Abstract
This paper describes a framework and a system for generating mathematical models (i.e. sets of equations) for analyzing physical systems. The models are derived from physical principles, and include not only models based on algebraic and ordinary differential equations (i.e. "lumped" models), but also those based on partial differential equations (i.e. "distributed" models). We are motivated by the need for analysis models to be used in designing artifacts, and focus on the domain of thermal manufacturing. Our framework involves three sequential subtasks: identify regions of interest on the artifact, determine and identify the relevant physical processes, transform the set of individual processes into equations and carry out mathematical simplification. We take the view that understanding the task of model generation is fundamental to our future research on approximate modeling in design.

Introduction
Our research focuses on automated generation of quantitative mathematical models in the design of heat transfer systems. The models involve algebraic equations and ordinary and partial differential equations. In the design of heat transfer systems, it is necessary to evaluate various design candidates, and to find out tradeoffs among many design parameters. These activities involve the following subtasks:
1. Creating a mathematical model for the physical system at hand,
2. Deducing the behavior of the system by numerical simulations on computers, and
3. Validating the behavior predictions by inspecting them for "reasonableness".

In the domain of heat transfer, mathematical models often contain partial differential equations. In such cases, the second subtask, i.e. numerical simulation, becomes the major bottleneck in many design activities.

One way to overcome the bottleneck is to use approximate models at various stages of design, taking into account the accuracy and computation speed requirements of the design task. In many cases, careful choice of models in the first subtask of modeling can lead to significant savings in the subtask of numerical computation. For example, there is a dramatic reduction in computation to use a one-dimensional ordinary differential equation rather than a three-dimensional Laplace (partial differential) equation to model the heat transfer phenomena in a thin-plate.

Our research goal is to automate the task of modeling. We foresee two advantages of automating this task:

- Speeding up design cycles. A common approach to designing heat transfer systems is by iterative design, where an outer loop proposes various design candidates, and an inner loop evaluates them. In order to use approximate models to speed up evaluation, the system needs the ability to generate various approximate models, and to select appropriate ones. Automated model generation and selection will make the whole design cycle automatic, without interruptions due to human intervention.

- Making assumptions explicit. Automated modeling makes underlying model assumptions explicit, by keeping track of how models are derived from physical descriptions of problems. The assumptions can be used as constraints in the second subtask of simulations to ensure meaningful numerical data. The assumptions are also important in the third subtask, interpretations and validation of numerical results.

Artificial intelligence is important to support automated modeling by providing various kinds of representations and reasoning. Modeling is a mapping of phys-
The domain: heat transfer in manufacturing

Our work on this problem has been driven by problems of designing thermal manufacturing processes, e.g. casting and heat treatment processes. In particular we have focused on issues of modeling heat flow in these processes.

In the domain of heat transfer, mathematical models are based on a fundamental physical law: the law of conservation of energy. This law says that the net heat flow into any bounded region plus the net heat generation within the region is equal to the net heat gain within the region. Because this law is so central, and because it refers to a "bounded region", models in this domain are written in terms of one or more "control volumes", specific regions of the artifact to which the conservation law is being applied.

Other laws in this domain describe various kinds of heat transfer processes, such as conduction, convection, and radiation, giving conditions under which they happen and how the magnitude of the heat flow is related to properties of the physical system such as temperature, heat conductivity and area.

A typical model, then, is one or more equations describing the various heat flow processes in operation across the boundaries of the control volumes, describing the heat generation processes within the control volumes, and stating that energy is conserved.

Typical questions to be answered by a model include the temperature or amount of heat stored by a part of the physical system. It is often not enough to find an average or "lumped" value of, e.g., the temperature of some region. Rather, we often need to know the temperature distribution over the region. Thus, we need partial differential equations, and not the kind of "lumped parameter" models used in most recent AI research on numerical modeling [Falkenhainer and Forbus, 1991] [Addanki et al., 1991].

The system

Input and Output

The input and output of the system is shown in figure 1. It requires three kinds of input. The first kind gives information about the dimensions of an object, and its physical properties. The second kind gives the initial conditions and the environment of the object, such as temperatures and convection coefficient parameters. For a rectangular parallelepiped, the system requires boundary parameters at six surfaces of the object. The final piece of input is the query which includes physical parameter, its spatial and/or temporal dependency requirement, and its accuracy requirement. The spatial dependency requirement indicates whether the user needs to know the spatial variation of the parameter or just a lumped value. For example, the query of temperature distribution, $T(x, y, z, t)$ has
Input:
Dimensions and Physical Properties:
- \{(z, y, z) : z, y, z are dimensions\},
- \{(k, \rho, \text{Cp}) : k is conductivity, \rho is density, \text{Cp} is specific-heat\},

Initial and Boundary conditions:
- \{(T_0)_{y, 0} : initial temperature\},
- \{(P_0)_{i} : P is boundary parameters at surface \text{i}\},
e.g. \{(h, T_{\text{env}})_{y_0} : \text{convection parameters at surface } y_0\}.

Query:
- \{(Qu, \text{D}, \text{E}) : \text{is query, } \text{D is spatial/temporal dependency, E is allowable error}\}
e.g. \{T, (x, y, z, t), 20\%\}

Output:
A mathematical model is a set of one or more equations.

Figure 1: Input/Output of the system

Furnace

Material Plate

Figure 2: Heat Treatment

the spatial dependency requirement along the directions of \(x, y, z\) in addition to its temporal dependency requirement, \(t\).

The output of the system is a model, a set of one or more equations.

Example: Heat treatment Process

The query to illustrate the model derivation process is taken from designing a heat treatment process. In the heat treatment process, a material plate is heated up in a furnace, and maintained within a certain temperature range for material processing. The plate is clamped and insulated at two ends on the x-axis, i.e. the heat flux, \(Q_{x0} = 0\) and \(Q_{xL} = 0\). A heat flux, \(Q_{yM}\) is applied on top of the plate, along the y-axis, while the remaining surfaces of the plate normal to the \(y\) and \(z\)-axis are exposed to convection processes in the furnace environment, specified by the environment temperature \(T_{\text{env}}\) and the convection coefficient, \(h\). The furnace and the plate are shown in the \(x\) and \(y\) dimensions in figure 2.

The query is the temperature distribution in the plate, \(T(x, y, z, t)\), which has a spatial dependency in \(x, y, z\).

Algorithm and trace of example

The algorithm is shown in figure 5. The following is a trace of major steps in the algorithm that derives a model for \(T(x, y, z, t)\). The algorithm also requires various kinds of knowledge, a sample of which is shown in figure 3

1. System boundary identification:
Since the query \(T(x, y, z, t)\) has a spatial dependency requirement in \(x, y, z\). The system will instantiate a differential control volume, \(CV_{\text{differential}}\) within the plate, and a set of boundary control volumes, \(CV_{\text{boundary}}\). The differential control volume is used to model interaction of energy processes within the plate, while the boundary control volumes are used to relate heat flux at the surfaces of the plate to the energy processes within the plate. Samples of the control volumes are shown in figure 4.

2. Instantiating relevant heat and energy processes:
For the \(CV_{\text{differential}}\), we instantiate a set of energy processes \(\{\dot{E}, Q_x, ... Q_{z+dz}\}\), where \(\dot{E}\) is energy storage, and \(Q_x, ... Q_{z+dz}\) are heat flux on the surfaces. The instantiation includes identifying the location and types of heat flux, i.e. conduction in this case. Similar steps are repeated for each \(CV_{\text{boundary}}\).

3. Transformation and Simplification:

1. System boundary identification
Select and instantiate a set of control volumes CV based on knowledge type F.

2. Determining and Instantiation of processes
For each control volume CV, using the knowledge type H to:
- determine the type of processes for the CV,
- instantiate each of them by their location.

3. Transformation and Simplification
Transform the processes into their mathematical representation using the knowledge type H, and simplification using the knowledge of types G and M, until the model explicitly contains the desired physical quantity.

The transformation maps the set \{E, Q_1, ... Q_{1+dI}\} from previous stage into a mathematical equation

\[Q_x - Q_x + dx + Q_y - Q_y + dy + Q_z - Q_z + dz = \dot{E} \]

Then further simplification by applying mathematical transformations, such as Taylor’s series expansion, and then expanding the mathematical definitions of the terms from the domain knowledge, gives

\[\frac{\partial Q_x}{\partial x} dx - \frac{\partial Q_y}{\partial y} dy - \frac{\partial Q_z}{\partial z} dz = \dot{E} \]

and then

\[\frac{\partial}{\partial x} (k \frac{\partial T}{\partial y}) + \frac{\partial}{\partial y} (k \frac{\partial T}{\partial y}) + \frac{\partial}{\partial z} (k \frac{\partial T}{\partial z}) = \rho c \frac{\partial T}{\partial t} \]

The final model has one governing equation (PDE), which describes the temperature distribution within the plate, six boundary equations for the surface of the plate and a equation for the initial condition, figure 6.

Note that while this example resulted in a partial differential equation, our system is capable of producing ordinary differential equations or algebraic equations when these are appropriate.

Discussion
Having briefly described how our system works, we now turn to a discussion of its current status, limitations, and future directions. We also summarize the kinds of knowledge used in each subtask and discuss briefly how this work might transfer to other domains.

Status
An initial version of the system described in this paper has been implemented in Common Lisp and CLOS. It was developed and validated based on discussions with three researchers in the field of thermal modeling, and examples and knowledge taken from three classical textbooks in the domain, [Incropera and DeWitt, 1985] [Jaluria and Torrance, 1986] [Arpaci, 1966]. The system runs quite quickly, taking roughly 2 seconds on a SparcStation 2 to do the example presented above. However, it has some major limitations (see below).

We are currently implementing a new version which will address these limitations.

Limitations and future directions
We now discuss the main limitations of our current system and the issues involved in extending it to deal with those limitations.

The biggest limitation of our system is that two major kinds of approximation have not yet been fully implemented. They are: approximation by order of magnitudes and approximation by looking for invariants. The order of magnitude approximation is based on two standard techniques used by expert engineers: dimensional analysis and order of magnitude analysis.

This approximation can be carried out in two ways. One way is done within the last task of model generation, after a mathematical representation has been generated. Dimensional analysis is used to transform the governing equation, i.e. the equation that represents the law of conservation of energy, into dimen-
sionless form, and at the same time, to establish the order of magnitude scales for all the terms in the equation. Then order of magnitude reasoning is used to examine the terms and to eliminate those which are of order of magnitude less than the dominant ones in the equation.

While this way of order of magnitude approximation can be easily done for a single component object where a single governing equation is involved, the technique can become complicated when multiple governing equations are involved in a multi-components object. We have observed that expert engineers tend to employ another way of carrying out order of magnitude approximation. Their approach is to use a set of rules for pruning out less significant energy processes during the second task of model generation, i.e. the task of identifying and instantiating relevant energy processes. These rules are based on a set of physical quantities known as “dimensionless numbers.” These rules can be inferred from the same kind of order of magnitude reasoning described above, and so can be viewed as a compiled form of it, but they have the advantage that they can be applied at the stage where the physical components and processes are still represented explicitly, rather than at the stage where all we have is equations. As we argue in [Ling and Steinberg, 1990], doing this reasoning on physical entities make it much simpler, especially for complex objects, but there is a cost in generality. We are implementing both ways of doing order magnitude approximation, to compare the tradeoffs and advantages of both of them.

The second kind of approximation is based on looking for invariants in material properties and parameter values. Many kinds of approximation can be attributed to invariants in parameter values. For example, a nonlinear heat conduction equation can be turned into a linear one if its conductivity is constant, instead of varying with temperature. Two dimensional partial differential equation can become one-dimensional if its temperature is constant along one dimension. Also a transient energy process can be eliminated if its temperature is constant with respect to time. Some of these invariants can be easily identified from input data, such as the values of conductivity. Other have to be estimated by using rough calculation and heuristics, such as in estimating time and spatial variation of temperatures. We are also implementing this kind of approximation.

Another major current limit of our system is that it can handle only artifacts with a single component, e.g. the flat plate in the example above, along with its environment. It thus cannot handle problems like casting, where there are multiple components (e.g. the mold, the solidified portion of the casting, and the still-molten portion of the casting). Handling multiple components will require more complex methods of choosing control volumes. E.g., for certain approximate models, some components are not modeled at all, i.e. are not inside any control volume. It will also require more complex ways of finding relevant heat flow processes. E.g., any place where two solid components are in contact can give rise to a conduction process. Extending our system to handle multi-component artifacts is a high priority for us.

The final major limitation of our system is that it can only handle simple rectangular shapes. Extending it to handle other regular shapes (e.g. spheres) is straight forward. However, handling more complex shapes raises the issue of approximating a complex shape by a simpler one. Shape approximation is not well understood in general, but may be more tractable if approached in this kind of restricted context. We plan to put off dealing with this issue until others mentioned above have been handled.

Kinds of knowledge used

The current system uses several kinds of knowledge in the various sub-tasks. Besides the obvious, knowledge of how to choose control volumes and and the specific laws of heat flow and conservation of energy, the system uses knowledge of geometry (e.g. to derive the area of a surface) and of various mathematical operations, e.g. simplification and Taylor series expansions.

Transfer to other domains

The key things that make our approach work in this domain include the existence of a strong domain theory and a conservation law that ties the individual processes together. We believe that these features are present in other domains as well, such as fluid mechanics, but we have not investigated this issue in any detail yet. While it is clear that the knowledge for instantiating physical processes is domain specific, and the knowledge for mathematical transformation is domain independent, it is not clear how general the knowledge for choosing control volumes or for filtering out irrelevant processes is.

Related Work

Both Addanki et al [Addanki et al., 1991] and Weld [Weld, 1990] focus on model selection and switching. The work of Addanki et al uses graphs to represent models of physical domains, and domain specific parameter change rules to select models which resolve the conflicts between predictions and observation. Weld's work uses the domain independent technique of inter-model comparative analysis to select appropriate models. In both cases, model equations are explicitly input to the system, and they both mention the need for model generation and abstraction.[Addanki et al., 1991], [Weld and Addanki, 1990]. Our current work is a first step in that direction.
The work of Falkenhainer and Forbus [Falkenhainer and Forbus, 1991] is closest to ours. They focus on generating an initial model based on the requirement of a query. A domain theory is decomposed into a set of model fragments, where each model fragment contains a description of objects, processes associated with the objects, and the assumptions governing its uses. The system deduces a set of assumptions from the requirement of a query, and uses ATMS to find a minimum set of model fragments, such that they fulfill the requirement of the query. Their system covers wider domains involving qualitative and ordinary differential equations. Our system aims at a more narrow but complex domain, involving models of partial differential equations. They take the compositional approach of forming a model from existing pieces of model fragments, while we focus on generating a model from its physical description. Overall, we view our research as complementary to each other.

Also related to our work is that by Gelsey [Gelsey, 1989], which deals with the problem of inferring the behavior of mechanical devices like simple clocks, starting with a CAD/CAM-like model of their structure. For this task, the artifact decomposition is given and the set of physical processes is known (they are just the contact forces between parts of the device), and the primary problem is to instantiate these forces. However, both the focus, the domain, and the models are quite different from ours.

Summary
We take the view that understanding the task of model generation is fundamental to our future research on approximate modeling in design. We focused on a single but broad domain of thermal manufacturing processes, and analyzed how mathematical models of physical systems can be derived from physical principles. Using an example of a distributed formulation involving partial differential equation, we illustrate the task of model generation as a sequential subtasks of: identifying an appropriate system boundary on the artifact, determining and instantiating relevant physical processes, and transforming the set of processes into an equation, and carrying out mathematical simplification.

Knowledge used at various stages of the process include: knowledge of choosing system boundary, the domain specific physical laws, knowledge of geometry, and knowledge of mathematical transformations.

Besides discussing the tasks and types of knowledge, we also discuss two types of approximations, order of magnitude approximation and approximation by looking for invariants, and show where these kinds of approximation can be made in the system.

Acknowledgments
We would like to thank Prof. Yogesh Jaluria, R.S. Viswanath and Steve Lee for teaching us the domain knowledge, and to Saul Amarel, Tom Ellman, Don Smith, Casimir Kulikowski, and members of the CAP project for their advice and support.

References

