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Abstract

An information set in a game tree is a set of nodes
from which the rules of the game require that the same
alternative (i.e., move) be selected. Thus the nodes 
an information set are indistinguishable to the player
moving from that set, thereby reflecting imperfect in-
formation, that is, information hidden from that player.
Information sets arise naturally in (for example) card
gaines like poker and bridge.

IIere we focus not on the solution concept for im-
perfect information games (which has been studied at
length), but rather on the computational aspects of
such games: how hard is it to compute solutions? We
present two fundainental results for imperfect informa-
tion games. The first result shows that even if there
is only a single player, we must seek special cases or
heuristics. The second result complements the first,
providing an efficient algorithm for just such a special
case. Additionally, we show how our special case algo-
rithm can be used as a heuristic in the general case.

1 Introduction

Tile development and analysis of game-tree search al-
gorithms dates back to the inception of AI and re-
mains an active area of research today. Games with
imperfect information are an interesting and important
class of games3 They have been studied at length in
the game theory literature. They include many impor-
tant applications, for example:

tThls research was supported by NSF under grants IRI 89-
10728 and CCR-9209803, and by AFOSR raider grant 90-0135.
Some of the results reported here form part of a paper that has
bcen submitted to the journal Artificial Intelligence.

1A teclufical note for the game theorist: tttis paper discusses
games with imperfcct inforination [10], as opposed to games
with incomplete information [7]. (Sometimes the former is called
decision-makhlg trader risk, the latter declsion-maklng under un-
certainty.) hi imperfect inforination games, the players lack infor-
matlon ozfly about the game’s lfistory. Ial incomplete information
games, the players also lack information about the game’s struc-
ture. See [14, page 207] or [15, Chapter 2] for a more complete
discussion of this distinction.

¯ Parlor games like bridge, poker and Clue.

¯ Economic models of (for example) labor and man-
agement negotiation, in which variables like future
inflation rates are modeled probabilistically.

¯ A distributed computation in which the cooper-
ating processors (each with its own input) make
certain judgments whose efficacy is determined by
the collective input (which is modeled probabilis-
tically).

There exist many game-tree search algorithms for
perfect information games. Such algorithms include
minimax [17], alpha-beta [8, 19], conspiracy numbers
[13, 16], and singular extensions [2]. nallard [3] pro-
vides game-tree search Mgorithms for perfect informa-
tion games that include chance nodes, at which "na-
ture" determines the move, according to some fixed,
known probability distribution. Chess is the proto-
typical example of a game with perfect information --
both players have equal knowledge of the game state.
Backgammon is also perfect information but includes
chance nodes (i.e., dice rolls).

For games with perfect information, even with
chance nodes, a simple modification of minimax com-
putes the value of the game tree [3]:

chamce-mm (x) =

payoff (x) if x is a leaf

F { chance-ram (y) I Y is a child of x 
otherwise

where function F is a max operator at nodes where
Player 1 moves, min at nodes where Player 2 moves,
and average at chance nodes. (See [9, 10, 12] for the
extension to more than two players.) Thus a single
traversal of the tree allows one to compute the value of
the game tree, as well as the optimal moves (by record-
ing the max and min selections).

In this paper We show that games with imperfect
information are quite different from games with perfect
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Figure 1: The top portion of the game tree for bridge. In information set X, ~Vest holds
AQ8743 q? 9 ~ KQ96 & 32. In information set Y, North holds ..., South holds ..., and

West has led ...

information (even with chance nodes). In particular,
we answer the following questions:

1. How hard is it to solve imperfect information
games, via game-tree search?

2. Is there an analog to minimax for games with im-
perfect information?

1.1 What is imperfect information?

The card game bridge 2 is a good example of an im-
perfect information game. Bridge is played by four
players organized into two teams, traditionally labeled
North/South versus East/West. Figure 1 shows the
top portion of the game tree for bridge. The root is a
chance node that represents dealing the shuffled deck
of cards. At depth 1 there is a node, marked by a
+ sign, for each possible outcome. All of the depth 1
nodes corresponding to a single hand that West may
have been dealt are grouped together in a single "infor-
mation set," notated by drawing an ellipse around the
set of nodes. Thus, there are (~32) information sets 
depth 1, each containing (39)(~6)(11~) nodes. Consider
one such information set, call it X, in which West holds
tb AQ8743 q) 9 0 KQ96 & 32. For each node in X there
are 13 alternatives (moves), corresponding to the 
cards West could play. Because West does not yet see
the other players’ hands, the rules of the game require
that West select the same allernative from each node
in set X. This is called "imperfect information." For
example, West could choose the left alternative from
each node in X, corresponding to playing tbA. Section

2~,Ve assume the reader is familiar with the game bridge. Our
example igaores the so-called "bidding" phase that precedes the
card-play.

2 defines imperfect information and other terms more
precisely.

The North/South team plays next, selecting a card
from the North hand, after exposing the North hand
(the so-called "dummy") to all four players. At this
point, 27 cards are visible to the North/South team:
their own 26 cards plus the card West exposed. All
the depth 2 nodes in which a particular set of 27
cards is visible to North/South are grouped into a
single information set. Thus, there are (~) informa-
tion sets at depth 2, each containing (~)(~3) nodes.
For example, in one such information set, call it Y,
North holds & KJ65 q)876 0 J72 & AK5, South holds

92 q) QJ54 ~ 853 & J874, and West has led the tb A.
For each node in Y there are 13 alternatives, corre-
sponding to the 13 cards the North/South team could
play from the North (dummy) hand. Again, the rules
of the game require that North/South select the same
allernative from each node in sel Y. For example,
North/South could choose the alternative from each
node in Y that corresponds to playing 0 J. The game
tree continues in like fashion.

The following example illustrates the computational
difference between perfect information games and im-
perfect information games. First consider game tree G1
on the left side of Figure 2; this is a one-player game
with perfect information. Initially, a chance event oc-
curs, with two possible outcomes, A or B, each equally
likely. After outcome A, the sole player can either con-
tinue to position C, or quit the game with payoff 0.
Likewise, after outcome B, the player can either con-
tinue to position D, or quit the game with payoff 0.
From positions C and D, there are two choices, with
payoffs -100 and 1 from C and 1 and -100 from D.
The player seeks to maximize the expected payoff. The
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Figure 2: Two game trees, with perfect and imperfect information, respectively.

chanco-minimax algorithm correctly computes that the
value of this game is 1; the optimal strategy is to move
left from nodes A, B, and D, and right from node C.

Now consider the game tree G2 on the right side of
Figure 2. This is again a one-player game, but here
we view the "player" as a team of two cooperating but
uncomlnunicating agents. As in G1, the chance event
happens first, then the first agent makes the first deci-
sion (knowing the outcome of the chance event). But
in G~, the second agent makes the second decision not
knowing the outcome of the chance event. Thus, the
second agent can choose only left or right from C and
D; the rules of the game require that the same decision
must bc made from both of these positions.

Both games G1 and G2 have chance nodes, but G1
has perfect information while G2 has imperfect infor-
mation (because of the two-node information set con-
taining nodes C and D). For game G1, with perfect
information, the chance-minimax algorithm correctly
computes the value of the game. The chance-minimax
algoritlnn performs the same computation on G2, hence
computes both the wrong value for the game and a
wrong strategy (regardless of how it resolves the con-
flicting decisions at C and D). In G2, the optimal ex-
pected payoff is 0.5, obtained by moving left from posi-
tion A, right from position B, and right from positions
C and D. The optimality of this strategy can be seen
only by comparing it to all other strategies on the entire
search space.

1.2 Summary of results

The above examples show that imperfect information
games are both interesting and different from perfect in-
formation games (even with chance nodes). We present
the following results in this report:

1. Solving games with imperfect information is NP-
hard (in contrast to games with perfect informa-
tion), even when there is only a single player.

2. ~¢Ve give an algorithm called IMP-minimax (for "im-
perfect information minimax") that is the natural
analog to chance-minimax, but designed to reflect
the presence of information sets. IMP-minimax
computes a strategy for games with imperfect in-
formation in time linear in the size of the search
tree. The strategy produced by this algorithm is
guaranteed to be an optimal strategy, if the im-
perfect information game has a single player and a
certain natural property called perfect recall.

The above results are fundamental to an understand-
ing of game-tree search in imperfect information games.
The first result shows that even if there is only a single
player, we must seek special cases or heuristics. The
second result complements the first, providing an effi-
cient algorithm for just such a special case. Addition-
ally,

3. Section 5 provides extensions to both of the above
results. In particular, we show how IMP-minimax
can be used as a heuristic when the game does not
have perfect recall, and when the game has more
than one player.

2 Definitions

By a tree, we mean a rooted tree with an associated
parent function. With regard to trees, we use without
explanation terms like node, edge, path, depth, root, leaf,
inlerior node, parent, child, ancestor, and descendant
(A node is both an ancestor and descendant of itself.)
See any standard text on data structures (for exam-
ple, [1]) for definitions of these terms. We follow with
minor variation the standard game-theory terminology
and notation [11, 15, 18] introduced in [10].

An n-player game r consists of:

¯ A finite tree K: called the game tree. The edges
below any interior node x in K: are the alternatives
from ~c.
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¯ A partition of tile interior nodes in /E into n + 1
classes: the chance nodes and the player-k nodes,
for k from 1 to n.

¯ For each chance node z in ]C, a probability distri-
bution on the alternatives from x.

¯ For each k, 1 < k < n, a partition of the player-k
nodes in/C into information sets such that for any
nodes x and y in the same information set:

- The number of children below x equals the
number of children below y.

- If x ¢ y, then neither node is an ancestor of
the other.

* A payoff function h from the leaves of/(: to n-tuples
of real numbers.

Throughout we reserve the symbols F, /C and h to
refer to the game, game tree and payoff function, re-
spectively, under current consideration.

To see that the above definition captures our infor-
mal notion of an n-player game, think of the root of/C
as the initial position of the game. To play the game
means to follow a root-to-leaf path in the tree, with
each edge on the path corresponding to a single move
in tile game. If a chance node x is encountered during
the play, then "nature" will determine the edge below x
in the root-to-leaf path, at random and according to the
probability distribution associated with x. If a player-k
node is encountered, then player k will choose the edge
(next move). The outcome of the game for player k 
the kth component of the payoff vector h(w) at the leaf
w reached by the play.

We have yet to comment on the interpretation of
information sets in the above definition. First we
need to define what we mean by a "strategy. "3 A
strategy 7rk for player k on ~E is a function on the
player-k nodes in K:, such that for any player-k nodes
x and y ill /C:

¯ 7rk(x) is a child of 

¯ If x and y are in the same information set, 7rk(x)
and 7rk(y) are the same alternative (i.e., if 7rk(x) 

the jth child of x, then 7rk(y) is the jth child of y).

A strategy rr in an n-player game F is an n-element
vector whose ktli component, 7rk, is a strategy for player
k.

"What a player knows" is reflected in the strategies
available to the player, which are determined by the in-
formation sets. If two nodes x and y are in the same in-
formation set, then the player "cannot tell them apart,"

3Game theorists will recognize our definition of "strategy" as
what they would call a "pure strategy," which we focus on here.

because by definition the player’s strategy must be the
same (choose the jth child, for some fixed j) on the two
nodes. Thus, when there exists an information set with
more than one node in it, the game is said to exhibit
imperfect information.

Chess is a game of perfect information: the state
of the game is described by the positions of the pieces
and whose turn it is, and this information is available
to both players. Backgammon is also a game of per-
fect information, but includes chance nodes: at certain
positions, the next position in the game is selected by
rolling the dice. The card game bridge is a game of
imperfect information. The first move of the game is
to deal the cards at random. Each player knows the
contents of the player’s own hand, but the contents of
the other players’ hands are revealed only gradually, as
cards are played one by one.

The quality of a strategy is measured by its expected
payoff, which, in turn, depends on the probability of
reaching leaf nodes. Given strategy 7r on game tree
K:, the probability of node z under 7r; denoted p,~(x),
is defined to be the product of the probabilities of the
arcs on the path from the root to x, with each arc
below a non-chance node granted probability 1 or 0
depending on whether or not 7r selects that arc. The
expected payoff under strategy 7r, denoted H(Tr), is de-
fined to be ~p~(w) h(w), where the sum is over all
leaves w in ]C. For example, the expected payofffor the
strategy indicated by thick lines in Figure 4 in Section 4
is ~ + ~ + ~ + 9 + Y~.

A player-k strategy 7rk is optimal for strategy 7r if
for every player-k strategy o~k, we have H(Tr) _> H(o~),
where o~ is the same as 7r except that the k th component
of 7r is 7rk while the kth component of o~ is ~k. A strat-
egy 7r is an equilibrium point4 if each component 7rk
of 7r is optimal for 7r. Thus, in an equilibrium point,
no player can strictly improve her expected payoff by a
unilateral change in strategy. A solution to an n-player
game P is an equilibrium point for ]C. Clearly, for one-
player games a solution is a strategy that maximizes
(over all strategies) the expected payoff to the single
player.

3 Solving games with imperfect
information is hard

In this section, the task of finding a solution to n-player
imperfect information games is shown to be NP-hard
for any value of n. It will follow that no efficient al-
gorithm exists for solving imperfect information games
in general, unless P=NP. Thus, the results in this sec-

4 Game theorists will recognize our definition of "equilibrium

point" as what they would call a "pure strategy equilibrium
point."

62

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1

Figure 3: The constructed tree ~2 for 3SAT instance C = {{Ul,?il,U2} , {Ul,’ttl,’tt2},
{ul, u2, if2}, {if1, u2, if2}}. Payoff values are shown below each leaf node.

tion motivate the linear time algorithm presented in the
next section, which solves imperfect information games
for a special class of games.

We begin by considering one-player games. The one-
player game decision problem cast in the format of [6]
is as follows.

ONE-PLAYER GAME (OPG):
Instance: A one-player imperfect information game F
and a real number K.
Question: Is there a strategy 7r for F with expected
payoff H(rr) >_ 

Theorem 10PG is NP-complete.

Proof." Here we only sketch the proof; complete de-
tails can be found in [4]. We use an example to de-
scribe the main ideas of the polynomial time transfor-
mation from 3-Satisfiability to OPG. Consider an in-
stance of 3-Satisfiability that contains two variables (Ul
and u2) and the following clauses: C1 = {ul,ffl, u2},
c2 = ca = u2, a2}, c4 =
The corresponding one-player game tree is shown in
Figure 3.

The tree contains one clause node below the root
node for each clause. On the level below the clause
nodes the tree contains an information set for each vari-
able, each such information set containing a distinct
variable node for each clause. Below each variable node
there are two leaves, the left leaf representing an un-
complemented literal and the right leaf representing a
complemented literal. The function h is given by

1 if literal uj appears in clause clh(/j~) = 0 otherwise,
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1 if literal ffj appears in clause cl
h(rj~) = 0 otherwise.

Given an instance C of 3-Satisfiability, there is
a strategy ~r for the corresponding one-player game
with H(~r) > 1 if and only if C is satisfiable. 
our example, a satisfying truth assignment is one
where t(ul) = T and t(u2) = F. We can derive
a strategy rr by choosing the left edge out of every
node in I1 (indicating a true value for the variable
ul), the right edge out of every node in /2 (indicat-
ing a false value for the variable u2), and the set
of edges {(c~, u~), (c~, u~), (ca, u~), (c4, u2,)} 
edge "choosing" a true literal in the clause. Notice that
for ~ we have H(~) = P~(h~)+p~(tl~)+p~(tl~)+
p~(r%) = 0.25 + 0.25+ 0.25-1- 0.25 = 1.

Conversely, suppose ~r is a strategy with H(~r) > 
We can then define a truth assignment for the instance
of 3-Satisfiability as follows: for each variable uj, 1 <
j < n, assign t(uj) = if ~r chooses theleft edge for
each node in Ij, otherwise assign t(ui) = F. 

It is easy to generalize the result in the above theo-
rem to games played by two or more players:

GAME TREE SEARCH (GTS):
Instance: An n-player imperfect information game r
where r has one or more equilibrium points.
Question: Find a strategy ~r that is an equilibrium
point in F.

Corollary 1 GTS is NP-hard.

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



4 A linear-time algorithm

The results in the previous section show that even if
there is only a single player, we must seek heuristics
or special cases. Here we take the latter approach.
We present an algorithm, IMP-minimax, that is to im-
perfect information games what minimax is to per-
fect information games. In this section, we describe
IMP-minimax for one-player games; the next section
shows how to extend IMP-minimax to games with more
than a single player.

4.1 Properties of the algorithm

IMP-minimax has two important properties. (Space re-
strictions prohibit our giving the proofs herein; see [4]
for details.)

Theorem 2 The run-time of IMP-minimax is lin-
ear in the number of nodes in the game tree.

Theorem 3 If a game has only a single player
and a certain natural property called perfect re-
call (defined below), then the strategy computed 
IMP-minimax is optimal. Otherwise, the strategy
might or might not be optimal.

Informally, perfect recall means the player recalls her
previous moves. More precisely, for information sets R
and S in game F, we say that S follows R if S ~/~ and
there exists nodes r 6 R and s 6 S such that s is a
descendant of r. For any subset X of an information
set, the i TM child of X is the set of all nodes y such that
y is the i TM child of a node in X. A one-player game F
has perfect recall~ if for every pair of information sets
/~ and S in F such that S follows R, there exists an
i such that S lies entirely inside the forest of subtrees
rooted at the i th child of R. Note that perfect recall is
not the same thing as perfect information.

It is often possible to know from the phenomenon
being modeled whether or not it has perfect recall. For
example, consider the card game bridge. This game
is played by four players organized into two teams. If
one chooses to model the game as a four-player game,
then it is a game with perfect recall, assuming that
each player is capable of remembering the cards that
have been played. Alternatively, one can model the
game as a two-player (team) game. In this case, the
game will not have perfect recall. After the initial lead,
each agent sees the cards of the "dummy" (say, North)
and her own cards. When the East/West team makes
a play from the West hand, it "knows" the contents
of the West and North hands. When later the same

sit is easy to show that tlfis defhfition of perfect recall, wtfich
is given by Thompson in [20], is equivalent to the definition Kulm
gives in [10].
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East/West team makes a play from the East hand, it
has "forgotten" the contents of the West hand. In this
two-team representation, the rules of the game require
that the East/West team "forget" some of what it knew
at its previous turn. Thus the two-team representation
of bridge lacks perfect recall.

4.2 The algorithm

Before describing IMP-minimax, we need to define the
functions it uses that are specific to the game tree /C
under consideration:

¯ Function h(x) specifies the payoff at leaf x of E.

¯ Function extend takes a set X of nodes in/C and
returns the set obtained by recursively replacing
each chance node in X by its children, until the
resulting set contains no chance nodes. For exam-
ple, in Figure 4, extend( { root of the tree)) yields
the five nodes labeled Level 1 in the figure; ex-
tend applied to the Level 1 nodes yields the Level
2 nodes; and so on.

¯ For any node x in/~, its reachable probability p(x)
is the product of the probabilities below chance
nodes on the path from the root to x. For ex-
ample, since the probability distributions below
chance nodes in Figure 4 are all the uniform dis-
tribution, p(leaf whose value is -100) is 1/6.

¯ Any subset X of an information set is a partial
information set, abbreviated PI-set. A child of PI-
set X is the set of all nodes directly below X via
a fixed alternative. For a strategy 7r, to say "set

7r(X) equal to the jth child of PI-set X" means
to set 7r(x) to the jth child of x for each x in the
information set containing X.

¯ Function partition takes a set of nodes in /~
and partitions it into individual leaves and max-
imal PI-sets. For the example of Figure 4,
letting -100 and 2 denote the leaves whose
values are -100 and 2 respectively, we have
that partition ( { E, -100, 2, F, H, I }) returns
{ {Z), -100, 2, {F}, {H, I} }.

Given a set X of nodes in/C, the recursive function
V is defined by:

max {~(eztend (Y)) is a chi ld of X }

if X is a PI-set

V(X) 
p(x) h(x) + V(x)

x E partition (X) z 6 partition (X)
x a leaf x a PI-set

otherwise

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



Level 1

Level 2

22 33 44 7 3 9 5 75 26 Lev~ 3

Figure 4: A one-player game tree. For any chance node (labeled *), the arcs directly below
it are equally likely; player nodes are labeled with letters; and leaves are labeled with their
respective payoff values. Ellipses are used to show information sets that contain more than
one node. The thick lines indicate the strategy selected by IMP-minimax.

IMP-minimax: call V ( extend ( {root of IC} )).
Each time in the recursion that the argument X
is a single PI-set, set 7r*(X) equal to the child 
X obtained via the alternative selected by the max
operator in the calculation of V(X).

Thus IMP-minimax both returns a number (per the 
function) and computes a strategy rr* for K:.

Note that IMP-minimax processes the game tree in
a post-order (depth-first) traversal fashion, where 
each major step a partial information set rather than
a single node is processed. Intuitively, the algorithm
works as follows. If X is a partial information set then
any strategy can pick only one child of X. The algo-
rithm examines each child, recursively. Then the al-
gorithm greedily picks the child of X that maximizes
the expected payoff in the forest rooted at X. This
recursive search followed by a greedy choice yields the
post-order traversal. If, on the other hand, X is not a
single partial information set then the algorithm con-
siders each subtree ("rooted" at a partial information
set or a leaf node) separately and sums the expected
payoff of each subtree to reflect the fact that the ex-
pected payoff of tile entire tree will have a component
from each of the subtrees that have non-zero proba-
bility. The reader may find it instructive to trace the
operation of IMP-minimax on the example in Figure 4,
where V(eztcnd ( {root of lC} )) = 617/12.

It should be clear that IMP-minimax assigns an al-
ternative to each information set in tim tree and, thus,
computes a strategy for /C. However, in general the
computed strategy is not an optimal strategy (first ex-
ample below). By Theorem 3, if the game has perfect
recall, then 7r* is an optimal strategy (second example

below).

4.3 Examples using the algorithm

Example (not perfect recall): Consider game tree
G2 in Figure 2. To compute 7r*, one computes
Y(extend ({root of G2})) = V(A,B). s This causes
the computation of

V(A) = max{ V(C), 0},
V(B) = max{ V(D), 0}, and

V(C) = V(D) 1,
so that V(extend ({root of G2} )) = 

Here the information set containing C and D was
encountered twice; once to compute V(C) and later to
compute V(D). The action of rr* on that information
set is determined by the computation of V(D) (which
overwrites the action determined by the computation
of V(C)). Thus 7r* is defined by:

= C,
rr*(B) = D, and

rr*(C), rr*(D) = the left child of C, 
As such, strategy rr* is not optimal. It has expected
payoff -99/2, while an optimal strategy (same as rr*
except select the right child at A) has payoff 1/2.

The above example illustrates what can go wrong
when using V to compute a strategy: information sets
can be encountered more than once, with no effort to
make the same choice each time. Theorem 3 shows that
such an event is impossible when there is perfect recall.

Example (perfect recall): Again consider the
game tree G2 in Figure 2, but with A and B in a single

6For ease in reading the examples we have omitted the set
brackets around the input to the ftmction V throughout.

65

From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. 



information set. (Thus, the game has imperfect infor-
mation but perfect recall.) Here the computation of
V(extend ( {root of modified Gi} )) = V(A, causes
the computation of

V(A,B)=max{ V(C,D), 0.5x0 q- 0.5×0}

V(C,D)=max{ 0.5x(-100) -t- 0.5× 
0.5 x 1 + 0.5 x (-100))

so that V(eztend ( {root of modified Gi})) = 0 and rr*
is the optimal strategy (go right at {A, B}).

Another example (perfect recall): In [41 
describe a class of games that illustrates the mag-
nitude of the improvement IMP-minimax can achieve
over the naive, examine-all-strategies algorithm. For
arbitrary game-tree depth d, there exists a game in
the class that allows 2(4a-1-1)/3 different strategies.
The naive algorithm for solving one-player games it-
erates over all possible strategies, computing the ex-
pected value of each and selecting the strategy whose
expected value is maximal. Thus its execution time
is fi(number of strategies). IMP-minimax, which takes
advantage of the game having perfect recall, has execu-
tion time O(number of nodes in the tree). The follow-
ing table contrasts these quantities, for several game
tree depths.

Depth d nodes in game tree strategies
2 4 2
3 15 32
4 61 2,097,152
5 249 3.9 x 1025
6 1009 4.5 x 10x°2

7 4065 8.1 x 1041°
8 16321 8.4 x 101643

5 Extensions and open questions

The results of the previous sections provide a founda-
tion for an understanding of game-tree search in im-
perfect information games. In this section we discuss
several extensions to those results.

As mentioned earlier, the NP-completeness results
in Section 3 motivate us to consider special cases for
which one can efficiently find optimal strategies for n-
player games. The linear time IMP-minimax algorithm
(as well as its pruning variant IMP-alpha-beta [21],
described elsewhere in this proceedings) is a solution
to such a special case: the class of games with perfect
recall and a single player. This suggests the follow-
ing important question: is there an efficient algorithm
for solving games with perfect recall and two or more
players, when a solution exists?7

;’/al some two-player games a solution (pure strategy equiHb-

A natural extension to IMP-minimax for two-player
zero-sum games with imperfect information is to use
the following V operator.

v(x) 

max { V(eztend (Y)) I Y is a child of X )

if X is a player A PI-set

min { V(eztend (V)) ] is a chi ld of X }

if X is a player B H-set

x E partition (X) x E partition (X)
x a leaf x a PI-set

otherwise

IMP-minimax remains efficient (linear in the size of the
game tree) in this two-player form. Since IMP-minimax
finds a solution for one-player games with perfect recall
(Theorem 3), one might expect it to do the same for
two-player games with perfect recall, when a solution
exists. However, not only does IMP-minimax not ac-
complish this goal, neither can any efficient algorithm
(unless P = NP), as the following result shows,s

Theorem 4 For any n > 1, it is NP-complete to de-
termine whether or not an n-player imperfect informa-
tion game with perfect recall has a solution (i.e. has 
pure strategy equilibrium point).

Theorem 4 forces us to turn to special cases or heuris-
tics for more-than-one-player games, even for games
with perfect recall. IMP-minimax (in the above two-
player form) is one such heuristic.

IMP-minimax can also be used in its one-player form
as a heuristic for two-player games in an iterative tech-
nique like the one proposed in [5] as follows. Start with
a reasonable guess oq for player A’s strategy. Fixing
that strategy, use IMP-minimax to find a strategy fll
for player B. Next fix player B’s strategy at fll and
use IMP-minimax to find a strategy a2 for player A.
Repeat this process some number of times, generating
a sequence of strategy pairs: (al,fll), (ai, fli),’" ’. 
after i iterations we have (o’i_1,/~i_1) : (Ct’i,/~i) , and
if the game has perfect recall, then the properties of
IMP-minimax guarantee that (oq, fli) is an equilibrium
point. This iterative technique suggests several impor-
tant questions. First, how do we come up with a reason-
able first guess for player A? Second, for what classes
of games with equilibrium points is the technique guar-
anteed to converge? Third, how many iterations and

rium point) does not exist. Even if the two-player game is zero-
sum (i.e., payoffs to the players sum to zero), nfixed strategies
may be required for equilibria.

8For brevity we omit the proof." The reduction is from 3-
partition.
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what conditions are necessary before one can assume
tile strategy is reasonably close to an equilibrium point?

In summary, our results show that: first, a heuristic
approach will be necessary to solve practical applica-
tions of imperfect information games with more than
one player; second, IMP-minimax is a natural starting
point for that heuristic approach, because of its theo-
retical properties in the one-player realm.
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