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Abstract.
This paper presents several industrial applications of
ML in the context of their effort to solve the
"KAML problem", i.e., the problem of merging
knowledge acquisition and machine learning
techniques. Case-based reasoning is a possible
alternative to the problem of acquiring highly
compiled expert knowledge, but it raises also many
new problems that must be solved before really
efficient implementations are available.

Introduction

There are many sides to the description of what an
industrial application is. In a recent paper (Kodratoff,
Graner, & Moustakis 1994) we summarized some of the
experience gained during the CEC project MLT in
counselling a user on which of the many types of
machine learning (ML) to use for his special application.
In this presentation, we shall consider two of the main
subfields of the ones that need merging for an industrial
application, seemingly the richest in generating future
research problems: validation of KBS and merging of ML
into a knowledge acquisition (KA) method. The first one
is almost untouched by specialists in ML, while the
second one led to much work, some of it will be reported
in the rest of the paper.

As just said, real-world applications require validation
of the programs used. Let us speak briefly of what means
validation in our context, and what ML can have to do
with it.

It seems that "validation" takes three different
meanings in the context of KBS. All different types of
knowledge originate from the expert’s knowledge which
is not directly accessible, thus the KA system helps the
expert to gather his knowledge in the KA system
knowledge level. In KADS’ knowledge level, one finds
the models, such as the model of tasks, the model of
expertise etc. In the model of expertise, one finds
knowledge about the strategies, the tasks, the inference,
and the domain. All these kinds of knowledge are usually
considered validated because they issue "directly" from the
expert. This gives us a first kind of validation, by which
an expert reconsiders his own knowledge at the
knowledge level, and checks its validity. This is not
enough in reality since experts do make mistakes from
time to time, and even when they agree on the actions to
take, they also often disagree on the reasons (that is,
what knowledge to use) why these actions are to be
taken. It is always good to compare such validated
knowledge to the real world. The knowledge must thus

be translated to the symbol level, i.e., a language into
which programs can be written, to be checked against real
applications. During this process, many mistakes are
possible, and we have here need for a second kind of
validation, the classical one in software engineering, that
the knowledge level (the "specification") matches
correctly the symbol level (the "algorithm"). During the
verification process, the expert will find misbehaviours
of the system, that will request some changes. This is
the also known as the classical "trial and error" validation
technique. Notice however the complication arising
because transformations can be performed either at the
symbol, or at the knowledge level.

Validation can make use of ML techniques, for both
incompleteness and incorrectness. The knowledge to be
considered is threefold: the rules of expertise, a deeper
kind of knowledge given by a semantic-net and a set of
integrity constraints, and a set of examples. When
anomalies are detected, the correction is performed
according to sets of positive and negative examples of the
concept to revise (Lounis 1993).

We will give a few examples of industrial applications
in the following. What must be kept in mind, though, is
that all real-real-world applications met very nicely the
requirements of the KA + ML workshops, because they
had to solve this problem in the first place. All
considered what is the essential difference between an
academic and an industrial work? The academic chooses
the data in a repertory of such available data, while the
industrial receives data from his users, often demanding
ones. These repertories, at least in ML, tend to contain
quite a variety of data of various levels of difficulty, but
for all of them, the KA phase has been completed
beforehand. Thus, the industrial is not only under
pressure of his users, but he has also to count on them to
perform the KA phase which is a crucial one as we all
know. In the following, we will refer to this problem as
to the KAML problem, with this mild joke that we
indeed need camels to help us crossing the desert that
expands between the fertile plains of industrial
applications, and the nice oases of academic research.

As a coarse view, one can say that with respect to
KAML, academics have produced one very interesting
approach, known as knowledge refinement. On another
hand, we personally dug five different ways of integrating
ML and KA out of the solutions of the people that
tackled real-world applications of ML. This paper is
mainly devoted to the description of solutions to the
KAML problem, together with the industrial applications
that led to these solutions. We shall successively speak
of the following: the knowledge refinement approach,
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how existing ML technique must be adapted to meet real
life requirements, what kind of knowledge can be acquired
from a human expert in order to obtain good ML results,
why KA needs ML to enhance the rate of the acquisition,
the problem if finding new representation schemes to
meet experts’ requirements, how to acquire compiled
knowledge, and finally the promises and challenges of the
CBR approach.

Knowledge refinement

We shall not give here any detailed description of the
different revision techniques since they received already
considerable acknowledgement in the academic
community. We just recall some of the earlier work that
we did on knowledge refinement roughly around 1985,
for an application to air-traffic control, and on
DISCIPLE.

Air traffic control

Our work on air traffic control has been published first in
1988 (Cannat & Vrain 1988), and more recently under 
more detailed form (Kodratoff & Vrain 1993).

In this application, we used a refinement cycle which
makes explicit the role of the user. It includes the steps
necessary to translate the knowledge given by the expert
and the learned knowledge. The importance and difficulty
of these translation stages are generally underrated by
academics, while they are the very condition at which an
application can take place (Cannat & Vrain 1988,
Kodratoff & Vrain 1993).

DISCIPLE
The main idea behind DISCIPLE (Kodratoff & Tecuci
1987), and behind more recent versions, APT (N6dellec
1992, N~dellec & Causse 1992) and Neo-DISCIPLE
(Tecuci 1992, Tecuci & Duff 1994) is user-driven
revision, with the idea that experts are better at checking
solutions than building theories. DISCIPLE thus
proposes a solution to a problem that will become a
positive example if the user agrees with the solution, and
a negative example if he disagrees, and the possible
causes for his agreement or disagreement. These causes
are used to refine logically the existing rules, by adapting
(i.e., generalizing or particularizing depending on the
cases) the conditions of the rules to the positive and
negative examples. This has been used in a bank
application in order to help eliciting the knowledge of
experts, but it also requests a patient user that accepts to
"play" with the system in order to build the initial data
base that can be quite extensive.

Adapting ML to meet real-life
requirements

In a yet unpublished paper, (Schmalhofer et al. to appear)
report a very thorough experience on solving the KAML
problem for specific industrial needs. These authors
report finding it necessary to adapt both conceptual
clustering and explanation-based learning, by integrating
expert consultation inside the ML algorithms. See also
(Esposito, Malerba, & Semeraro 1993, 1994).

More generally, it seems that a multistrategic approach
is needed for many applications that work already quite
well by using statistical methods, but that can be still
enhanced when some more symbolic treatment is also
performed.

ML Solves KA Problems

MI can be used to solve KA problems in which the
representation of knowledge is so complex that
traditional KA becomes unbearable.

Example 1. Fault detection in helicopter blades
Detection and repair of faults of an helicopter blade is not
only a technical process, but also a judicial since the
repairing person is responsible in case of an accident. The
system has to give an argument to explain a given repair,
and authors (El Attar & Hamery 1994) has to produce
rules that would combine symbolic and numeric data in
the way best suited to the existing validation procedures.
Secondly, feature intervals in which detection and repair
of faults take place were not immediately available from
the experts, they had to be directly acquired from the
examples, in such a way that the results were still
understandable by (and agreeable to) the experts.

Example 2. Learning on French justice system
This problem is a special version of the classical one of
the missing values with "don’t care" values that are not
significant to the solution. It appears that the French
judicial knowledge requires that one has to deal explicitly
with this problem. Tree generating procedure cannot deal
very well with this kind of problem, this is why
(Venturini 1994) adapted genetic algorithms technique 
rule generation.

Example 3. Refining rules for a production system
(Terano & Muro 1994).
Once rules have been learned by in a classical way, it is
always possible to consider that one can improve them
by searching in the space of all possible rules, in the
vicinity of the existing rules. Genetic Algorithms are
obviously well-adapted to solve this kind of search
problem since strong parents are already available.

Helping ML by some additional
knowledge

Biasing the ML mechanism with acquired
knowledge

It makes explicit which information is essential to
decrease the combinatorics of ML, and acquires this
knowledge by elicitation.

Example 4. Learning to design VLSI.
Learning the most specific generalization form a set of
examples is one of the basic problems of ML since it is
of the best ways to reduce the complexity of the set of
examples, while keeping their common properties. While
relatively trivial at the zeroth order, in first order
representations this problem becomes quickly very
difficult (Kodratoff & Ganascia 1986) because of 
combinatorial explosion. Some work has been done to
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deal with this complexity, as by using Bisson’s distance
measure, for instance (Kodratoff & Bisson 1992).

Application to VLSI design requires a relational
representation (Hermann & Beckmann 1994) since 
must represent the bindings of the different parts of the
circuit. These authors present an original solution
making use of the user’s knowledge of what parts can be
possibly bound to other parts. This is a knowledge which
is well-known by the experts, but which is not acquired
classically in KA systems because they perform no
learning and do not need this information. In other words,
it is very clear here that a new kind of knowledge has to
be acquired because of the learning component.

The ML mechanism is impossible without
manually acquired knowledge
ML requirements make it necessary to ask more
information, or a new kind of information to the expert.

Example 5. Prediction of cylinder banding
In the printing industry, banding is a nuisance known for
long. Bob Evans (Evans & Fisher 1993) signalled that
the usual causal KA has been failing to solve this
problem. Driven by the requirements of his induction
algorithm, Evans promoted a new approach, a more
pragmatic one, by which he proposes to find only
conditions at which banding will appear. He reported
having many difficulties having the specialists answering
his "trivial" questions, until unexpected features appeared
in the prediction for banding, and were confirmed by
experience.

Adapting KA to meet real-life
requirements

Example 6. EBL learning of operational rules in the
Pilot Assistant
The continuous maintenance of the knowledge of these
six interconnected large expert systems by a varying set
of experts make necessary to have a global knowledge
repository of easily understandable and maintainable
knowledge, to be translated into the language of each
expert system. This top knowledge is gathered in a
systematic way by means of an EBL component.
Domain knowledge is acquired in a classical way, it is
then transformed into a standard representation by means
of one example, and of a criterion of operationality
(Miller & Levi 1994). In this very case, one can see than
ML became a new way of gathering expert knowledge by
merging theoretical knowledge and examples.

Example 7. Road and train traffic control
The introduction of a ML component, together with the
difficulties due to the domain complexity forced
(Arciszewski et al. 1994) to develop an original 
process. In short, one has to make a careful decision on
which simplifications to the real-world problem will lead
to a model which still realistic and with which one can
still work.

Develop new representations to allow
experts to express their knowledge

Example 8. Improving manufacturing processes
(Riddle, Segal, & Etzioni 1994)
The Boeing company decided to use ML in order to
improve some of its manufacturing processes. These
authors find five problems, all more or less of KA
nature, to solve prior to applying the induction
mechanism. One of them was choosing instances, a
"pure KA" problem which is no addressed by classical
KA, and that must be solved for KAML with new KA
methods to represent the information necessary to the
ML algorithms. An other was finding relevant attributes,
problem which is better known than the former one, and
is indeed addressed by KA techniques. Unfortunately
application of subsequent ML techniques request more
attention to the problem of irrelevant attributes than it is
usual in KA.

Example 9. KAML for decision under constraints
The problem is to recognize plans and intentions of an
enemy for a decision making assistant (Barts et al.
1994). Humans handle this problem by merging three
kinds of different knowledge, general principles of tactics,
intelligence information, and the doctrine of both sides.
In order to merge these three kinds of information in a
retrievable form, we had to develop a special knowledge
representation framework, inspired from Schank’s XPs
(Schank 1986), in which a special part is devoted to the
slow emergence of a plan when some partial information
confirms its activation.

Use ML to acquire knowledge usually
compiled by experts

Acquiring perceptual chunks

Example 10. Solving geometry problems.
This is a difficult application, if not an industrial one.
The work of (Suwa & Motoda 1994) addresses the
particular problem of gathering chunks of a perceptual
nature for problem solving in such a way that their
preconditions are easy to detect and discriminating.
Besides, these chunk may well act as simple hints that
drive the solution in the good direction, without reaching
the desired goal directly. PCLEARN learns such
perceptual information that experts are often unable to
provide directly, by analyzing success proof trees and
selecting the objects are recognizable to its recognition
rules to build a chunk of them.

Acquire plan abstractions

In (Schmalhofer & Tschaitschian 1993, Schmalhofer et
al. to appear), the authors describe a methodology (which
makes use of a user-controlled conceptual clustering and
explanation-based learning, as already noticed) for
acquiring production plans in mechanical engineering.
The experts obviously are able to provide concrete plans
on how to solve a specific problem, but the mentioned
system can be viewed as helping them to generate also
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abstract plans that make their experience easier to apply
to new problems.

CBR solutions and problems

CBR is used in planning to provide a set of plans that
have already been used and in which problems appearing
when building a plan from scratch have been worked out.
Using these plans (or cases) reduces the computational
effort necessary in planning to deal with protections and
preconditions, requiring minor changes to adapt the plan
recalled to the new situation. It also allows to exploit
simultaneous goal achievements, found for goal
conjunctions in the past and used in the plans stored in
the case base. Finally, case-based planning can be used to
deal with reactive planning, i.e. when the world in which
the planner operates evolves independently, like the real
world. Examples of case-based planning applications can
be found in (Alterman 1988, Hammond 1989, Kolodner
1993, Veloso 1992).

The goal of CBR is efficient reuse of knowledge, NOT
the building of causal theories. The negative side effect of
deep causal theories is that it transforms the story of the
case so much that the user no longer recognizes the case.
On the contrary, CBR has indeed the negative effect that
the causal theory is kept implicit throughout the
reasoning process, but the positive one that the story of
the case is easy to recognize.

In practice, as we suppose each reader knows, CBR
works by extracting from the base of cases the cases
whose description are the nearest to the description of the
target, then use the solution of these nearest cases to find
a solution for the target. This is very similar to rules by
the substitution (description --> condition, solution -->
action), but as opposed to rules, there is no explicit
causal link between the descriptions and the solutions.

Knowledge acquisition issues

A first obvious problem is the definition of the
knowledge representation of the cases themselves. A case
contains all the information necessary to be able to
recompose what has been happening in the external
world. A "case", as opposed to the more traditional
knowledge representation systems, is never defined in
general, it depends on the application it describes. This
relaxation on the constraints will request that some extra
knowledge is asked to the domain expert, as we shall see
in the following.

The domain expert, as is almost always the case of AI
oriented applications, is requested to build an ontology of
his application domain: What are the features of the
domain, when are they significant, what are the
semantics of these features, what are their domain of
values, what are the relations among features (i.e.,
organizing the knowledge of the domain).

In order to define an efficient similarity measure, the
knowledge acquisition process must include, besides the
"plain" field knowledge, seven types of knowledge,
particular to CBR. It is interesting to identify those types
in order to avoid bad surprises in applications. They are:

a - the similarity measure itself,
b- domain knowledge to be used for similarity

assessment, which often appears as rules of two kinds:

bl - domain theory (used for instance to saturate the
description of a case),

b2 - rules allowing to compute local similarity,
c - domains of significance (validity) of features,
d- contexts in which a given similarity measure is

efficient, being understood that in most cases, a
similarity measure is efficient when it uses significant
features,

e- domain integrity constraints to ensure the global
soundness of the measure made upon separated features,

f- transfer functions, for translating the solutions of
the base into the possible ones of the target,

g - and finally, constraints relative to the application
of the cases in order to avoid absurd solutions.
The above special requirements represent the extra
knowledge necessary to keep available the story of the
case. In other words, they constitute the form deep
knowledge takes in CBR: it is a very unusual form,
certainly a non-causal one.

A conclusion on using CBR

It is quite usual to consider that the predictive power of
Science comes from the building of causal theory
allowing to explain successions of events. With the CBR
approach, the link between predictability and causality is
no longer deemed compulsory, but simply desirable.
Predictability itself is achieved through the recognition of
a conjunction of values of shallow features.

CBR involves such a non-causal knowledge
acquisition, taking into account, in a new way, the deep
knowledge:

- define domains of significant features in order to
know in which context which features should be used to
compute the similarity,

- define domains of similarity measures in order to
know in which context which similarity measure should
be used,

- use classical CBR to select a few cases that might be
useful, and select among them those that are really to be
used by

-ruling out those that violate known integrity
constraints,

- rule out those cases that are not confirmed by
given rules that might have another form than integrity
constraints

- checking the consequences of the choice of a
case, i.e., select according to the applicability of the
cases,

- refine the application of the case.
It will be often the case that CBR is more efficient than a
causal model, especially when the formalization of the
field is still incomplete. In order to increase its
efficiency, it may be necessary to collect supplementary
knowledge which is very different from the one normally
considered as causal by scientists.

Final Conclusion

As a first conclusion, we would like to stress that our
experience tells us that ML is not an easy solution for
KA, but that the solution of the KAML problem goes
through improvement of both KA and ML, thus it still
needs much research work. Industrial applications are
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playing the role of pointer to academic research to
problems that are somewhat underestimated nowadays.
We presented here some examples of seven solutions to
the problems of integrating ML and KA, there might be
more problems and more solutions that we did not meet
yet.
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