
Visual Support for Navigation in the Polly System

Ian Horswill
MIT Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

ian@ai.mit.edu

Abstract

In this paper I will discuss a system which uses
vision to guide a mobile robot through corridors
and freespace channels. The system runs in an un-
modified office environment in the presence of both
static and dynamic obstacles (e.g. people). The
system is also among the simplest, most effective,
and best tested systems for vision-based navigation
to date. The performance of the system is depen-
dent on an analysis of both the task and the envi-
ronment in which it is performed. I will describe
both of these and discuss how they simplify the
computational problems facing the robot, as well as
the performance of the resulting system. Finally, I
will briefly discuss work in progress regarding place
recognition and point-to-point navigation.1

Introduction
Navigation is one of the most basic problems in
robotics. Since the ability to safely move about the
world is a prerequisite of most other activities, naviga-
tion has received a great deal of attention in the AI,
robotics, and computer vision communities. One of the
limiting factors in the design of current navigation sys-
tems, as with many other robotic systems, has been
the availability of reliable sensor data. Most systems
have relied on the use of sonar data [7][9], or on vision
[10][3][5][6][13][1]. In all cases, the unreliability of the
available sensor data was a major concern in the re-
search. Some researchers have even avoided the use of
sensor data entirely in favor of precompiled maps [11].

In this paper, I will discuss a very simple vision-based
corridor following system which is in day-to-day use on
Polly, a low cost mobile robot. The system is notable in
that it is very fast (14 frames per second in the current

1Support for this research was provided in part by the
University Research Initiative under Office of Naval Re-
search contract N00014-86-K-0685, and in part by the Ad-
vanced Research Projects Agency under Office of Naval Re-
search contract N00014-85-K-0124. Thanks to Steve White
for reading an early draft of this paper.

system), very well tested, and uses only cheap "off-the-
shelf" hardware. A major source of this simplicity is
an analysis of both the task and the niche of this sim-
ple agent. Such an analysis helps make clear the de-
pendence of an agent on its environment and provides
guidance for the design of future systems.

The Polly system

Polly is a low cost autonomous robot2 intended for
use as a platform for developing low cost, real-time vi-
sion systems for guiding situated action. The compu-
tational hardware on Polly consists of a 16 MIP digi-
tal signal processor (Texas Instruments TMS320C30)
with 64K 32-bit words of high speed ram3, a video
frame buffer/grabber, a simple 8-bit microcontroller
(M68HCll) for I/O tasks, and commercial microcon-
trollers for voice synthesis and motor control (see figure
1). Nearly all computation is done on the DSP. The
implementation goal of the project is to develop an ef-
ficient visual system which will allow the robot to run
unattended for extended periods (hours) and to give
primitive "tours" of the MIT AI lab. Our general ap-
proach to design has been to determine what particular
pieces of information are needed by the agent to perform
its activities, and then to design a complete visual sys-
tem for extracting each piece of information. Thus, the
agent might have distinct systems for answering ques-
tions such as "am I about to hit something?" or "what
is the axis of this corridor?" If these systems are sim-
ple enough, they can be run in parallel very efficiently.
While one would eventually like to build a single system
which can compute all of these pieces of information, it
is useful as a research strategy to treat each piece of
information as a separate computational problem.

~Polly was built for $20K (parts cost in the U.S.), but
today, a roughly comparable, or perhaps even faster, system
could be bought for roughly $10K US.

3The DSP includes an additional 1Mb of low speed ram,
which is not presently in use. At present, only approxi-
mately 10KW of RAM are in use.

62

From: AAAI Technical Report FS-92-02. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

m

Figure 1: Computational hardware of the Polly robot.

Figure 2: Corridor following.

Corridor following
Corridor following is a common navigation task in office
environments. Office buildings tend to consist of long
corridors lined with rooms on either side, thus much
of the work of getting from one room to another con-
sists of driving along a series of corridors. The corridor
follower described here is intended to be used as one
component among many that cooperate to allow the
robot to participate in its projects.

Corridor following can be broken into the comple-
mentary problems of keeping aligned with the axis of
the corridor and keeping away from the walls (see fig-
ure 2). This amounts to keeping the variable 0 small,
while simultaneously keeping I and r comfortably large.
Since Polly can only move in the direction in which it’s
pointed, these variables are coupled. In particular, if
the speed of the robot is s, then we have that:

dl dr
-- -- ssin0

dt dt

so moving away from a wall requires that Polly tem-
porarily turn away from the axis of the corridor. Thus
the problem for the control system amounts to control-
ling s and ~ so as to keep i and r large and 0 small
and so the problem for the visual system amounts to
determining when one of these conditions is violated.

Computational properties of office
environments

In the general case, estimating distance and parsing the
visual world into objects are both very difficult prob-
lems. For example, figure/ground separation can be ar-
bitrarily difficult if we consider pathological situations
such as camouflage or crypsis, which can require pred-
itors to learn to recognize prey on a case by case basis
[12, p. 260]. Fortunately, office environments, which
form the habitat of the Polly system, are actively struc-
tured by both designers and inhabitants so as to facili-
tate their legibility. Thus computational problems can
often be greatly simplified by taking into account these

special properties, or constraints, which partially define
the agent’s habitat (see [4]).

One such property is that office environments have a
flat ground plane, the floor, upon which most objects
rest. For a given height and orientation of the camera,
the distance of a point P from the camera will be a
strictly increasing function of the height of P’s projec-
tion in the image plane, and so image plane height can
be used as a measure of the distance to objects resting
on the floor 4. While this is not a linear measure, and
the exact correspondence between heights and distances
cannot be known without first knowing the specifics of
camera, it is a perfectly useful measure for determin-
ing which of two objects is closer, whether an object is
closer than a certain threshold, or even as an (uncal-
ibrated) measure of absolute distance. This property
was referred to as the ground plane constraint in [4].

Another important property of office environments
is that they are generally carpeted and their carpets
generally have only fine-scale texture. That is to say
that from a distance, the carpet will appear to have a
uniform reflectance. If this is true, and if the carpet
is uniformly illuminated, then the areas of the image
which correspond to the floor should have uniform im-
age brightness, and so any violation of this uniformity
must be an object other than the floor. This prop-
erty, called the background texture constraint in [4], can
greatly simplify the computational problem of figure-
ground separation.

The control system

At any given time, the corridor follower has to make
a decision about how to turn and whether or not to
brake. The forward velocity is based on a measure c’
(estimated by the visual system, see the next section)
the distance to the nearest object in front of the robot:

())s=min Vrnax,max O, dsa/-~--_-dstov(c’-dstov)

Thus the robot drives at a rate of Vmaz for distances
over d,a.t~ and slows down linearly until it stops at a
distance of dstop.

The steering rate ~ is controlled by four pieces of
information: the orientation of the axis of the corri-
dor, 0, a confidence measure for 0, and measures of the
distances i’ and r’ to the nearest obstacles (including
walls) on the left and right respectively. Again, all these
are estimated by the visual system. The system drives
the steering motor at a rotational velocity of

dO

d---[= c~(l’ - r’) +

if it is confident of its measure of 9, otherwise with a
velocity ofa(l’-r’). Here a and ~ are gains (constants)
adjusted empirically for good results.

4This observation goes back at least to Euclid. See [2].

63

From: AAAI Technical Report FS-92-02. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

In practice, we have not measured the variable 0 di-
rectly, but instead have used the image plane ~ coordi-
nate of the projection of the axis of the corridor, which
is more easily measured. The projection x is equal to
k tan- 1 0, where k is determined by the focal length and
resolution of the camera. Thus the actual control law
used in our system is:

d/9
d~" = c~(l’ - r’) + ~tan-1/9

In our experience, this has lead to a stable control sys-
tem. This seems reasonable, since /9 ~ tan-1/9 for /9
near 0, and since the visual system rejects values of/9
outside the field of view of the camera.

The visual system
The visual system estimates the axis of the corridor and
three distance measures from 64 x 48 pixel grey-scale
images covering a field of view of 110 degrees (1.9 raxii-
ans). As was mentioned above, the axis of the corridor
is represented by the z coordinate of its image-plane
projection. This can be estimated by finding the van-
ishing point of the parallel lines forming the edges of
the corridor. This can, in turn, be computed by ex-
tending to infinity the perpendicular to the intensity
gradient of each pixel with significant intensity varia-
tion and searching for intersections. For a point (z, y)
in the image, this perpendicular line is given by

dI dI
{(x’, y’): x’ = x + S~yy, y~ = y - s~, for some

For points lying on edges, this perpendicular will be the
local tangent line of the edge at that point.

The resulting lines could then be clustered to find
their intersections and the strongest one chosen as cor-
ridor’s vanishing point. This is the approach used by
Bellutta, et. al. [1], which was an inspiration for this
work. We can optimize this system by using knowledge
of the camera’s geometry to assume the y-coordinate
(height) of the vanishing point. In the case of Polly,
the vanishing point is roughly at y=0. This allows us
to reduce the estimation problem from two parameters
to only one. The x-coordinate of the vanishing point
can then be estimated by intersecting each line with the
line y=0 to find the x-coordinate of the intersection:

dI/dy
Zvanishing-point = X q- Y dI/dx

The system then finds the mean and variance of the
estimated z coordinates. The mean is used as the esti-
mate of the axis of the corridor and the variance as the
confidence measure.

There are two problems involved in estimating the
left, right, and center distances: figure/ground separa-
tion to find the walls in the image, and depth estimation
to determine the distances to them. As was discussed
in section , these can be greatly simplified by the back-
ground texture and ground-plane constraints, respec-
tively. The system finds boundaries between the floor

and the walls or other objects by running an edge de-
tector over the image. It then constructs a radial depth
map5, D, indexed by x coordinate:

D(z) = rnin{y : the image has an edge at (z,

Thus D(x) is the y coordinate of the lowest edge found
in the xth column of the image, and hence is a mea-
sure of the distance to the nearest object in that direc-
tion. The left, right, and center distances, l’, r’, and
cI, can then be computed by taking the minimum over
all columns in the left, right and center regions respec-
tively.

A number of things are worth noting here. First of
all, ! I and r’ are not necessarily the distances to the
walls. They are simply the distances to the nearest
non-floor objects on the left and right sides of the im-
age. Fortunately, this is not a problem, since if there
are other objects in the way it will simply cause the
robot to steer around them, thus conferring on the
robot a limited object avoidance capability. If there
are no such objects, then there is no difference anyhow.
Thus having the system make no distinctions between
walls and other obstacles is actually advantageous in
this situation. The second thing worth noting is that
the distance measures are nonlinear functions of the
actual distances6. For some applications this might be
unacceptable, but for this application we are mostly
concerned with whether a given object is too close or
whether the left side or the right side is closer, for which
purposes these nonlinear measures are quite adequate.
Finally, since no camera has a 180 degree field of view,
l ’ and r ~ are not even measures of the perpendicular
distances to the walls, l and r, but rather are measure
of the distance to the closest point in view. Again, this
is not a problem in practice, partly because our camera
has a relatively wide field of view, and partly because
for a given orientation of the robot, the perpendicular
distance is another monotonic and strictly increasing
function of the measured distance, and vice versa.

Evaluation

The corridor follower has been running for six months
and is quite stable. It has seen at least 150 hours of ser-
vice with several continuous runs of one hour or more.
This makes it one of the most extensively tested and re-
liable visual navigation systems to date. We have been
able to run the system as fast as our robot base could
run without shaking itself apart (approximately 1 m/s).
While there are cases which will fool the braking sys-
tem (see below), we have found the system to be quite
reliable in general.

5The map is called "radial", because its entries corre-
spond to distinct directions along the ground plane.

6The actual function is a quotient of linear equations
whose coefficients are determined by the camera parameters.

64

From: AAAI Technical Report FS-92-02. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

Efficiency
The system is very efficient computationally. The
present implementation runs at 14 frames per second
on the DSP. This implementation is heavily I/O hound
however, and so it spends much of its time waiting for
the serial port and doing transfers over the VMEbus to
the frame grabber and display. We expect that perfor-
mance would be noticeably better on a system with a
more tightly coupled DSP and frame grabber. The ef-
ficiency of the system allows it to be implemented with
a relatively simple and inexpensive computer such as a
DSP. The modest power requirements of the computer
allow the entire computer system to run off of a single
motorcycle battery for six hours or more.

The simplicity and efficiency of the system make it
quite inexpensive compared to other real-time vision
systems. C30 DSP hoards are now available for per-
sonal computers for approximately $1-2K US and frame
grabbers can be obtained for as little as $400 US. Thus
the corridor follower would be quite cheap to install on
an existing system. We are also working on a very in-
expensive hardware platform for the system which we
hope will cost less than $200 US.

Failure modes
The system runs on all floors of the AI lab building on
which it has been tested (floors 3-9), except for the 9th
floor, which has very shiny floors. There the system
brakes for the reflections of the overhead lights in the
floor. We expect the system to have similar difficulties
in the basement. The present system also has no mem-
ory (e.g. a local map) and so cannot brake for an object
unless it is actually in its field of view. This sometimes
causes problems. The system also cannot brake for an
object unless it can detect an edge on or around it, but
this can more or less be expected of all vision systems.
The system’s major failure mode is braking for shad-
ows. If shadows are sufficiently strong they will cause
the robot to brake when there is in fact no obstacle.
This is less of a problem than one would expect be-
cause shadows are generally quite diffuse and so will
not necessarily trigger the edge detector. Nevertheless,
the edge detector is biased to prefer vertical edges to
horizontal ones since shadows in this environment tend
to be horizontal (see section). Finally, the 7th floor
the lab, where the robot spends most of its time, does
not have a single carpet, but several carpets, each with
a different color. The boundaries between these car-
pets can thus be mistaken for obstacles. Fortunately
for us however, the carpets boundaries always appear
horizontal in the image and their changes in grey-scale
intensity are small enough so that the do not actually
cause the edge detector to fire.

Performance outside corridors

While the system was designed to navigate corridors,
it is also capable of moving through more complicated
spaces. Its major deficiency in this situation is that

0 0 0 OJO 0 0 0
/,

0 0 o /0 0 o O O

0 0 0 0

0 0 o o 0 0 0 0

Figure 3: A forest environment.

there is no way of specifying a desired destination to
the system. Effectively, the system acts in a "point and
shoot" mode: it moves forward as far as possible, veer-
ing away from obstacles, and continuing until it reaches
a dead end or is stopped externally. The system is also
non-deterministic in these situations. When the robot
is blocked by an object, it will turn either left or right
depending on the exact position and orientation of the
robot and object. Since these are never exactly repeat-
able, the robot is effectively non-deterministic. Thus
in a "forest environment" such as figure 3, the robot
could emerge at any point or even get turned around
completely. The system’s performance is good enough
however that a higher-level system can lead it though
a series of corridors and junctions by forcing the robot
to make a small open-loop turn when the higher-level
system wants to take a new corridor at a junction. The
corridor follower then realigns with the new corridor an
continues on its way.

Extensions
A number of minor modifications to the algorithm de-
scribed above are worthwhile.

Vertical biasing

As discussed above, shadows and bright lights radi-
ating from office doors can sometimes be sufficiently in-
tense to trigger the edge detector. Since these shadows
always radiate perpendicular to the wall, they appear
horizontal in the image when the robot is successfully
aligned with the corridor. By biasing the edge detec-
tor toward vertical lines, we can make it less sensitive
to these shadows. The present system weights vertical
lines twice as heavily as horizontal lines, thus a hori-
zontal line must be twice as strong as a vertical line to
trigger the edge detector.

Wall following

When the system described above reaches a large
open space, the single wall which is in view will act as a
repulsive force, causing the robot to turn away from it
until there is nothing in view whatsoever. Thus it nat-
urally tends toward situations in which it is effectively
blind. While this is sufficient for following corridors,

65

From: AAAI Technical Report FS-92-02. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

and is in fact a very good way of avoiding obstacles, it
is a very bad way of actually getting to a destination
unless the world consists only of nice straight corridors.
This problem can be fixed by modifying the steering
control so that when only a single wall is in view, the
robot will try to keep the other wall at a constant dis-
tance. Thus, in the case where only the left wall is in
view, the control law becomes:

dO
d-7 = ~(l’ - d)

Where d is the desired distance for the wall.

Stop acceleration

When the robot is forced to stop, such as when it
reaches a corner, it can take a relatively long period
of time for it to turn far enough to enable it to move
forward again. This is easily fixed by forcing the base to
turn at a fixed (large) speed, but in the same direction
it would otherwise turn, whenever the base is stopped.

Work in progress
The corridor follower is intended to be one component
of a more general navigation system7 presently under
development. To navigate in its office environment, the
robot needs to be able to detect important features of
the environment such as the junctions of corridors, to
keep track of its location, and to determine on each
clock tick whether to continue following the present cor-
ridor or to initiate a turn. To date, I have implemented
prototype versions of the first two of these.

In addition to the information discussed above, the
robot’s visual system presently delivers the following
signals to the central (control) system. They are re-
computed from a new image on every clock tick.

¯ blocked? True if the robot is stopped or is about to
stop because there is an obstacle too near it. Com-
puted from cI.

¯ in-corridor? True if there is a large open space in
front of the robot. Computed from d

¯ open-left?, open-right? True if there is a large
open space to the left/right into which the robot
might be able to turn. Computed from r’ and 11.

¯ left-turn?, right-tara? True if open-left/open-
right and the robot is in a corridor and aligned with
it’s axis, that is, if the robot is at a junction.

¯ open-region? True when open-left and open-right.

¯ dark-floor? True when the pixel on the bottom
and in the middle of the screen is dark (grey level
less than 80).

rTo be specific, the navigation system is intended to be
able to move to specified locations within the corridors and
open areas of the lab. It is not intended to navigate within
the offices of the lab.

¯ light-floor? True when the pixel on the bottom
and in the middle on the screen is light (grey level
greater than 110).

¯ edge-count The number of edge pixels found by the
edge detector.

¯ blind? True when fewer than 40 edge pixels have
been found. (This is useful for determining if the
robot may be pointing toward a wall, and thus unable
to see the floor).

In addition, the motor system provides the following
signals:

¯ turn-rate The current velocity being sent to the
robot’s turn motor.

¯ turning? True if abs(tara-rate > threshold.

¯ aligned? True when not turning, i.e. when the robot
is aligned with the corridor.

¯ aligned-long-time? True when aligned? has been
true for at least three clock ticks.

This signals have proved sufficiently stable to imple-
ment a simple plan executive, which has been useful for
debugging and gathering data for the place recognition
system.

The current place recognition system is based on the
observation that the corridor follower keeps the robot
at a deterministic distance and orientation relative to
the walls. Thus the robot’s view of any particular scene
within a corridor will be very nearly invariant. If this
is true, then a very simple technique, such as tem-
plate matching, ought to suffice to distingush places. In
practice, we’ve used a system which is somewhat more
complicated, based on a structured associative mem-
ory similar to a frame system [8]. All place frames in
this system have identical structure, thus making them
relatively simple to match. At present, place frames
contain a low resolution (16 × 12), unnormalized grey-
scale image of the scene, the direction (north, south,
east, west) in which the robot was facing when it took
the image, the approximate position of the places, and
a text string describing the place. On each clock tick,
the frame system compares the current low-res image
obtained from the frame grabber, together with the last
known position, to each of the frames, so as to obtain
a matching score:

II I - Fill 2 + ~(abs(z - F~) + abs(y -

Where I is the current image, z and y are the posi-
tion of the last matched frame, and F is the frame be-
ing matched. If the score of the frame with the lowest
score is below threshold, then that frame is taken as the
current place, and the current position is updated.

As of this writing, the system appears to reliably rec-
ognize eight places in the lab, provided that there are

8The position is not intended to be metrically accurate, it
is mostly intended to allow the system to determine whether
one place is north, south, east, or west of another.

66

From: AAAI Technical Report FS-92-02. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

no people or other obstacles in the scene, but since the
system has only been operational for a week, we have
only been able to perform a few dozen test runs. A
more substantive appraisal will have to wait for the
rest of the navigation system to be completed. As is
to be expected, the system fails to match places which
are not in corridorssince the viewpoint constraint no
longer holds in these situations. Similarly, it cannot
match when it is steering to avoid an obstacle, or when
when the appearance of the world has changed. Finally,
this implementation is limited in that the camera faces
downward for a clear view of the floor, which makes it
difficult or impossible to distinguish many places. Here
the ability to steer the camera would be extremely use-
ful.

Conclusions
Curiously, the most significant things about the system
are the things which it does not do. It does not build
or use detailed models of its environment, it does not
use carefully calibrated depth data, it does not use high
resolution imagery, and it is not designed to run in ar-
bitrary environments. Indeed, much of its power comes
from its specialization.

One may be tempted to object that this system is
too domain specific and that more complicated tech-
niques are necessary to build practical systems for use
in the real world. I think that this is misguided how-
ever. To begin with, even if one had a truly general
navigation system, its very generality may well make it
much slower than the system discussed here. The gen-
eral system may also require allocating scarce cognitive
or attentive resources which would be better used for
other concurrent tasks. In either case, a more intelli-
gent approach might be to use both systems: the simple
system in simple situations and the more cumbersome
system in others. This makes a reconfigurable architec-
ture, such as Ullman’s Visual Routine Processor [14],
quite attractive since it can be quickly configured by
the central system to perform the most efficient algo-
rithm which is compatible with the immediate task and
environment.

One should also remember that very few systems are
truely general. Stereo-based systems contain hidden
assumptions about the presence of texture, the inverse
of the background texture assumption decribed here.
Other systems may assume a piecewise-planar world. In
general, we cannot trust claims of generality unless they
are accompanied by a detailed analysis and empirical
tests in a variety of domains.

While the approach used in this paper may not work
for all tasks, it does suggest that it is possible to build
simple, inexpensive vision systems which perform useful
tasks, and that the solutions to vision problems do not
always involve buying better cameras or bigger com-
puters. Furthermore, a detailed understanding of an
agent’s niche can bring to light special properties which
can greatly simplify the computational problems facing

the agent and/or its designer. Such analyses can even
be recycled, allowing the insight gained in the design or
analysis of one system to guide the design of another.

References
[1] P. Bellutta, G. Collini, A. Verri, and V. Torte.

Navigation by tracking vanishing points. In AAAI
Spring Symposium on Robot Navigation, pages 6-
10, Stanford University, March 1989. AAAI.

[2] James E. Cutting. Perception wilh an Eye for Mo-
tion. MIT Press, 1986.

[3] Y. Goto and A. Stenz. The cmu system for mobile
robot navigation. In 1987 IEEE Internation Con-
ference on Robotics and Automation, pages 99-105.
IEEE, March 87.

[4] Ian Horswill. Characterizing adaptation by con-
straint. In Proceedings of the First Annual Euro-
pean Conference on Artificial Life, 1991.

[5] Ian D. Horswill. Reactive navigation for mobile
robots. Master’s thesis, Massachusetts Institute of
Technology, June 1988.

[6] A. Kosaka and A. C. Kak. Fast vision-guided mo-
bile robot navigation using model-based reason-
ing and prediction of uncertainties. To appear in
Computer Vision, Graphics, and Image Process-
ing, 56(2), September 1992.

[7] Maja Mataric. A distributed model for mo-
bile robot environment-learning and navigation.
Technical Report 1228, Massachusetts Institute of
Technology, Artificial Intelligence Lab, May 1990.

[8] Marvin Minsky. The Society of Mind. Simon and
Schuster, New York, NY, 1986.

[9] Hans P. Moravec. Certainty grids for mobile
robots. Unpublished memo.

[10] Hans P. Moravec. The stanford cart and emu rover.
Technical report, Robotics Institute, Carnegie-
Mellon University, February 1983.

[11] ed. Nils J. Nilsson. Shakey the robot. Technical
Report 323, SRI International, April 1984.

[12] Herbert L. Roitblat. Introduction to Comparitive
Cognition. W. H. Freeman and Company, 1987.

[13] K. Storjohann, T. Zeilke, H. A. Mallot, and W. yon
Seelen. Visual obstacle detection for automatically
guided vehicles. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation,
pages 761-766, May 1990.

[14] Shimon Ullman. Visual routines. Cognition, 18:97-
159, 1984.

67

From: AAAI Technical Report FS-92-02. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

