
Automated Deduction in Arithmetic
with the Omega Rule

Siani Baker
Computer Laboratory

University of Cambridge
Cambridge, CB2 3QG, UK

E-mail: slbl004@cl.cam.ac.uk

Abstract

An important technique for investigating
derivability in formal systems of arithmetic
has been to embed such systems into semi-
formal systems with the w-rule. This paper
exploits this notion within the domain of au-
tomated theorem-proving and discusses the
implementation of such a proof environment.
This involves providing an appropriate repre-
sentation for infinite proofs, and a means of
verifying properties of such objects.

1 Introduction

Normally, proofs considered in theorem-proving are fi-
nite; however, there is a reasonable notion of infinite
proof involving the w-rule, which infers a proposition
from an infinite number of individual cases of that
proposition. The w-rule involves the use of infinite
proofs, and therefore poses a problem as far as imple-
mentation is concerned.

With the goal of automatic derivation of proofs within
some formalisation of arithmetic in mind, an (imple-
mentable) representation for an arithmetical system
including the w-rule is proposed. The implemented
system is useful as a proof environment (and also as
guide to generalisation in the more usual formalisation
of arithmetic [Baker et al 92]).

2 The Constructive Omega Rule

A standard form of the w-rule is

A(0),A(1)...A(n_)...

where n_n_ is a formal numeral, which for natural num-
ber n consists in the n-fold iteration of the successor
function applied to zero, and A is formulated within

the language of arithmetic. This rule is not deriv-
able in Peano Arithmetic (PA)1, since for example,
for the GSdel formula G(x), for each natural number
n, PA i- G(n__) but it is not true that PA I- VxG(x).
This rule together with Peano’s axioms gives a com-
plete theory - the usual incompleteness results do not
apply since this is not a formal system in the usual
sense.

However, this is not a good candidate for implementa-
tion since there are an infinite number of premises. It
would be desirable to restrict the w-rule so that the in-
finite proofs considered possess some important prop-
erties of finite proofs. One suitable option is to use a
constructive w-rule. The w-rule is said to be con-
structive if there is a recursive function f such that for
every n, f(n) is a GSdel number of P(n), where P(n)
is defined for every natural number n and is a proof
of A(_n) [Takeuti 87]. This is equivalent to the require-
ment that there is a uniform, computable procedure
describing P(n), or alternatively that the proofs are
recursive (in the sense that both the prooftree and the
function describing the use of the different rules must
be recursive) [Yoccoz 89]. There is a primitive recur-
sive counterpart2 which is also a candidate for imple-
mentation. Note that in particular these rules differ
from the form of the w-rule (involving the notion of
provability) considered by Rosser [Rosser 37] and sub-
sequently Feferman [Feferman 62].

Various theoretical results are known for these sys-
tems. Shoenfield has shown that ’PA + w-rule’
(PA~)a is equivalent to ’PA + recursively restricted
w-rule’ [Shoenfield 59]. The sequent calculus enriched
with the recursively restricted w-rule in place of the
rule of induction (let us call it PAr~4) has cut elinfi-
nation, and is complete [Shoenfield 59].

l See for example [Schwichtenberg 77] for a
formalisation.

Sin other words, such that there is a primitive recursive
function f for which, for every n, .f(n) is a GSdel number
of the proof of A(n__), the nth numerator of the w-rule.

3See Section 3 below for description.
4For a more formal description see [Baker 92a].

From: AAAI Technical Report FS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

The primitive recursive variant has also been shown to
be complete by Nelson [Nelson 71]. If one has the rule

F~-Aof repetition ~ in PAw, any recursive derivation
can be "stretched out" to a primitive recursive deriva-
tion using the same rules of inference, plus this rule
[LSpez-Escobar 76, P169]. Since my implementation
is developed using effective operations over represen-
tations of object-level syntax (where effectiveness is
an analogous concept to primitive recursion), and PA
with the unrestricted w-rule forms a conservative ex-
tension of this system, the (classical) system PA with
a primitive recursive restriction on the prooftrees was
chosen as a basis for implementation.

In the context of theorem proving, the presence of cut
elimination for these systems means that generalisa-
tion steps are not required. In the implementation, al-
though I do not claim completeness, some proofs that
normally require generalisation can be generated more
easily in PAc~ than PA.

3 PAw: Arithmetic with the
Constructive Omega Rule

The system PAw is essentially PA enriched with the
w-rule in place of the rule of induction. The deriva-
tions are then infinite trees of formulae; a formula
is demonstrated in PAw by "exhibiting" a prooftree
labelled at the root with the given formula. Syn-
tactical details about this system PAw are given in
[L6pez-Escobar 76, P162] (see [Prawitz 71, P266-267]
for a natural deduction representation). PAw has been
described by Schfitte as a semi-formal system to stress
the difference between this and usual formal systems
which use finitary rules [Schiitte 77, P174].

For implementational purposes infinite proofs must be
thought of in the constructive sense of being gener-
ated, rather than absolute. It is necessary to place a
restriction on the prooftrees of PAw such that only
those which have been constructively generated are
allowed, in order to capture the notion of infinite la-
belled trees in a finite way. The normal approach when
dealing with a system with infinitary proofs such as
PA~ is to work with numeric codes for the deriva-
tions rather than using the derivations themselves. See
[Schwichtenberg 77, P886] for further details, includ-
ing the case of the w-rule. By adding the provability re-
lation and numeric encoding, a reflection system which
necessarily extends the original one may be formed
[Kreisel 65, P163]. However, the necessity of using this
GSdel numbering approach may be avoided by follow-
ing Tucker in defining primitive recursion ("effective-
ness") over various data-types that are better adapted
to computational purposes [Tucker et al 90].

If an arithmetical encoding method were to be used,
the primitive recursive constraint could be attached
directly to the w-rule. However, without using such an

approach the restriction must be placed on the shape
of the proof tree in which the w-rule appears: only
derivations which are "effective" will be accepted5.

Hence I define

I’-pAc~ ~ t~f 3.f. f is an ’effective’ prooftree of
PAc~ with ¢ as initial sequent.

This does not define PAc~ as a (semi-)formal system
in the sense that it does not say what the axioms and
rules of inference are. This replaces the usual approach
of using numeric encoding (using notation r 7) to con-
sider some statement used to strengthen PA of the
form:

(3H (prooftree(H) A conc(H) = r-~>7))

It is now necessary to provide some means for reason-
ing about primitive recursive infinite proof trees. The
objects of interest are prooftrees (in the sense of LSpez-
Escobar [LSpez-Escobar 76]), labelled with formulae
(namely, the sequents to be proved at each point) and
rules. The notion of effectiveness of a tree, which corre-
sponds to primitive recursion, is defined in [Baker 92a].
In addition, a (proof) tree must be well-founded, in the
sense that it does not have an infinitely deep branch.
The rules that relate the formulae between node and
subnode are the standard rules for the logical connec-
tives, the extra w-rule with subgoals (I)(0), ¢(1),...,
and substitution. A formula in PA is demonstrated
in the extended theory by exhibiting a prooftree la-
belled at the root with the given formula. Proper-
ties of such primitively recursively defined trees can
be proved using induction principles associated with
the datatypes. These are the sorts of proofs that have
been automated by [Bundy et al 91], and I am able to
automate the simpler proofs that arise. This involves,
for example, giving a proof that a given rewrite applied
a given number of times to a formula schema yields a
particular formula schema. Details of this, and of how
the implementation relates to the effective prooftrees
are considered in [Baker 92a].

4 Implementational Representation

One use of the constructive w-rule is to enable auto-
mated proof of formulae, such as Vx (x + x) + x
x + (x + x), which cannot be proved in the nor-
mal axiomatisation of arithmetic without recourse to
the cut rule. In these cases the correct proof could
be extremely difficult to find automatically. How-
ever, it is possible to prove this equation using the
w-rule since the proofs of the instances (0 + 0) + 0
0+(0+0), (1+1)+1 = 1+(1+1) are easily
and the general pattern determined by inductive infer-
ence.

S[Baker 92a] provides a full definition of effectiveness.

2

From: AAAI Technical Report FS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Axioms

Proof

n__- s"(O)

0+y = y

s(x)+y = s(x+y)

(2) n TIMES ON LEFT ([1, 1])
(1) ON LEFT ([2, 2, 1, 1])
(2) n TIMES ON RIGHT ([2])
(1) ON RIGHT ([2,2,2])
(2) n TIMES ON LEFT ([1])

(n+a) +a= a+ (a+a)
(8"(0) + s"(0)) + s"(0) = s"(0) + (8"(0)
8"(0 + 8"(0)) + s"(0) = s"(0) + (s"(0)

s"(s"(0)) + ,"(O) = ~"(0) + (,"(0)
s"(,"(0)) + s"(0) = ,"(0 + (,"(0)

s"(,"(0)) + 8"(0) = ,"(,"(0)
~"(~"(0) + ~"(0)) = s"(8"(0)+,"(0))

A A A A
EQUALITY

Figure 1: A General Proof ofVx (x+x) +x = x+(x+x)

(1)
(2)

For the implementation it is necessary to provide (for
the nth case) a description for the general proof in
constructive way (in this case a recursive way), which
captures the notion that each P(n) is being proved in
a uniform way (from parameter n). This is done
manipulating A(n), where VxA(x) is the sequent to be
proved, and using recursively defined function defini-
tions of PA as rewrite rules, with the aim of reducing
both sides of the equation to the same formula. The
recursive fimction sought is described by the sequence
of rule applications, parametrised over n. In practice,
tile first few proofs will be special cases, and it is rather
tile correspondence between the proofs of P(99), say,
and P(100), which should be captured. The processes
of generation of a (recursive) general proof from in-
dividual proof instances, and the (metalevel) check-
ing that this is indeed the correct proof have been
automated (see [Baker 92b]). Further details of the

’algorithms and representations used, together with
the correspondence between the adopted implementa-
tional approach and the formal theory of the system
are described in [Baker 92a]. Any appropriate induc-
tive inference algorithm, such as Plotkin’s least general
generalisation [Plotkin 69], or that of Rouveirol, who
has tackled the problem of controlling the hypothesis
generation process to get only the most relevant can-
didates [Rouveirol 90], could be used to guess the gen-
eral proof from the individual proof instances. In gen-
eral, the complexity of the algorithm needed to guess
a general proof from non-uniformly generated exam-
ples is exponential, whereas the stages of checking the
general proof and suggesting a cut formula are only
polynomially complex, and this is reflected in the time
taken to produce the result. As an alternative, the user
may bypass this whole stage by specifying the general
proof directly.

The general proof representation represents P(n), the
proof of the nth numerator of the constructive w-rule,
in terms of rewrite rules applied f(n) or a constant

number of times to formulae (dependent upon the pa-
rameter n). As an example, the implementational rep-
resentation of the general proof for Vx (z + x) + x
x + (z + x) takes the form given in Figure 1 (although
it may be represented in a variety of ways) presuming
that, within the particular formalisation of arithmetic
chosen, one is given the axioms of addition of Figure 1.

By s’~ (0) is meant the numeral n, ie. the term formed
by applying the successor function n times to 0. The
next stages use the axioms as rewrite rules from left
to right, and substitution in the general proof, un-
der the appropriate instantiation of variables, with the
aim of reducing both sides of the equation to the same
formula. The subpositions to which the rewrite rules
are applied are given in parentheses, according to the
exp_at notation of Clam [van Harmelen 89]. The gen-
eral proof represents, and highlights, blocks of rewrite
rules which are being applied. Meta-induction may be
used (on the first argument) to prove the more general
rewrite rules from one block to the next: for example,
Vn sn (x) + y = n (x +y)corresponds to n applications
of axiom (2) above.

Effective trees selected by the implementation are
shown to be correct, according to a given way of check-
ing for correctness, which involves using induction over
various datatypes. To reason about such trees, I work
in a theory of trees and of the original syntax (which
may be defined effectively). Defining equations for
primitive recursive functions are taken as axioms, with
a derived form as inference rules to allow rewriting of
a formula in the obvious way. Furthermore, the sys-
tem encapsulated by the implementation is shown to
be sound with respect to PAc~, although completeness
is left as an open question. Casesplits and condition-
als in the general proof correspond to branching in the
effective tree representation.

Automated proof in such a system might be seen as
a goal in itself, but it is also possible to use this sys-

From: AAAI Technical Report FS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

tern as a guide to the provision of difficult proofs in
more conventional systems. This is the concern of the
following section.

5 An Application: Generalisation

Generalisation is a proof step which allows the postu-
lation of a new theorem as a substitute for the cur-
rent goal, from which the latter follows easily. It is a
powerful tool with a variety of r61es, such as enabling
proofs, defining new concepts, turning proofs for a spe-
cific example into ones valid for a range of examples
and producing clearer proofs. Although generalisation
is an important problem in theorem-proving, it has
by no means been solved. It is important and still
being investigated for reasons which have to do with
cut elimination and the lack of heuristics for providing
cut formulae. A cut elimination theorem for a system
states that every proof in that system may be replaced
by one which does not involve use of the cut rules.
Uniform proof search methods can be used for logical
systems, in sequent calculus form, where the cut rule
is not used. In general, cut elimination holds for arith-
metical systems with the w-rule, but not for systems
with ordinary induction. Hence in the latter, there is
the problem of generalisation, since arbitrary formulae
can be cut in. This makes automatic theorem-proving
very difficult, especially as there is no easy or fail-safe
method of generating the required cut formula.

An important technique for investigating derivability
in formal systems of arithmetic has been to embed
such systems into semi-formal systems with the w-rule.
This section presents a new approach to the prob-
lems of generalisation by means of "guiding proofs"
ill the stronger system, which may succeed in produc-
ing proofs in the original system when other methods
fail (cf. examples (9), (10), (13) of Table 1).
gested methods are suitable for automation (and in-
deed the first two methods suggested below have been
automated for simple arithmetical examples) and re-
sult in the suggestion of an appropriate cut formula.

Note that there is a class of proofs, including Vx (x
x) + x = x + (x + x), which are provable PA only
using the cut rule but which are provable in PAc~
[Baker 92a]. [consider whether the proof in PAc~
suggests a proof in PA, ie. in particular, what the
cut formula would be in a proof in Peano Arithmetic?
That is, what would the A be below?

Ordinary induction does not work on Vx(x + x) + x
x + (x + x) (C), primarily because the second, third
and sixth terms in the step case may not be broken

6See [Schwichtenberg 77], for example.

down by the rewrite rules corresponding to (1) and
(2) above, and hence fertilisation (substitution using
the induction hypothesis) cannot occur. That is why
we have to use the cut rule. We would wish A to be
a more general version of C, so that we could prove
A ~- C, but on the other hand to be suitable to give
an inductive proof, so that we could prove ~- A by in-
duction. Hence we would be tackling the problem of
generalisation by using an alternative (stronger) rep-
resentation of arithmetic as a guide.

Three methods have been developed in order to sug-
gest a cut formula from a general proof. The most
basic is to see what remains unaltered in the nth case
proof, and then write out the original formula, but
with the corresponding term re-named. So, for the ex-
ample in Figure 1, we would wish to rewrite the vari-
able corresponding to A as y. In this case, this would
give

A - VxVy (x + y) + y = x + (y+
A could then be proved by induction on x. Note that
what is meant by ’unaltered’ is defined by what is un-
affected in structure by the rewrite rules. This proce-
dure has been automated (all that is required is de-
tection of the unaltered terms), and so the cut for-
mula may be produced automatically. This method
of generalisation will allow the proof of some theo-
rems which pose a problem for other methods, such as
x # 0 --+ p(x) + s(s(x)) = s(z) wherep is t hepre-
decessor function (detailed comparisons of this ’unal-
tered term’ method with other generalisation methods
with regard to this example are given in [Baker 92a]).

A second method which encompasses this approach,
but produces a more general generalisation, is to
look at the rules of the general proof, and work
out what the most general statement could be which
was proved using these rules. This process has
been applied in various other domains (see for ex-
ample [Donat & Wallen 88]), and is the approach of
explanation-based generalisation (denoted ’EBG’ as
an abbreviation). EBG is a technique for formulating
general concepts on the basis of specific training exam-
pies, first described in [Mitchell 82]. In general terms
the process works by generalising a particular solution
to the most general possible solution which uses the
rules of the original solution. It does this by applying
these rules, making no assumptions about the form of
the generalised solution, and using unification to fill in
this form. The method is applied in this instance to a
new domain, namely that of general proofs. The ap-
proach is described in detail in [Baker 92a], but as an
illustration of the method, let us apply explanation-
based generalisation to Figure 1, to give the process
shown in Figure 2. The right hand column are the
instantiations of variables, which are finally to be fil-
tered back up into the original expression. Essentially
what is happening is that the application of the rules
are matched to see what the generalisation could be.
So if (2) is applied m times, this will match with the

4

From: AAAI Technical Report FS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

rules form of general proof instantiations
(2) n times at I’1, 1"1 fnO([s’(X) YIK]) = W original
(1) once at 1,,2,2, 1, 13 fnO([s"(X + Y)IK]) = W
(2) n times at 1,2] fnO([s"(Y)lK]) = W X = 0
(1) oneeat 1,,2,2,2] fnO([sn(Y)lK]) =sn(P+Q) W=sn(P)+Q
(2) ntimesat I’1] sn(Y+K) =sn(Q) P=0, fnO=+
EQUALITY s"(Y + K) =s"(Y + It’) Q= Y +

Figure 2: Illustration of Explanation-Based Generalisation on Rules of General Proof

form

sm(X) q- Y :::~ sm(X q-

Nothing more is supposed about the original form of
the general proof than that it is of the form U = W.
The rule application blocks on the left hand side of
this figure are identical with those of the general proof
given in Figure 1. The procedure is to form the most
general general proof which could use those same rules
to achieve equality. Hence, these same rewrite rules
are applied at the specified subpositions to give a new
general proof. In so doing the structure of U and W
is revealed. For instance, the fact that rule (2) may
be applied n times at subposition [1,1] of U = W re-
veals that U must be of the form fnO([sn(X) + YIK])
(which represents some functor fnO of as yet unknown
arity with initial argument sn(X) + and additional
arguments K) before the rule application, and of the
form fnO([sn(X Y)IK]) af terwards. Th is pr ocess is
repeated until all the given rules are exhausted. Fi-
nally, the left-hand side and the right-hand side of the
general proof are unified (since the original proof re-
sulted in equality). Throughout this process, informa-
tion will have been obtained regarding the structure
of some of the postulated variables in this new general
proof, such as that presented in the final column of
Figure 2.

Feeding such variable instantiation information back
to the original expression U = W shows that it must
be of the form:

(~_+ Y) + I¢ = ~_+ (Y +

This gives tile most general generalisation as being

Vx Vy Vk (x T y) T k = x -F (y T

The whole process is really just a term-matching ex-
ercise, and has been successfully automated.

The EBG method proposed in this section will suc-
ceed in the sense that there does exist some general
proof such that a correct cut formula could be found
by EBG (so long as inductive proof by generalisation
apart, that is, generalisation by means of renaming
some occurrences of the same variable in an expression,
is possible). However, it will not necessarily work with
any given general proof, nor if generalisation apart is
not appropriate for the example under consideration.

Although the heuristic of replacing unaltered terms is
suitable for implementation (and was successfully im-
plemented), the method of explanation-based generali-
sation extends this idea to provide a uniform algorithm
based on the underlying structure of the proof. The
implementation of EBG described in [Baker 92a] fol-
lows the unification process described above, and thus
subsumes the implementation of the heuristic method.

A third, more general, method of generalisation which
subsumes the previous suggestions is provided by lin-
earisation of the general proof, which suggests cut for-
mulae in more complex cases (see [Baker 92a] since
there is not the space to give further details in this ab-
stract). In the natural number examples given above,
the general proof is linear in the sense that the proof of
P(s(n)) reduces to that of P(n). However, in many ex-
amples involving lists, this is not so, and a new method
for providing a cut formula is needed. The linearisa-
tion method suggests correct cut formulae for exam-
ples (12)-(14) of Table 1 (where <> denotes list
catenation). In particular, the generalisation of (12)
given as Va Vl len(rev(l) <> a) = len(rev(a) <> l),
which is a better result (since it only requires one in-
duction) than that more commonly suggested by other
methods ofVa Vl len(rev(l) <> a) = len(a <> l) (re-
quiring two inductions).

A selection of the theorems proved by these meth-
ods is listed in Table 1. 7 Note that examples (3)-
(9) and example (11) involve generalisation apart,
else generalisation of common subexpressions. In these
cases both the heuristic of replacing unaltered vari-
ables and the explanation-based generalisation method
work fairly straightforwardly. Although the examples
listed in the table are of a similar simple form, these
methods may also be applied to complicated exam-
ples containing nested quantifiers, etc., for the w-rule
applies to arbitrary sequents. Example (8) provides
an instance of nested use of the w-rule, which carries
through directly. For example (10), the cut formula
even(2.x) could possibly be extracted by a user from
the form of the general proof, which is an improvement
over other generalisation methods. However, in some
cases where an w-proof may be provided, it is not clear

TDefirfitions of the predicates involved may be found in
[Baker 92a].

From: AAAI Technical Report FS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

w~+s(~) = ~(~+~) (3)
w(~+~)+~ = ~+(~+~) (4)

vxx+s(~) = s(x)+x (5)
w ~.(:~ + ~) = ~.~ + ~.~ (6)

w(2+~)4-~ = 2+(~+~) (7)

w ̄ # o ~ p(x) + ~(~(~)) = ~(~) + (9)
Vz even(x + x) = true (10)

Vl(l<>l) <>l = l<> (l<>l) (11)
Vl len(rev(l)) = len(l) (12)

Yl rotate(len(l),l) = l (13)
Yl rev2(l, nil) = rev(l) (14)

Note that induction is blocked for the above expressions, but they may all be proved by the method
proposed (namely by using the constructive w-rule) and a correct cut formula produced as appropriate.

Table 1: Some Examples of Theorems Proved

what the cut fornmla might be.

These methods involving manipulation of the general
proof should be compared with current generalisa-
tion methods. Of these, perhaps the most famous
if that implemented by Boyer and Moore in their
theorem-prover NQTHM [Boyer ~ Moore 79]. The
main heuristic for generalisation is that identical terms
occurring on both the left and right side of the equa-
tion are picked for rewriting as a new variable (with
certain restrictions). This may be a quick method if
it, happens to work, but may also entail the proofs of
many lemmas, which might need to be stored in ad-
vance in anticipation of such an event in order to be
more efficient. Tile problems inherent in Boyer and
Moore’s approach have led Raymond Aubin to extend
their work in this field [Aubin 75]. Aubin’s method
is to "guess" a generalisation by generalising occur-
rences in the definitional argument position, and then
to work through a number of individual cases to see
if the guess seems to work. If it does work, he will
look for a proof. If it does not, then he will "guess"
a different generalisation. However, Aubin’s solution
does not work in all cases. In particular, if a construc-
tor such ms a successor function appears in an origi-
nal goal, together with individual variables, Aubin’s
method may result in over-generalisation or indeed no
solution at all. The proposed guiding methods pro-
vide a uniform approach and do not have to check
extra criteria, nor work through individual examples.
Moreover, it is not possible to overgeneralise to a non-
theorem (the method is sound but not complete -- it
does not always provide a solution, nor necessarily the
best solution possible).

The suggested approaches also apply more generally

to other data-types. Not only is it the case that cer-
tain new structural patterns may be seen in the gen-
eral proof which may guide generalisation, but also
that the general representation of an arbitrary ob-
ject of that type (eg. sn(O) for natural numbers,
Xl :: x2 :: ...xm :: nil for lists, etc.) enables the struc-
ture of that particular data-type to be exploited, in
the sense that rewrite rules may be used which would
not otherwise be applicable.

Hence a new method for generalisation has been pro-
posed which is robust enough to capture in many cases
what the alternative methods can do (in some cases
with less work), plus it works on examples on which
they fail.

6 A Proof Environment for the
Constructive Omega Rule

This section describes the Constructive Omega Rule
Environment (CORE), which is a proof development
environment in which a (constructive) version of the
w-rule may be used as a rule of inference, and a sys-
tem in which w-proofs may be displayed and investi-
gated. The implementation allows both the automatic
or incremental construction of w-proofs, and the val-
idations of descriptions of w-proofs. It is carried out
within the framework of an interactive theorem-prover
with Prolog as the tactic language.

Within CORE, any finitely large number of individual
instances of proofs of a proposition may be generated
automatically by the use of various tactics. The gen-
eral representation of the proofs is provided by an in-
ductive inference algorithm, which starts with an ini-

From: AAAI Technical Report FS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

tial generalisation and then works by updating this
general proof using the other individual proofs, until
the general proof seems to have reached a stable form.
This general proof is then automatically checked to
see if it is indeed the correct one. There are two op-
tions which are allowable from a goal F ~- VxP(x).
One is to ask to use the constructive w-rule, whereby
the system will check to see whether it can find a cor-
rect general proof, and then return to the former sys-
tem and close the branch, or else report failure. The
user may then continue to investigate other positions
in the prooftree. The other option is to ask for an
appropriate cut to be carried out in PA (the cut be-
ing worked out by the system from the general proof),
with a further option to complete the tree as far as
possible (using standard theorem-proving techniques).
The general proof may be provided automatically, but
there is an option in each case to switch temporarily
to another system which will allow for the description,
manipulation and display of the general proof. The
user may specify the proof incrementally, in terms of
applications in positions in the tree, plus induction
over a distinguished parameter, or all at once -- and
this is checked. The system builds up a recursive func-
tion description of the general proof, and is able to
display individual proofs in addition to the general
case. A cut formula is automatically suggested from
general proofs using an implementation based on the
method of explanation-based generalisation, which is
a technique for formulating general concepts on the
basis of specific training examples, first described in
[Mitchell 82] (see [Baker 92a]). [Baker 921)] provides
details of the proof development systems upon which
the implementation is based; representation of the w-
rule and its subgoals; generation of individual proofs;
the application of rewrite rules; provision of a general
proof; correctness checking of the general proof (using
meta-induction); generalisation, and finally, the inter-
active system, and how to use it.

Current. work involves reimplementation of such a sys-
tem of arithmetic with the w-rule, plus the gener-
alisation methods, within Isabelle. The latter is a
generic proof development environment [Paulson 86]
which provides a sophisticated environment for de-
velopment of these strategies across many different
datatypes.

7 Conclusions

In conclusion, implementation of a system of arith-
metic with the w-rule has been carried out within the
framework of an interactive theorem-prover with Pro-
log as the tactic language. This approach works for
theories other than arithmetic and logics other than
a sequent version of the predicate calculus, and may
rather be regarded as suggesting a general framework.
So long as a procedure for constructing a proof for
each individual of a sort is specified, universal state-

merits about objects of the sort could be proved. Thus
it appears that the approach described in this paper
may be an aid to automated deduction, and in addi-
tion provides a mechanism for guiding proofs in more
conventional systems.

Acknowledgements

I would like to acknowledge the Science and Engineer-
ing Research Council for funding the research reported
in this paper, the help of Alan Smaill, and many oth-
ers, from the Mathematical Reasoning group in Edin-
burgh University, plus the Isabelle group in the Cam-
bridge Computer Laboratory.

References

[Aubin 75]

[Baker 92a]

[Baker 92b]

[Baker et al 92]

[Boyer & Moore 79]

[Bundy et al 91]

R. Aubin. Some generalization
heuris-
tics in proofs by induction. In
G. Huet and G. Kahn, editors,
Actes du Colloque Construction:
Amglioration et vdrification de
Programmes. Insti-
tut de recherche d’informatique
et d’automatique, 1975.

S. Baker. Aspects of the Con-
structive Omega Rule within
Automated Deduction. Unpub-
lished PhD thesis, University of
Edinburgh, 1992.

S. Baker. CORE manual. Tech-
nical Paper 10, Dept. of Ar-
tificial Intelligence, Edinburgh,
1992.

S. Baker, A. Ireland, and
A. Smaill. On the use of
the constructive omega rule
within automated deduction. In
A. Voronkov, editor, Interna-
tional Conference on Logic Pro-
gramming and Automated Rea-
soning - LPAR 92, St. Peters-
burg, Lecture Notes in Artificial
Intelligence No. 624, pages 214-
225. Springer-Verlag, 1992.

R.S. Boyer and J.S. Moore. A
Computational Logic. Academic
Press, 1979. ACM monograph
series.

A. Bundy, A. Stevens, F. van
Harmelen, A. Ireland, and
A. Smaill. Rippling: A heuristic
for guiding inductive proofs. Re-
search Paper 567, Dept. of Ar-
tificial Intelligence, Edinburgh,

From: AAAI Technical Report FS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

[Donat & Wallen 88]

[Feferman 62]

[Kreisel 65]

[L6pez-Escobar 76]

[Mitchell 82]

[Nelson 71]

[Paulson 86]

[Plotkin 69]

[Prawitz 71]

[Rosser 37]

[Rouveirol 90]

1991. To appear in The Journal
of Artificial Intelligence.

M.R. Donat and L.A. Wallen.
Learning and applying gener-
alised solutions using higher or-
der resolution. In E. Lusk and
R. Overbeek, editors, Lecture
Notes in Computer Science, vol-
ume 310, pages 41-60. Springer-
Verlag, 1988.

S. Feferman. Transfinite recur-
sive progressions of axiomatic
theories. Journal of Symbolic
Logic, 27:259-316, 1962.

G. Kreisel. Mathematical logic.
In T.L. Saaty, editor, Lectures
on Modern Mathematics, vol-
ume Ill, pages 95-195. John Wi-
ley and Sons, 1965.

E.G.K. L6pez-Escobar. On an
extremely restricted
w-rule. Fundamenta Mathemat-
icae, 90:159-72, 1976.

T.M. Mitchell. Toward com-
bining empirical and analytical
methods for inferring heuristics.
Technical Report LCSR-TR-27,
Laboratory for Computer Sci-
ence Research, Rutgers Univer-
sity, 1982.

G.C. Nelson. A further re-
stricted w-rule. Colloquium
Mathematicum, 23, 1971.

L. Paulson. Natural deduc-
tion as higher order resolution.
Journal of Logic Programming,
3:237-258, 1986.

G. Plotkin. A note on inductive
generalization. In D Michie and
B Meltzer, editors, Machine In-
telligence 5, pages 153-164. Ed-
inburgh University Press, 1969.

D. Prawitz. Ideas and results
in proof theory. In J.E. Fen-
stad, editor, Studies in Logic
and the Foundations of Mathe-
matics: Proceedings of the Sec-
ond Scandinavian Logic Sympo-
sium, volume 63, pages 235-307.
North Holland, 1971.

B. Rosser. GSdel-theorems for
non-constructive logics. JSL,
2(3):129-137, September 1937.

C. Rouveirol. Saturation: Post-
poning choices when inverting

[Schiitte 77]

[Schwichtenberg 77]

[Shoenfield 59]

[Takeuti 87]

[Tucker et al 90]

[van Harmelen 89]

[Yoccoz 89]

resolution. In Proceedings of
ECAI-90, pages 557-562, Stock-
holm, August 1990.

K. Schiitte. Proof Theory.
Springer-Verlag, 1977.

H. Schwichtenberg. Proof the-
ory: Some applications of cut-
elimination. In Barwise, ed-
itor, Handbook of Mathemati-
cal Logic, pages 867-896. North-
Holland, 1977.

J.R. Shoenfield. On a restricted
w-rule. Bull. Acad. Sc. Polon.
Sci., Ser. des sc. math., astr. et
phys., 7:405-7, 1959.

G. Takeuti. Proof theory. North-
Holland, 2 edition, 1987.

J.V. Tucker, S.S. Wainer, and
J.I. Zucker. Provable com-
putable functions on abstract-
data-types. Lecture Notes in
Computer Science, 443:660-673,
1990.

F. van Harmelen. The CLAM
proof planner, user manual and
programmer manual: version
1.4. Technical Paper TP-4, DAI,
1989.

S. Yoccoz. Constructive aspects
of the omega-rule: Application
to proof systems in computer
science and algorithmic logic.
Lecture Notes in Computer Sci-
ence, 379:553-565, 1989.

From: AAAI Technical Report FS-93-01. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

