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Introduction

To be useful in the real world, robots need to move
safely in unstructured environments and achieve their
given goals despite unexpected changes in their sur-
roundings. The environments of real robots are rarely
predictable or perfectly known so it does not make sense
to make precise plans before moving.

The robot navigation problem can be decomposed
into the two problems of getting to a goal and avoiding
obstacles. The problem of getting to a goal is a global
problem in that short paths to the goal generally cannot
be found using only local information. The topology of
the workspace is important in finding good routes to
a goal. The problem of avoiding obstacles can often
be solved using only local information, but for an un-
predictable environment it cannot be solved in advance
because the robot needs to sense the obstacles before it
can be expected to avoid them.

Some have solved the navigation problem by solving
these two sub-problems one after the other. A path is
first found from the robot’s initial position to the goal
and then the robot approximates this path as it avoids
obstacles. This method is rather restrictive in that the
robot is required to stay fairly close to or perhaps on
a given path. This would not work well if the path
found goes through a passageway which turns out to
be blocked by some unforeseen obstacle. Solutions that
are only local, such as those produced often by artificial
potential fields, often lead the robot into local minima
traps.

We propose a much more flexible solution using a
common tool, the artificial potential field, in a new form
that we call a "hybrid artificial potential field". A hy-
brid potential field is obtained by combining two differ-
ent kinds of artificial potential fields, a global discon-
tinuous potential field and a local continuous potential
field.

The global potential field covers the whole floorplan
and captures the static floorplan information. Since it
includes only information about static objects it can be
computed a priori when given the goal. We represent
this field as a two dimensional array of heights so that
the robot rolls downhill to the goal while avoiding fixed

obstacles. In this potential field all free cells will be
assigned the city block distance of the shortest free path
from that cell to the goal so this field has no minima
other than at the goal.

The local field captures local information obtained by
sensors about obstacles and covers only the area around
the robot. The purpose of this field is to push the robot
away from obstacles that are on its path. This field
has to be computed repeatedly as the robot moves in
the workspace. We continuously sense the environment
with sonar sensors and regularly update the dynamic
potential field. For each sensor reading we place a "hill"
in the potential field. Since these hills are built as the
obstacles are sensed this method works with obstacles
that move in unknown, unpredictable paths. Obviously,
if obstacles move too fast collisions are sometimes un-
avoidable.

Unfortunately, when these two types of potential
fields are added together, the result may have local min-
ima. We have analyzed the causes of these minima and
found ways to deal with them.

Artificial Potential Fields

Artificial potential fields can be used to solve the robot
navigation problem by determining the positions the
robot should move through or by controlling the forces
that move the robot. Khatib [Khatib, 1985] [Khatib,
1986] pioneered the use of potential fields in a force
control context. His robot was directed to move as if
the goal were generating an attractive force and the ob-
stacles were generating repulsive forces. The attractive
force of the goal should extend throughout the environ-
ment of the robot, but the repulsive forces should have
little or no effect at great distances. Each of these forces
could be represented by a surface in three dimensional
space in which the negative of the gradient points in
the direction of the force. Then the attractive force is
represented by a valley and the repulsive forces are rep-
resented by hills. The robot then rolls downhill until it
reaches a minimum point and then it stops. The pri-
mary problem with this version of an artificial potential
field is that there may be minima other than the goal
so the robot may roll to some spot other than the goal
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and stop.
Figure 1 illustrates a simple case where the robot will

go to a local minimum other than the goal. The robot is

to the goal (that are free) are given the value one, and
their neighbors (that are free and unassigned) are given
the value two, and so on. Eventually, all free cells will
be assigned the city block distance of the shortest free
path from that cell to the goal. We call this a discon-
tinuous version because the potential field is undefined
for the occupied cells and there may be "cliffs", sharp
discontinuities, generated by walls in the floorplan as
illustrated in figure 2. This version of potential field
has no minima other than at the goal.

-0.

Figure 1: A wall generates a local minimum in a con-
tinuous potential field

in the middle of the upper left edge (-1, 0), and the goal
is in the middle of the lower right edge (1, 0). There 
an obstacle in the shape of a line segment from (0, -1)
to (0, 1). The valley for the goal has height x at points
whose distance from the goal is z. The hill for the
obstacle has height 1 at points in the obstacle, height
0 at points whose distance from the obstacle is greater
than 1/2, and height 1 - 2x at points whose distance
from the obstacle is z where z is between 0 and 1/2.
The valley for the goal will keep the robot on the line
y = 0, and the hill for the obstacle will keep the robot
from going through the obstacle. The minimum that
the robot will reach has height 3/2 at (-1/2, 0). Walls
between the robot and the goal will typically generate
local minima. There have been many attempts to get
around the problem of local minima.

Koditschek [Koditschek, 1987] showed that no ana-
lytic potential field function will direct a point robot in
two dimensions with stationary obstacles of arbitrary
shape to goal points while avoiding all obstacles. To
guarantee that obstacles are avoided, there will nec-
essarily be local minima other than the goal in some
environments.

Barraquand, Latombe, and Langlois [Barraquand
and Latombe, 1989] [Barraquand et ai., 1991] pioneered
the use of a very different type of potential field. In
this version, the potential field is placed in a discretized
workspace and a search is made in configuration space
from the starting configuration to the goal configura-
tion. This search is guided by the potential field used
as a heuristic function. Thus, the potential field is used
only in position control and not force control. The floor-
plan is represented as a grid of free and occupied cells
and the goal cell is given the value zero. The neighbors

Figure 2: A wall generates a cliff in a discontinuous
potential field

Navigation Using Hybrid Potential
Fields

The problem with the continuous version of artificial
potential fields is that the robot may be pulled to a
spot other than the goal where the attractive force of
the goal and the repulsive forces of the obstacles can-
cel each other out and the robot gets stuck in a local
minimum. A discontinuous artificial potential field does
not have this problem, but this version does not handle
moving obstacles and it can take a relatively long time
to compute.

The method of navigation we are proposing uses a
hybrid between the continuous and the discontinuous
versions of artificial potential fields. We derive a dis-
continuous potential field as a function of the floorplan
and a continuous potential field as a function of the sen-
sor readings. The floorplan does not change much, but
the sensor readings change frequently, so we refer to the
two types of potential fields as static and dynamic.

We first build the static potential field based on the
floorplan. The algorithm to compute the static poten-
tial field requires the floorplan to be represented by a
grid of occupied and free cells. All cells that are fully

155

From: AAAI Technical Report FS-92-02. Copyright © 1992, AAAI (www.aaai.org). All rights reserved. 



or partially occupied are labeled occupied. Then we ex-
pand the obstacles by the radius of the robot so that if
the center of the robot is in a free cell the rest of it will
also be in free cells. The static potential field has only
one minimum at the goal and is undefined for cells con-
taining known obstacles. This potential field will pull
the robot toward the goal from any free location in the
workspace.

For each set of sensor readings, we build a local con-
tinuous potential field containing hills for the sensed
obstacles. This dynamic potential field centered on the
robot will push the robot away from the obstacles, both
stationary and moving. These hills can be built as the
obstacles are sensed so this works with obstacles that
move in unknown paths. We represent this potential
field as a discrete grid where the cells are the same size
as the cells of the static potential field so that the two
fields can easily be added together.

Unfortunately, when the static and dynamic poten-
tial fields are added together, the result may have lo-
cal minima. On the other hand, we have studied what
causes these minima and we found ways to deal with
them. These local minima are caused by either sensed
obstacles not in the floorplan, or by hills that are wider
than they need to be, or by false sensor readings. If a
local minimum is caused by a false sensor reading or by
an obstacle that will get out of the way soon, then the
robot should wait until its current location is no longer
a minimum. If the minimum is caused by a hill that
is too wide, the hill’s extent should be reduced. If the
minimum is caused by an obstacle that is in the way
and will stay in the way, the robot should find another
way to the goal.

This way of dealing with local minima is programmed
first by detecting when the robot is stuck and then after
it is stuck for some time, we reduce the extent of the
hills caused by stable obstacles and if the robot remains
stuck even longer, we put stable obstacles in the floor-
plan and recompute the discontinuous static potential
field. We consider the robot stuck if it has not moved
more than some threshold distance in some period of
time. By modifying the parameter that specifies how
long the robot will wait in a local minimum, one can
modify how "patient" the robot is.

When the static potential field is recomputed, we add
obstacles to the floorplan if the obstacles appear stable,
and we remove obstacles from the floorplan if they were
previously added but they have since moved out of their
previous location. It may be the case that the obsta-
cles added to the floorplan block every path from the
robot to the goal and no new paths are opened up by
removing other obstacles. In that case we go back to
the original floorplan and original static potential field
and keep trying. This way if all paths to the goal are
blocked for some time, and then one or more paths is
opened up, the robot still has a good chance of reaching
the goal. There may be applications where this "per-
sistent" attitude is not desired and for these situations,

the algorithm can easily be modified so that the robot
gives up if it has not reached the goal after some period
of time.

Results from the Simulated Robot

We designed many scenarios with one, two, three, or
four obstacles moving in straight lines with constant
velocity. For different situations we found the speed
necessary for the obstacles to collide with the robot.
When there was only one obstacle, it would have to
move at about the same speed as the robot for there
to be a collision. When there were two obstacles, they
could squeeze the robot between themselves and collide
with somewhat slower speeds. When there were three
or four obstacles, they could surround the robot at very
slow speeds and the potential field hills would prevent
the robot from escaping and then the obstacles would
close in and crush the robot.

To show that this method of navigation works well in
environments with many moving obstacles (not work-
ing in concert to crush the robot), we generated many
scenarios with between 10 and 50 randomly moving ob-
stacles. Each line of tables 1 and 2 was derived from
running 100 random scenarios. The tables give the ob-

obstacle number of
speed obstacles average]safe]averagepath time runs crashes

100 10 72.15 98 0.02
100 20 96.42 94 0.06
100 30 125.55 92 0.09
100 40 148.56 90 0.11
100 50 174.70 84 0.18

300 10 73.66 97 0.03
300 20 94.54 92 0.08
300 30 114.43 86 0.17
300 40 133.58 80 0.24
300 50 147.48 69 0.43

500 10 76.45 95 0.05
5OO 20 96.69 76 0.32
500 30 109.58 63 0.57
500 40 132.23 37 1.18
500 50 143.55 25 1.61

Table 1: One room statistics

stacle speed in millimeters per second (the robot’s max-
imum speed is 500 millimeters per second), the number
of obstacles per scenario, the average times to reach the
goal, the number of the 100 scenarios where the robot
reached the goal without any collisions, and the aver-
age number of collisions per scenario. Table 1 was ob-
tained using a floorplan of a single large room bounded
by four walls and table 2 was obtained using the five
room floorplan with two blocked doorways as shown
in figure 3. Each obstacle started in a random cell of
the floorplan and moved in a random path consisting
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obstacle number of average ] safe I average
speed obstacles path time runs crashes

100 10 914.08 97 0.03
100 2O 760.62 9O 0.10
i00 3O 830.59 78 0.30
100 4O 829.28 69 0.43
100 5O 994.96 61 0.67
300 10 577.99 72 0.35
300 20 536.30 64 0.54
300 3O 563.65 36 1.24
300 4O 605.38 16 2.00
300 5O 648.86 12 3.21
500 10 494.87 31 1.27
500 2O 510.80 9 3.04
500 30 548.79 2 5.02
5OO 4O 596.57 0 7.93
500 5O 621.53 0 11.25

Table 2: Five room statistics

of short straight line segments. The different obstacles
moved in many different directions and changed direc-
tions often. A few of of the crashes occurred before
the robot had a chance to move because some of the
initial random configurations placed an obstacle on top
of the robot. When there were 10 obstacles, 2 of the
100 random cases started in a collision situation, and
for 20, 30, 40, and 50 obstacles, there were 6, 7, 8, and
9 initial collisions. Most of the collisions in the one
room case where the obstacles moved 100 millimeters
per second were caused by these initial collisions. In-
creasing the number of obstacles generally increased the
time needed to reach the goal. Increasing the number
of obstacles or increasing the speed of the obstacles de-
creased the number of crash-free runs and increased the
average number of crashes per run. For the one room
case, only when there were 40 or 50 obstacles moving
at 500 millimeters per second was the likelihood of a
collision greater than 50%. There were many more col-
lisions in the five room example with blocked doorways.
Most of these collisions were by doorways or walls or in
the small rooms. The average time to reach the goal
is much larger in the five room scenarios and this aver-
age is skewed by a few very long paths in some cases.
The performance of the robot degrades gracefully and
becomes poor only in very difficult situations. Figure 3
shows the path to the goal the robot took in one sce-
nario with 40 obstacles which are not shown.

Results from the Real Robot

Our TRC Labmate, Eric the Red, is confined to a lab
whose rough floorplan is given in figure 4. Also shown
in figure 4 is a path Eric took starting from near the
upper right corner of the lab. Eric soon got stuck in
a local minimum behind two boxes and then he added

Figure 3: The path taken amidst 40 obstacles

Figure 4: A path Eric took around some boxes
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the obstacles to his floorplan and recomputed the static
potential field and then moved around the boxes. Ten
times Eric took similar paths (same starting and ending
positions) and on the average he ended up about half 
foot from where he "thought" he was. Figure 5 shows

Figure 5: Eric’s path when obstacles persistently got in
the way

the path Eric took when moving boxes and a moving
person continued to block Eric’s path for three min-
utes before getting out of the way. After ten similar
paths, it again was off by about half a foot. For the
trials mentioned above, Eric regularly adjusted its po-
sition and orientation by comparing the sensor readings
to the floorplan. This adjustment was usually unneces-
sary for the first case, but for the second case with the
"determined" obstacles, when there was no adjustment,
Eric was off by more than three feet on the average.

Our adjustment algorithm not only keeps Eric on
track, but it can also get Eric back on track if the ini-
tial configuration it is given is wrong. We ran 15 trials
with the initial orientation off by 5°, 10°, 15°, 20°, and
250 each three times. Eric stopped about a half a foot
from where it thought it stopped on the average when
the goal was about 15 feet from the starting position.
If the dead reckoning was perfect and there was no cor-
rection based on sensor readings, Eric would have been
off by 1.3 and 6.5 feet for the initial errors of 50 and
25° respectively.

Contributions

We have addressed the problem of robot navigation in
a known environment with unpredictable moving ob-
stacles. We have shown that using our hybrid poten-
tial field works well by testing both a simulated robot
and a real one. We have not made any assumptions

on the number or the motion of the obstacles and this
makes the problem very difficult. We have performed
a large number of experiments in simulation with up
to 50 obstacles moving at various speeds on random
trajectories. We also have experimental results with a
moving robot, a TRC Labmate, equipped with ultra-
sonic sensors, to show that our solution works in the
real world in real time. Our method will lead to some
collisions, but it performs very well even when there are
many obstacles moving in unpredictable paths. Its per-
formance degrades gracefully as the speed and number
of obstacles increase.

Our main contribution to robot navigation is the idea
of combining a potential field which captures the floor-
plan information with a potential field which captures
the sensory data. We use a single tool, a potential field,
to solve the two problems of getting to a goal and avoid-
ing obstacles. Since this method computes a static po-
tential field for the entire workspace, the robot is not
restricted to any fixed path as in several other methods.
This method is fast enough to work in real time because
for most iterations it runs in constant time in the num-
ber of obstacles and in the size of the workspace.

The main problem with using potential fields for nav-
igation is that they often have local minima other than
at the goal. Another contribution is that we have ana-
lyzed the causes of local minima in the hybrid potential
field and have found ways to deal with each kind of local
minimum.
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