does. Besides, as described before, an
automatic forecasting system is needed, such that it is not
possible to identify manually the appropriate model for
each time series. Therefore, ARIMA modeling seems not
to be reasonable for the prediction of all time series in our
application.

But nevertheless, there exist definitely special types of
time series, where ARIMA modeling will be the
appropriate forecasting method, i.e. time series with a high
autocorrelation. Besides, there exist approaches for
identifying automatically the most appropriate model such
as Akaike’s information criterion (Akaike, 1976; Akaike,
1979). Therefore, the Box-Jenkins methodology will not be
the appropriate approach for all time series, but possibly
for a selected number of time series.

In the case of adaptive filtering (Kalman, 1960; Kalman
and Bucy, 1961), the situation is very similar. It seems not
reasonable to use this approach for all time series, but in
many cases adaptive filtering will produce good prediction
results without any user interaction. Therefore, adaptive
filtering will not be used as forecasting technique for all
time series, but definitely for the prediction of special types
of time series. This result corresponding to the situation of
ARIMA modeling is not surprising at all, because the
adaptive filtering technique is very similar to ARIMA
modeling.

On the one hand, forecasting time series using naive
forecasts or moving averages does in a lot of cases not
produce good results in comparison to other forecasting
approaches. But on the other hand, there exist a lot of time
series at Mercedes-Benz, where using naive forecasts or
moving averages yields excellent results.

Discussing exponential smoothing (Brown and Meyer,
1961) means to discuss a lot of different forecasting
techniques (Gardner, 1985), because there exist constant
exponential smoothing approaches without any trend or

seasonal parameters as well as there exist different
exponential smoothing techniques considering linear and
nonlinear trends as well as seasonal effects of the time
series. Consequently, the different kinds of exponential
smoothing could be depending on the structure of the
investigated time series the appropriate approaches for our
forecasting system. Generally, the most important and
popular types of exponential smoothing approaches are:
¯ Single exponential smoothing (Brown, 1963)
¯ Linear exponential smoothing: Brown’s one parameter

method (Brown, 1963)
¯ Linear exponential smoothing: Holt’s two parameter

approach (Holt et al., 1960)
¯ Winters’ three parameter method (Winters, 1960)

Symbolic Machine Learning and Neural Networks.
Recently, the attention concerning the task of time series
prediction is also focused on the application of neural
networks (Weigend and Gershenfeld, 1994; Graf and
Nakhaeizadeh, 1993). Although the development of neural
networks at early stage was stimulated by modeling of
learning process in human brain, the further development
of this technology shows a very strong similarity with
statistical approaches (Ripley, 1992).

There are some studies which compare neural networks
with some statistical procedures like nonlinear regression
from a theoretical point of view (Arminger, 1994; Ripley,
1992). However, it should be mentioned that the ability of
adaptive learning which characterizes the most of neural
networks is not implemented in statistical procedures like
regression analysis or ARIMA modeling.

Generally, there are two alternatives to use neural
networks for time series prediction:
¯ On the one hand, it is possible to use neural networks as

multivariate forecasting techniques very similar to
nonlinear regression. In this case the problem for our
application is the same as with multivariate statistical
prediction approaches: it is almost impossible to identify
the impact factors for the huge number of time series
concerning the different options in different countries.

¯ On the other hand, it is possible to use neural networks
as univariate forecasting techniques very similar to
statistical extrapolative univariate forecasting
approaches. Here the problem is to identify the most
appropriate model (Steurer, 1994).

Neural nets based learning algorithms are like the majority
of statistical approaches polythctic procedures which
consider simultaneously attributes for decision. Because of
this reason, they need at least as much training examples as
the number of initial attributes. It means, they are not
appropriate at all for automatic attribute selection for the
cases in which the number of attributes, in comparison to
the number of training examples, is too high. This is often
the case in dealing with time series data.

The main problem in using neural networks for
prediction consists in finding the optimal network
architecture. To realize this task, one has to divide the
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available time series data into training set, test set, and
validation set. Regarding the problem of limited number of
observations in time series data which is discussed above,
dividing the whole series into training set, test set, and
validation sets leads to a still smaller training data set, in
many circumstances.

Besides neural networks, some of symbolic machine
learning algorithms based on lD3-concept (Breiman et al.,
1984) can be used to predict the development of time series
as well (Merkel and Nakhaeizadeh, 1992).

There are a lot of machine learning algorithms which
can handle the classification task. Almost all of these
algorithms are, however, not appropriate to handle the
prediction task directly. The reason is that in contrast to
classification, in prediction the class values are continuous
rather than discrete. Exceptions are the ID3-type
algorithms CART (Breiman et al., 1984) and Newld
(Boswell, 1990) which can handle continuous-valued
classes as well. Of course, by discretization of continuous
values and building intervals, it is possible to transfer every
prediction task to a classification one, but this procedure is
connected, normally, with a loss of information.

The algorithms like CART and Newld can handle the
continuous valued classes directly, and without
discretization. They generate a predictor in the form of a
regression tree that can be transformed to production rules.
Furthermore, these learning algorithms apply a single
attribute at each level of the tree (monothetic) and this is 
contrast to the most statistical and neural learning
algorithms which consider simultaneously all attributes to
make a decision (polythetic).

The main advantage of symbolic machine learning
approaches like regression trees is that it is possible very
easily to involve other available information in prediction
process, for example, by including the background
knowledge of experts. Concerning rule generating from the
data, it should be mentioned that this property of decision
and regression trees is one of the most important
advantages of these approaches. Other classification and
prediction methods like statistical and neural procedures
have not these property that allows considering other
sources of information in a very flexible manner. In the
case of statistical or neural classification and prediction
algorithms, it is very difficult, and in some circumstances
impossible at all, to consider such additional information.

However, like other approaches, prediction algorithms
based on symbolic machine learning have also some
shortcomings. Generally, they can not predict the values
beyond the range of training data. Regarding the fact,
especially, a lot of time series have an increasing
(decreasing) trend component, it can be seen that by using
just the raw class values, one can never achieve a predicted
value which is outside the range of the class values used
for training. But this disadvantage can be avoided by
taking differences of the class values as it is the case with
the Box-Jenkins approach.

To summarize, neural networks and symbolic machine
learning algorithms are from the theoretical point of view
very interesting, but they do not seem to be appropriate for
the prediction of the huge number of time series in our
application. Therefore, the forecast will be done by
extrapolative univariate forecasting approaches. The only
method of this class not taken into consideration any more
is the method of time series decomposition because of the
needed user interaction. Therefore, time series
decomposition seems definitely not to be an appropriate
forecasting method for performing automatic forecasts as it
is needed in our application.

The Idea of Combination
After the decision to use different extrapolative univariate
time series techniques except for time series decomposition
for prediction of options at Mercedes-Benz, the next step
will be the detailed selection of an adequate extrapolative
univariate prediction model. This selection of the most
appropriate forecasting model is a very hard task. In the
case of the application presented in this paper, where
totally different types of time series have to be forecasted,
it is almost impossible to give an answer concerning the
question, what generally the most appropriate forecasting
model is.

There have been many comparative studies in
forecasting. Unfortunately, they do not always agree on
which are the best forecasters or on the reasons why one
method does well and another does badly. One of the
largest studies is that conducted by Makridakis and Hibon
(1979) who concluded that simple methods often
outperformed sophisticated methods like ARIMA
modeling. The largest competition realized so far is that
conducted by Makridakis (Makridakis et al., 1984) who
concluded with very similar results. While the study of
Makridakis and Hibon (1979) concerned I I I time series,
the competition of Makridakis (Makridakis et al., 1984)
concerned 1001 time series and represents a major research
undertaking.

Previous studies by Newbold and Granger {1974) and
Reid (1975) concluded that ARIMA modeling will 
usually superior if it is appropriate. Generally, ARIMA
modeling is regarded as giving extremely accurate
forecasts provided the user is expert enough and sufficient
computational resources are available, although simple
methods are often more than adequate if the stochastic
structure of the time series is sufficiently simple
(Montgomery and Johnson, 1976; Jarrett, 1991).

In the meantime, many researchers have applied the
relatively new techniques of neural networks and machine
learning in the context of prediction. There are several
recent studies comparing the performance of neural
networks, machine learning and classical statistical
algorithms using time series data: for example, Rehkugler
and Poddig (1990), Schumann and Lohrbach (1992) 
well as Grafand Nakhaeizadch (1993).
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All these studies concentrate on finding which method is
best, or try to explain why one method is better than
another. However, as Bates and Granger (1969) suggest,
",he point is not to pick the best method, but rather to see if
it is possible to combine the available methods so as to get
an improved predictor:

OUR INTEREST is in cases in which two (or more)
forecasts have been made of the same event.
Typically, the reaction of most statisticians and
businessmen when this occurs is to attempt to
discover which is the better (or best) forecast; the
better forecast is then accepted and used, the other
being discarded. Whilst this may have some merit
where analysis is the principal objective of the
exercise, this is not a wise procedure if the objective is
to make as good a forecast as possible, since the
discarded forecast nearly always contains some useful
independent information.

The general idea of combining different methods is even
much older: "In combining the results of these two
methods, one can obtain a result whose probability law of
error will be more rapidly decreasing" (Laplace, 1818, in
Clemen, 1989).

The basic principle of combining forecasts is explained
in detail in figure 4. Based on a given database shown in
the upper middle of figure 4, forecasting method A
discovers the linear trend correctly, but does not detect the
seasonality of the given data. In contrast to method A,
forecasting procedure B discovers the seasonality but does
not detect the linear trend. In conclusion, both methods
contain useful information of the given time series, but
neither approach A nor method B contains all relevant
information. Thus, selecting one single method for
prediction and discard the other one means to loose useful
and important information. This is avoided by choosing the

real data

v

 .--onand--ofONEmethod (based on smallest error)
OR

¯combination of different methods
=> optimal exploitation of

information

Fig. 4: Combination of forecasts.

multistrategy approach of combining both methods to get
one common forecast.

This multistrategy approach of combining different
forecasting methods is adapted in the considered
application at Mercedes-Benz. Instead of selecting one
single forecasting procedure, different forecasting
techniques will be used in the forecasting system. Each of
these different forecasting techniques will produce
simultaneously its own forecast for the next 12 (or more)
months, that will be combined subsequently in the
combination step to one common forecast following
Wolpert’s general scheme of "Stacked Generalization"
(Wolpert, 1992).

Following this approach of combined forecasts, there are
three very important questions to answer:
* How many single univariate forecasting methods will be

combined ?
¯ Which single univariate forecasting methods will be

combined ?
¯ What is the appropriate algorithm for the combination ?
The first question to answer is, how many different
forecasting approaches should be combined. Theoretically,
it can be shown that the larger the number of single
forecasting techniques used as input for combination, the
better the produced results are (Thiele, 1993). In practice,
on the one hand it can be shown, that accuracy will
increase if more single forecasts are used as input
(Makridakis and Winkler, 1983), but on the other hand, 
can be shown as well that the difference of accuracy is not
remarkable at all, if there are six, or seven, or eight
different single prediction techniques used as input factors
for the combination step (H0ttner, 1994). Besides, by using
too many single forecasting methods as input for the
combination step, there is the danger that the same or
almost the same information is taken different times as
input for the combination. That means to give a too strong
weight to this information and not enough weight to the
other independent information. Therefore, it seems
reasonable not to use more than six single forecasting
procedures as input for the combination step.

Classification of Time Series
The second question is, which forecasting methods should
be selected for combination in what situation. As shown in
different studies and forecasting competitions (Makridakis
et al., 1984; Makridakis and Hibon, 1979; Schwarze and
Weckerle, 1982), depending on the characteristics of the
time series the different forecasting approaches yield
different results. I.e., if there are autoregressive
characteristics, ARIMA modeling will perform best, while
for other types of time series other approaches will produce
the best forecasting results.

Therefore the idea is, to select the six most appropriate
single time series approaches depending on the
characteristics of the different time series. The goal is to
select for every time series the six most appropriate models
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time attribute forecasting approach
series
no. static- trend seaso- autocor- absolute unsyste- ... best 2nd 3rd 4th 5th 6th

narity nality relation level of matte best best best best best
figures fluctu-

ation
1 yes yes no no high no E L W A G H
2 no yes no no low no R D L G B I
3 no yes no no middle yes W C L B D G
4 no no yes yes middle no G W B K M D
5 yes no yes yes high no F B V E B D
6 yes yes no no low yes E D F G O K
7 yes no yes yes low
8 no no no yes , high
9 yes yes no no middle yes H 1 D L R C
! 0 no no yes no high yes A D C G I F

yes C A U S K L
no L K S B F J

Fig. 5: Summary of ex post forecasting results.

and to combine these different forecasts subsequently in
the combination step.

For the selection of most appropriate models a randomly
selected sample of time series is analyzed and described in
detail by using different attributes such as stationarity,
trend, seasouality, unsystematic random fluctuation.
autocorrelation, absolute level of figures, etc. The values of
these attributes are determined using objective tests such as
the Dickey-Fuller Test (Dickey and Fuller, 1979) for
testing the stationarity and the Durbin-Watson test (Durbin
and Watson. 1950, 195 I, 1971 ) for testing autocorrelation.

After this description of all time series in the sample,
more than 20 different single univariate prediction
procedures as presented before make an ex post forecast
for each of those time series. The different forecasting
results of these ex post forecasts are compared in detail
concerning the prediction quality. This is for analyzing,
which prediction procedure performs best, second best, etc.
for what type of time series.

As an outcome a table is generated, where the
forecasting results are summarized as it is shown in figure
5. in this table the different time series of the selected
sample and their characteristic attributes are shown. The
single univariate forecasting techniques performing for
each time series best, second best, third best etc. are
summarized as well.

In best case, it would be sufficient to utilize the table
shown in figure 5 to build an automatic decision system, to
decide for which type of time series which forecasting
techniques pertbrms best, second best, third best, etc. The
six best tbrecasting methods would be selected and used as
input for the combination step.

But reality looks differently. For very similar time series
with almost the same characteristics the different single
prediction techniques perform differently. Therefore, the
results of table 5 are not suitable to generate an automatic

decision system directly out of it, for what type of time
series which forecasting techniques perform best.

Under the assumption that the decision, which
forecasting techniques perform best, second best, third
best, etc. is a classification task, an appropriate tool to
solve such kinds of classification problems is a machine
learning algorithm. A classification tool accepts a pattern
of data as input, and the output are decision rules or
decision trees, which can be used tbr classil~ing new and
unknown objects (see for more detail Breiman et al.,
1984).

Therefore, a symbolic machine learning algorithm is
integrated as a generator for an automatic decision system.
The ID3-type (Quinlan, 1986, 1987) machine learning
algorithm Newld (Boswell, 1990), for example, takes 
input a set of examples and generates a decision tree for
classification. The product of this machine learning
algorithm is a decision tree that can assign an unknown
object to one of a specified number of disjoint classes. In
our application, such a new unknown object would be a
new time series described by its characteristic attributes.
and the disjoint classes are the different single forecasting
approaches, which are used as input in the combination
step.

Using NewId classifications are learned from a set of the
attributes, which characterize the different types of time
series. For every input of the combination step an extra
decision tree is generated. That means that there exist six
decision trees: the first decision tree for the first input of
the combination step. generated by using all the attributes
mentioned in figure 5 and as classification goal the row of
best forecasting approaches. The second decision tree is
generated by using the same attributes again, but the
classification goal is not the row of best but of second best
forecasting techniques. The third decision tree is generated
by using the row of third best forecasting methods, etc.
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Fig. 6: Decision tree generated by Newld.

Figure 6 shows an example of a decision tree generated
by using Newld. Since such a decision tree is generated for
each input of the combination step, in sum six decision
trees are generated. These six generated decision trees
were pruned (Quinlan, 1987) and afterwards used as 
automatic decision system, to decide what single
forecasting approaches should be used to forecast the
different types of time series.

Combining most Promising Approaches
As mentioned above, the third question to answer is, how
the combination should be done. Generally, there are two
paradigms for combining different forecasting approaches
(Henery, 1995):
¯ On the one hand, it is possible to take the output of a

prediction technique and use it as input for another
forecast approach. This combination of different models
means that only one algorithm is active at the same time
(sequential multistrategy forecast).

¯ On the other hand, the combination of different
algorithms at the same time is possible as well. In these
approach several algorithms are active at the same time
(parallel multistrategy forecast).

In a way, in our application we combine these two
alternatives: the first step is kind of parallel multistrategy
forecasting, because several forecasting algorithms are
active at the same time, when the single prediction
methods generate their own forecasts. The second step is
kind of sequential multistrategy forecasting, because the
output of some prediction methods is used as input for
another forecasting procedure.

So far, we consider two different paradigms for the
combination algorithm. The first way is to use statistical
approaches (Thiele, 1993), the other way is to use neural
network approaches (Donaldson and Kamstra, 1996).

From the scientific point of view, the most interesting
alternative for the combination would be to use neural
networks, i:e. using as learning algorithm the
backpropagation algorithm (Werbos, 1974; Rumelhart et
al., 1986; Rumeihart and McCleiland, 1986). The outputs
of the different single forecasting methods selected above
are used in this approach as input values for the neural
network, where the combination is performed.

But taking into consideration the huge number of time
series to forecast, it seems not reasonable to use generally
neural networks as combination tool. But nevertheless in
some special situations it might be appropriate to use a
neural network as forecasting tool in the combination step
as it is shown in figure 7.

forecasting forecasting forecasting forecasting forecasting forecasting
method A method B method C method D method E method F

Fig. 7: Neural network as combination tool.
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There is one big problem realizing the combination step
by using neural networks. As already mentioned above,
neural networks normally need a lot of data for training
purposes. Because the time series in our application
contain in many cases only 30 or 40 values, neural
networks in these situations seem not to be the appropriate
way for the combination step. But this problem can be
solved by using techniques such as the cross-validation
method (Lachenbruch and Mickcy, 1968: Stone. 1974) and
the bootstrap method { Efron, 1983).

The alternative way for running the combination is to
use statistical approaches (Thiele, 1993). Generally, there
are four classes of statistical combination approaches:
¯ Unweighted combination: the common forecast is the

mean of the different single forecasts.
¯ Regression methods: the impact of each single forecast

for the combination is computed based on a regression
analysis (Granger and Ramanathan, 1984).

¯ Variance-covariance approaches: the impact of each
single forecast for the combination is computed based on
the error matrix (variance-covariance matrix) of the
different methods used in the single prediction step
(Bates and Granger, 1969, Clemen, 1989).

¯ probability-based combination approaches: the impact of
each single forecast for the combination is computed
based on probabilities, how well every single forecasting
method performs (see for more detail Clemen, 1989).

Similar to the single forecasting approaches the best
alternative of doing the combination depends on the
characteristics of the time series. Therefore the same way
is chosen as it is done for the selection of the best single
forecasting methods. Again the machine learning algorithm
Newld is used for generating a decision tree. This decision
tree is used for an automatic selection, in which situation
which way for combination seems most appropriate.

In many cases, already the simple mean of the different
single forecasting procedures yields much better results
than the best single forecast technique does. This confirm
Kang (1986) CA simple average is shown to be the best
technique to use in practice.") and Clemen (1989) ("In
many studies, the simple average of the individual
forecasts has performed best or almost best".). But there
are other situations as well. where it is appropriate to
combine the forecasts of the single forecasting approaches
by using more sophisticated techniques.

Theoretically, the regression and the variance-
covariance approach yield identical results (Thiele, 1993),
but caused by estimation errors in estimating the different
parameters, in practice the regression method and the
variance-covariance method produce different forecasts.

Sometimes, best forecasting results are produced by
using probability-based approaches for running the
combination step. The most interesting task using this
alternative is the estimation of a priory probabilities, which
are needed for running the combination of the different
single forecasts {Clemen, 1989).
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Evaluation
For evaluation purposes, there are two different parts of
evaluation: The first part of evaluation is done by taking
the DGOR (Deutsche Gesellschatt f’tir Operations Research
-- German Society of Operations Research) forecasting
competition of 1982 (Schwarze and Weckerle, 1982) as 
general benchmark. The second and concerning the real
application much more interesting part is to test the new
multistrategy approach in comparison to the actual
forecasting procedure, which is basically a weighted
moving average method.

DGOR Forecasting Competition

The first part of evaluation is done by taking the DGOR
forecasting competition of 1982 (Schwarze and Wcckerle,
1982) as a general benchmark.

This competition was organized in 1982 by the
forecasting group of the German Society of Operations
Research and the task is to forecast 15 different time series
of monthly data. All time series are real data concerning
selling figures, turnover figures, etc. The longest time
series contains 204 values, the shortest one contains 48
values.

Generally, there are two parts of the competition, where
each time the task is to forecast the above mentioned 15
time series:
¯ In the first part of the competition the task is to forecast

once 12 periods forecasting horizon.
¯ In the second part of the competition the task is to

forecast 12 times l period forecasting horizon.
As an evaluation criteria for performance of the different
forecasts Theil’s U (Theil, 197 i ) is used.

For forecasting once 12 periods forecasting horizon.
Theil’s U is calculated as shown in (1) and for forecasting
12 times l period forecasting horizon. U is calculated as
shown in (2):

Ils÷~"

,~,,,+l (I) U, =

I E(x,-x,,,)I-Io ̄  I

¯ x, : real value of month t.
¯ ~, : forecasted value for month t.
¯ to :

¯ T:

|11, T =
t .tn÷l (2)

actual month, where the forecast is done.
total forecasting horizon
(in our application: 12 months).

As shown in (I) and (2) U is calculated as square root 
the quotient of the squared forecasting error divided by the
squared forecasting error of the naive forecast.

Therefore, the most important advantage of using
Theil’s U is the fact that U automatically gives an answer
concerning the question, whether it is worth at all using a
more or less complex forecasting approach or whether it is
sufficient to perform a prediction using the naive forecast:
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¯ U = 0 : perfect forecast, it is worthwhile to forecast.
¯ 0 < U < I : forecast better than naive forecast,

it is worthwhile to do the forecast.
¯ U = ! : forecasting error equal to naive forecast,

it is not worthwhile to do the forecast.
¯ U > 1 : forecast worse than naive forecast,

it is not worthwhile to do the forecast.
Using TheiFs U as an evaluation criteria for performance
of our forecasting system and taking the mentioned DGOR
forecasting competition as a general benchmark, the
approach presented yields very good results:
¯ In the first part of the competition (1 time 12 periods

forecasting horizon) our method performs U~=0.69,
which is the second best result (best approach:
uib~sr=0.67).

¯ In the second part of the competition (12 times I period
forecasting horizon) our method performs U2=0.58,
which is also the second best result (best approach:
U~b~s~=0.55).

Note that approaches reaching better prediction results (i.e.
lower U value) need manual fine tuning and produced
better results after being tuned based on each single time
series, whereas our combined approach presented in this
paper works without any manual interaction and standard
parameter values, but completely automatically.

Mereedes-Benz Data
The second and concerning the real application much more
interesting part of evaluation is to test the new
multistrategy approach in comparison to the actual
forecasting procedure, which is basically a weighted
moving average method.

Based on 200 randomly selected time series that are
different to those time series used for performing the
classification task in the previous section the new approach
is evaluated by making ex post forecasts of the last 12
months. For this purpose similar to the evaluation using
DGOR data, there are again two steps of evaluation, where
each time the task is to forecast the above mentioned 200
time series of Mercedes-Benz data.
¯ In the first step the task is to forecast once 12 periods

forecasting horizon.
¯ In the second step the task is to forecast 12 times 1
¯ period forecasting horizon.

In earlier tests (Friedrich et al., 1995) it was already
shown, that the actual weighted moving average
forecasting method produces better results than the naive
forecast does (U < 1 ). Therefore, it seems not reasonable 
all to compare the new combined forecasting approach
with the naive forecast as it is done by using Theil’s U
such as in the previous subsection.

Instead of using Theirs genuine U as an evaluation
criteria a modified version of Theil’s U as shown in (3) and
(4) is used as evaluation criteria. In comparison to Theil’s
genuine U the modified ff is calculated as square root of
the quotient of the squared forecasting error not divided by

the squared forecasting error of the naive forecast but
divided by the squared forecasting error of the actual
weighted moving average forecasting method. For
forecasting once 12 periods forecasting horizon, the
modified U" is calculated as shown in (3) and for
forecasting 12 times l period forecasting horizon, the
modified ff is calculated as shown in (4):

10+7" t,,-T

cf = ,o,o-, (3) u; = ’="÷’I0+T

I=1’¢1"|

¯ x~ : real value of month t.

(4)

¯ ~, : forecasted value for month t using the new
combined forecasting approach.

" ~r : forecasted value for month t using the actual
weighted moving average forecasting approach.

¯ to : actual month, where the forecast is done.
¯ T: total forecasting horizon

(in our application: 12 months).
Similar to Theirs genuine U using Theil’s modified U"
automatically gives an answer concerning the question,
whether it is worth at all using the new approach or
whether it is sufficient to perform a prediction using the
actual weighted moving average forecasting approach:
¯ U" = 0: perfect forecast, it is worthwhile to use the

new approach.
¯ 0 < U" < 1 :combined forecast better than actual

forecast, it is worthwhile to use the new
method.

¯ U" = 1 : forecasting error of combined forecast equal
to that of actual method, it is not worthwhile
to use the new approach.

¯ U" > 1 : combined forecast worse than actual
method, it is not worthwhile to use the new
approach.

Using the modified rf as an evaluation criteria for
performance of our forecasting system and taking the
actual forecasting method as a benchmark, the combined
approach presented yields very good results:
¯ In the first step (1 time 12 periods forecasting horizon)

our new approach performs ~",=0.67.
¯ In the second step (12 times I ,period forecasting

horizon) our new method performs U 2=0.68.
Obviously, the combined forecasting approach yields much
better results than the actual method does. But due to the
fact that neither Theirs genuine U nor the modified U" are
linear measures, it is very difficult to say exactly (i.e. in
percent) how much better the new combined forecasting
approach is in comparison to the actual method.

In summary, in comparison to the actual forecasting
technique, our new combined approach yields much better
results. Due to the fact that the results are confidential, they
cannot be reported in more detail.
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Conclusion

Summary
In conclusion, the task was to forecast cumulative time
series of single options in the car industry, that do - at first
glance - not contain any systematic pattern like trend or
seasonality at all. By utilizing descriptive statistics, we
discovered that the installation rate of single options for
different models in different countries is more or less
systematic and structured. Therefore, the forecast is done
on installation rates, that are multiplied by the planned
number of cars produced per month of each model for each
country. Due to the huge number of time series to predict,
automatic forecasting approaches without any manual user
interaction are needed.

Because it is very difficult to identify external impact
factors, no causal approaches like regression analysis were
taken into consideration. Machine learning approaches and
neural nets for running the prediction seem not to be
appropriate as well. Therefore, univariate extrapolative
prediction methods were chosen for running the forecast.
But instead of selecting one single forecasting technique
such as ARIMA modeling more than 20 different
univariate forecasting approaches are tested for a randomly
selected sample of time series. Depending on the
characteristics of the time series, an automatic decision
model was generated by using the machine learning
algorithm NewId.

Using this decision model, for every time series the six
most appropriate forecasting approaches are selected, and
subsequently these six single forecasts are combined to get
one common forecast. Generally, for performing this

combination neural networks seem reasonable as well as
statistical approaches. Which alternative is used for the
combination step is again decided by a decision tree, that
was generated again by using the Newld algoritlun.

Selecting the most appropriate forecasting approaches
depending on the characteristics of the time series and
selecting again the most appropriate combination method
for the combination seems to guarantee an automatic
adaptation of the forecasting system to the time series.

In summary, in this paper a two step multistrategy
forecasting approach is presented, that integrates machine
learning techniques like decision trees for generating the
automatic decision systems as well as several well known
statistical univariate time series approaches such as
ARIMA modeling, adaptive filtering, and exponential
smoothing. Besides, multivariate statistical approaches
such as linear regression are used in this approach as well
as neural networks for performing the combination step.
An overview of the total system is given in figure 8.

Future Work

Currently, improvement of single forecasting methods by
automatic adaptation of parameters and improvement of
the decision trees by increasing the sample of time series is
under co~ideration. Besides, testing alternative
combination approaches such as using other types of
neural networks and other types of machine learning
algorithms like Quinlan’s M5 (Quinlan, 1992) for running
the combination step are under consideration as well.

In addition, recently a completely new single forecasting
approach called SAIPRO was developed (Friedrich and
Kirchner, 1995; Friedrich et al., 1996), that will be
integrated in the combined forecasting system next.

J~u~.de~ 8 a.~ods:;

¯ naive forecast (0) ¯ naive forecast I I 
¯ moving average (3) , moving average (6)
¯ moving a~wage (I 2) ¯ moving averaae ...
¯ ARIMA (0.0.1) ¯ ARIMA tl,O.0)
¯ ARIMA (1,0,1) ¯ ARIMA ...
¯ adaptive fiRenng , adapti~ filtennt~ ...
¯ exp. mu~oth, standard̄  exp. yanooth.: Brown
¯ nap. smooth.: Holt ¯ nap. mnoolh.: Winters

¯ varlance-covariance
...¯ neural nat v.~’k

~ l~’°babilily

¯ abs. level
¯ a;lI~lalioa
¯ xasonalii~
¯ sUiliomnly
¯ fraud

dec/s/on f~,es Jbr ~ ey" ¯ unayst, fluctnadon
~,,~ ~.~,v~ ....

*~,’len tree for .~o, of
eomblrmtlon makod:

Fig. 8: Overview of the muitistrategy forecasting system.
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