
Abstract1

This paper describes the PROTÉGÉ-II architecture for the
construction of knowledge-based systems from reusable
components: problem-solving methods and knowledge bases.
We argue that these components are easier to reuse when
their terminologies are described as formal ontologies. We
define declarative mapping relations that we use to connect
pre-existing methods to new domains and knowledge bases.
With PROTÉGÉ-II and a set of mapping relations, we are able
to reuse the same problem-solving method with two disparate
tasks: (1) configuring the parts of an elevator system and (2)
identifying plausible configurations of helices in a ribosome
molecular strand.

1. Reuse for Knowledge-Based Systems
Software reuse is an appealing solution to the high cost of
software construction and maintenance: If a library of reus-
able software components were available, then developers
could use this library to greatly reduce software develop-
ment time and effort. Since the goal of software reuse is to
reduce development cost, it is valuable to view reuse from
an economic perspective. Thus, the effort needed to build a
software component library is the reuse investment cost, and
the return on that investment is measured by the savings in
effort achieved by exploiting reuse over the lifetime of each
component. The benefit from a single instance of reuse is the
difference between development costs with reuse and esti-
mated development costs without reuse. Reuse is successful
only when these benefits outweigh the investment costs.

Barnes and Bollinger (1991) outline three ways to make
reuse more cost-effective: (1) reduce the initial investment
cost of constructing the component; (2) increase the number
of times a component is reused; and (3) reduce the cost of
selecting, adapting and reusing a component. In this paper,
we focus on the third approach, and especially on the cost of
adapting a pre-existing component.

We present PROTÉGÉ-II, a development environment and
methodology for the construction of knowledge-based sys-
tems with reusable components. This environment has been
developed within the knowledge-acquisition research com-
munity. Thus, it is designed to help developers build sys-
tems that include both a knowledge base of domain

1. This paper is an edited version of Gennari, Altman
and Musen, 1995.

information, and a problem-solving method that operates on
that knowledge base. For our purposes, these two types of
components are the objects for reuse. In particular, we dem-
onstrate the reuse of a problem-solving method across two
domains: configuring the parts of an elevator system and
finding plausible models for the positions of helices within a
ribosome strand.

The elevator-configuration task is a well-studied prob-
lem in the knowledge-acquisition research community, orig-
inally described and solved by Marcus, Stout, and
McDermott (1988). The task is a constraint-satisfaction
problem: given a set of building specifications and require-
ments such as elevator speed and capacity, and given a large
body of knowledge about available elevator components
and safety constraints, find a configuration of elevator com-
ponents so that no constraints are violated. This task was
chosen for the Sisyphus-2 project: a benchmark for compar-
ing knowledge modeling efforts in the knowledge-acquisi-
tion research community. The PROTÉGÉ-II solution to this
problem has been described in detail by Rothenfluh, Gen-
nari, Eriksson, and Musen (1994).

The ribosome topology task is another type of con-
straint-satisfaction problem, but in a very different domain.
Given information about the secondary structure of compo-
nents of the ribosome structure, and distance-constraint
information among those components, the task is to locate
the position and orientation of those components, relative to
a set of known proteins, such that no distance constraints are
violated. This problem has been described by Altman,
Weiser, and Noller (1994).

These two constraint-satisfaction problems are clearly
very different in terminology, and notably different in the
size of their search space. Thus, this pair of problems should
be a good testbed for software reuse: if a solution can be
constructed to solve one problem, it should be adaptable to
solve the other. As we will show, PROTÉGÉ-II allows devel-
opers to minimize adaptation costs when reusing a problem-
solving method.

2. PROTÉGÉ-II: An Environment for Reuse
PROTÉGÉ-II (Puerta, Egar, Tu, & Musen, 1992) can be
viewed as a software architecture (as in Krueger, 1992) for
reuse: an architecture and methodology that make it easier
for developers to access and use a library of pre-existing
components. For PROTÉGÉ-II, there are two types of compo-
nents: (1) declarative domain knowledge that may be reused

Reuse with PROTÉGÉ-II:
Adapting Problem-Solving Methods with Mapping Relations

John H. Gennari, Russ B. Altman, and Mark A. Musen
Section on Medical Informatics
Knowledge Systems Laboratory

Stanford University School of Medicine
Stanford, CA 94305-5479, U.S.A

<gennari, altman, musen@camis.stanford.edu>
URL: <http://camis.stanford.edu/protege/>

From: AAAI Technical Report FS-95-03. Compilation copyright ' 1995, AAAI (www.aaai.org). All rights reserved.

across different application tasks and (2) procedural prob-
lem-solving knowledge, such as a problem-solving method,
that may be reused across different domains. For example,
the domain knowledge in the ribosome task might include
facts about the size of helices, a particular distance con-
straint, or the list of candidate locations of some helix. The
problem-solving method is knowledge about what to do
with this data: how to manipulate it to solve some task, such
as determining helix positions.

Both types of knowledge may be expressed as declara-
tive ontologies. An ontology is simply a model of some
domain of knowledge; more formally, it is a partial specifi-
cation of the universe of discourse (Gruber, 1993; Guarino
& Giaretta, 1995). Thus, a domain ontology is an explicit
list and organization of all the terms, relations and objects
that constitute the representational scheme for that domain.
Likewise, a method ontology specifies the terms and the
inputs and outputs of the problem-solving method. In either
case, building an ontology is part of building a model or
constructing an abstraction for some knowledge or process.
These ontologies are not static, easily defined objects, and
are sometimes necessarily incomplete. Nonetheless, a for-
mal description of the representational vocabulary of a reuse
component is essential for knowledge reuse. As Krueger
(1992) states, “abstraction is the essential feature in any
reuse technique;” only by understanding the meaning of the
terms in the ontology can a developer hope to reuse the cor-
responding component.

If we wish to support the reuse of both problem-solving
methods and domain knowledge bases, then we must pro-
vide a way for developers to connect these two components
of an application. If methods and domain knowledge bases
are both built to be reusable, then we can connect these com-
ponents into a working application only by adapting and
custom-tailoring one of the components or by introducing
new elements that developers can use to connect method
and domain ontologies. As shown in Figure 1, we explore
the latter option, and we call the bridging elements mapping
relations (Gennari, Tu, Rothenfluh, & Musen, 1994). Map-
ping relations are a critical PROTÉGÉ-II feature for enabling
reuse. Unlike other software reuse repositories that allow
and expect developers to make arbitrary adaptations to a
selected component, we demand that all modifications be
made explicit via mapping relations.

Thus, PROTÉGÉ-II helps developers build knowledge-
based systems that include: (1) method-independent domain
knowledge, (2) domain-independent methods, and (3) a set
of mapping relations that encode any adaptations of these
components necessary to create a running system. Figure 2
provides an overview of the processes, objects, and tools
included in PROTÉGÉ-II. Our environment includes four
tools arranged in the inner ring of the control panel:
MAÎTRE, the ontology editor, DASH, the layout meta-tool,
MEDITOR, the knowledge-acquisition tool interpreter, and
MARBLE, the mapping relation builder tool. Proceeding
clockwise around the ring, developers using this environ-
ment build and iteratively modify a set of declarative objects
that specify the knowledge-acquisition tool, the knowledge
base, the mapping relations, and ultimately, the knowledge-
based system.

We have designed PROTÉGÉ-II for two types of users:
domain experts with little or no programming-level knowl-
edge, and developers. Beginning with MAÎTRE, the domain
expert provides an initial domain ontology, while the devel-
oper selects an appropriate problem-solving method. Next,
both work together to create an application ontology; this
ontology includes knowledge required by the problem-
solving method as well as terminology from the domain
ontology. This ontology is input to DASH, a meta-tool for

Figure 1. Mapping relations facilitate reuse; they connect
problem-solving methods (PSMs) to domain knowledge. If the
domain knowledge is method-independent and the PSM is
domain-independent, then their inputs and outputs cannot be
connected without some bridging relations.

Domain #3

Mapping

Ribosome components

Domain Mode l

Ribosome components

Domain Mode l

P S MP S M
Propose
and Revise

P S MP S M
Propose
and Revise

Task #3

Relations

Domain #1:

Ribosome
components

Domain #2:
Elevator
components

Task #1:
Helix configuration

Task #2:
RNA secondary
structure catalog

Figure 2. The PROTÉGÉ-II overview and control panel.
Tools and products are arranged in the inner ring; the inputs
and outputs of those tools are on the outer ring. Development
of knowledge-based systems is iterative, and proceeds clock-
wise around the ring.

building knowledge-acquisition tools (Eriksson & Musen,
1993). Developer use this system to construct and modify
iteratively a domain-specific knowledge-acquisition tool.
The resulting tool elicits knowledge in domain-specific
terms, allowing a domain expert to create the knowledge
base for the given task. Finally, the developer and the
domain expert connect the terms in the domain ontology
with the requirements specified by the problem-solving
method ontology. This is accomplished via mapping
relations constructed with the MARBLE tool, which we
describe in Section 5.

The ability of developers to represent formally the ontol-
ogy of either a domain or a problem-solving method is criti-
cal to the success of PROTÉGÉ-II as an architecture for reuse.
Thus, ontologies should be easy to build and maintain, easy
to retrieve and reuse, and also have sufficient expressive
power so that a variety of knowledge can be easily incorpo-
rated. As might be expected, developing a knowledge repre-
sentation language that fills these requirements is an on-
going research effort. The Ontolingua language (Gruber,
1993) is one effort to develop a good knowledge representa-
tion language for ontology development and sharing.

Rather than attempting to describe the PROTÉGÉ-II meth-
odology in the abstract, we next show exactly how it has
been used in the two tasks mentioned earlier: elevator con-
figuration and ribosome topology, applying the problem-
solving method known as “propose-and-revise” (Marcus et
al., 1988). After describing the method, we discuss the pro-
cess of building domain and application ontologies, in both
the elevator configuration application task, and the ribosome
topology application task. Finally, Section 5 describes the
mapping relations that connect the application ontologies to
the method ontology for propose-and-revise.

3. The Propose-and-Revise Problem-Solving
Method

Problem-solving methods are domain-independent and reus-
able to varying degrees. At a minimum, a developer should
identify a domain-independent vocabulary that specifies the
requirements of the problem-solving method; in PROTÉGÉ-
II, this is the method ontology. The propose-and-revise
problem-solving method can be viewed as a simple type of
state-space search: (1) an initial solution is proposed, (2) if
no constraints are violated, post the solution and quit; other-
wise, (3) choose the best fix for a violated constraint, and (4)
revise the solution by applying the fix, and return to step (2).
The method ontology for our implementation of this algo-
rithm specifies its inputs requirements; see Figure 3. The
inputs needed for propose-and-revise are (1) a set of con-
straints that must be satisfied, (2) a set of fixes to correct
violated constraints, and (3) a set of state variables that spec-
ify the parameters of the solution and run-time inputs.

The construction of this sort of domain-independent
ontology for a given method is part of the investment cost
required to make the method reusable. Development of
these ontologies may be non-trivial, but this work allows
other developers to reuse a problem-solving method. For
example, the method ontology in Figure 3 is exactly the tar-
get of the mapping relations. As we will see in Section 5, we
will map both elevator configuration terminology and ribo-

some topology terminology to this method ontology. Before
defining these mapping relations, we must establish the
domain vocabularies of the respective application tasks.

4. Building Domain and Application Ontologies
In PROTÉGÉ-II, we distinguish a domain ontology—a task-
independent, declarative description of a domain—from an
application ontology that may include some method-depen-
dent knowledge. Thus, an application ontology is an aug-
mentation of the domain ontology with information needed
by the problem-solving method. This ontology is not the
same as the method ontology: The application ontology
should use domain-specific terminology, while the method
ontology is domain-independent. Recall that the application
ontology is the input to the DASH metatool, which produces
a knowledge-acquisition tool that uses terminology familiar
to domain experts (see Section 2).

4.1 The Elevator Configuration Domain
The task of elevator configuration was a real-world prob-
lem, originally defined by interviewing a group of engineers
at Westinghouse Elevator Company assigned to produce a
specification of elevator parts and dimensions that satisfied
both customer specifications and mandated safety con-
straints. Their task description included an enumeration of
available elevator components, a large list of constraints
(both safety and simple physical constraints), and informa-
tion about what action to take when particular constraints
were violated. The task description became further codified
for the Sisyphus-2 project (see Yost, 1992). Unfortunately,
domain experts for this problem are no longer available, and
the problem description as it was characterized by Yost is
definitely a mix of method and domain knowledge. Thus, it
is hard to know what a “method-independent” elevator
ontology might look like.

Figure 4 shows our application ontology for this domain;
for simplicity, only class names are shown. In this ontology,
the ELVIS-Components and ELVIS-Models subtrees
might correspond to a domain model, while classes such as
AssignConstraints and StepFixes are application
ontology augmentations needed for the propose-and-revise

 Propose and
revise

Constraints :
 condition
 expression
 name

Fixes :
 variable
 desirability
 name

State-variables :
 input-variable
 output-variable
 name
 initial-value

Fix-constraints :
 fixesList

Change-fix :
 assignValue

Upgrade-fix :
 domainClass
 keySlot
 upgradeSlot

Assign-constraints :
 variable

Increase-fix :
 incAmount

Decrease-fix :
 decAmount

Figure 3. The propose-and-revise method ontology.

method. Each of the 14 “systems” underneath ELVIS-Com-
ponents includes a slot for lists of system-specific con-
straints, parameters, and model information. This implies
that each instance of a constraint is not only classified as one
of three subclasses of ELVIS-Constraints , but is also
associated with one of the 14 systems defined by the appli-
cation ontology. This organization is completely unneces-
sary for the problem-solving method; this is an example of
domain-level information that makes the knowledge-acqui-
sition tool easier to use.

Much of the effort in modeling the elevator domain has
to do with the complexity of the domain: with 50 fix-con-
straints and over 150 assign-constraints, it is hard to know
what will happen when a single parameter value is changed.
However, because fix-constraints include an ordered list of
fixes, the system need not search very long before finding a
solution. In other words, although the transition function
between states is very complex and difficult to compute, the
search space of possible states is not large. As we will see,

ELVIS

ELVIS-Models

ELVIS-Components

ELVIS-Fixes

ELVIS-Constraints

ELVIS-Parameter

DoorSystem

CableSystem

CounterweightSystem

CarSystem

DeflectorsheaveSystem

HoistwaySystem

OpeningSystem

MachineBeamSystem

PlatformSystem

SafetySystem

SlingSystem

MotorSystem

BufferSystem

AssignConstraints

FixConstraints

RangeConstraints

StepFixes

UpgradeFixes

AssignFixes

CarGuiderails

CarGuideshoes

CompensationCables

CounterweightGuiderails

Deflectorsheaves

Doors

Machines

MachineGrooves

HoistCables

Motors

SafetyBeams

Slings

Platforms

MachineBeams

CounterweightBuffers

CarBuffers

MachineSystem

Figure 4. Our application ontology for the elevator configuration
domain and the propose-and-revise problem-solving method.

this characterization is significantly different from the task
of ribosome topology.

4.2 The Ribosome Topology Domain
In molecular biology, understanding the three-dimensional
shape and structure of a ribosome may be critical to under-
standing its function. A ribosomal subunit of interest (the
30s subunit in prokaryotes) is made of a single chain of
RNA bases and a set of 21 unconnected proteins. Current
experimental techniques provide four types of information.
First, they provide the location in three dimensions of the 21
proteins; this information is used to define a global anchor
coordinate system. Second, they provide the primary
sequence of RNA bases that form the long chain of con-
nected subunits. Third, they provide the location in the pri-
mary sequence of geometric components (secondary
structures, such as double helices and coils) that are made of
subsets of the RNA bases, and have a known, regular struc-
ture. Finally, they provide distance constraints between the
components and the fixed proteins, as well as among the
components themselves. Thus, given (1) the location of
anchoring proteins, (2) information about a set of secondary
structures in the ribosome (in this case, 10 helices), and (3)
distance constraints between the components and proteins,
the task is to find sets of locations and orientations for each
component such that no distance constraint is violated.

This domain is notable in the size of its search space: In
the original specification, each of the 10 helices had on the
order of 104 possible locations, giving a total search space of
more than 1038 possibilities. However, through preprocess-
ing that applies some of the constraint information, and
through sampling of location lists, this search space can be
reduced to a manageable size of roughly 1010 possibilities.
Finally, this space is fairly densely populated with solu-
tions—about 106 consistent locations (see Altman et al.,
1994, for details).

Figure 5 shows our application ontology for this domain;
there were only a few augmentations necessary for the pro-
pose-and-revise method. The most significant of these was
required because the ribosome task does not include any
explicit representation of constraint-fixes. Therefore, we
augmented the domain ontology with the class Violation-

Ribosome Topology
 Ontology

Constraints :
 name
 object1-xyz
 object2-xyz
 lower-bound
 upper-bound
 violation-fix

Representation :
 Top
 Bottom
 Radius
 Vander-radius

Location-file :
 name
 refObject
 dateCreated
 locPossible
 locFound
 list-of-locations
 (x,y,z, ω, θ, ψ)

Objects :
 name
 objectType
 geometric-rep
 location-files
 best-loc-file

Violation-fix :
 Object1
 Object2

Binary Constraints :
 fromObject
 toObject
 name
 constrainCount
 constrainList

Figure 5. Our application ontology for the ribosome topology
domain and the propose-and-revise problem-solving method.

fix , which makes explicit that when a constraint is violated,
the “fix” is to try a new location for one or the other helices
involved in the binary constraint. Obviously, this type of fix
is simpler than fixes in the elevator configuration task. This
is one example of the challenge for mapping relations—
ribosome fixes and elevator fixes must both be mapped onto
the method ontology, where there are four different types of
fixes defined (see Figure 3).

5. Specifying Mapping Relations
When information is used by more than one application, it
often needs to be modified, transformed, or massaged to fit
the different requirements of these applications. For exam-
ple, by comparing Figures 3, 4 and 5, it is clear that the
method and application ontologies have somewhat different
definitions of a constraint. Our problem-solving method
expects two classes of constraints—assign-constraints that
make an assignment to some state variable, and fix-con-
straints that includes fixes, or actions to take when the con-
straint is violated. In the elevator configuration task,
engineers typically use range-constraints: constraints that
specify lower and upper bounds on some variable. In
PROTÉGÉ-II, we use mapping relations to view each elevator
range constraint as two distinct fix-constraints in the lan-
guage of the problem-solving method (one fix-constraint
each for the lower and upper bounds). This same sort of
transformation must occur in the ribosome topology task,
since a constraint as defined in the application ontology
(Figure 5) includes upper and lower bounds.

Figure 6 is a more detailed picture of the idea of map-
ping relations; it shows our approach to resolving differ-
ences between application and method ontologies. By
formally specifying the application and method ontologies,
the role of mapping relations is more concrete: Although the

Figure 6. Resolution of differences between method and
application ontologies via mapping relations that connect
these ontologies. Solid arrows indicate automatic data-flow,
while the dashed arrows indicate that the developer must hand-
craft the mapping relations.

Method ontologyApplication ontology

Mapping relations

Mapping interpreter

Knowledge-
acquisition tool

Problem-solving
method

Knowledge-based
system

application ontology has been augmented to cover all
knowledge requirements of the method, it still necessarily
includes domain-specific terminology. To allow the prob-
lem-solving method to access this domain-specific knowl-
edge base, the information must be renamed or rearranged to
match the concepts specified in the method ontology
exactly. We resolve this mismatch with declarative mapping
relations and a mapping interpreter, an engine that processes
the mappings to provide a new view of the knowledge base.
Assuming an appropriate set of mappings, this new view can
be used by the problem-solving method. Thus, any and all
effort needed to adapt the method to a new problem is iso-
lated to the mapping relations, and the reusable method code
is not modified.

5.1 An Ontology of Mappings and MARBLE

We claim that the layer of mapping relations is a critical part
of an architecture for reuse; this layer isolates application-
specific customizations from the components. Nonetheless,
constructing a set of mapping relations is part of the over-
head cost associated with reuse. To keep this cost at a mini-
mum, we must keep mapping relations simple, and we must
provide an editing tool to make their construction easy. For
both these reasons, we need a formal, abstract definition for
all mapping relations; i.e., we need a mappings ontology.

Currently our mappings ontology includes three basic
types of mapping relations: (1) renaming mappings, where
the semantics between method and application classes
match, but the slot names need to be translated; (2) filtering
mappings, where the method slots are filled by filtering
information from application instances; and (3) class map-
pings, where method slots are filled from application class
definitions rather than from instances. We can use our map-
pings ontology as input to DASH, and thereby generate a
knowledge-acquisition tool for the mapping relations them-
selves. Currently, this PROTÉGÉ-II–generated tool is our
working prototype for MARBLE, the tool for assisting devel-
opers in the construction of mapping relations. Although
this tool is not ideal, it has proved useful in several domains,
including both the elevator configuration and ribosome
topology problems. In the next two subsections, we will
show examples of mappings and how they are used to trans-
form knowledge from our two application tasks to the
requirements of the propose-and-revise problem-solving
method.

5.2 Mappings for the Elevator Configuration Task
Mapping the elevator application ontology to the pro-

pose-and-revise ontology is relatively straightforward; in
this case, it is fairly certain that the problem-solving method
is appropriate for the task since, to some degree, the method
was originally designed for this domain. For example, the
application ontology includes “parameters,” which clearly
serve the role of “state-variables” in the method ontology.
This mismatch can be resolved with a simple renaming
mapping.

The mapping between RangeConstraints in the ele-
vator ontology and Fix-constraints in the method ontol-
ogy is more complex. Rather than a one-to-one cor-
respondence between slots, filtering mappings can combine

multiple source slot values onto a single target slot. Figure 7
presents a formal description of the filtering mapping for the
lower bound of the RangeConstraints class; there is
another, symmetric mapping to deal with the upper bound.
We should emphasize that developers do not work with
mapping relations at this formal level—instead, they manip-
ulate and edit mappings with MARBLE, and the mappings are
stored as instances of the classes defined in the mappings
ontology. The mapping interpreter (see Figure 6) then
applies these declarative mappings to transform instances
from domain to method knowledge bases.

5.3 Mappings for the Ribosome Topology Task
To apply propose-and-revise to the task of determining ribo-
some topology, and to build the appropriate mapping rela-
tions, is less straightforward than adapting the method to the
elevator task. For example, “trying a new location for a
helix” must be mapped into a type of fix applied in response
to a constraint violation. Unfortunately, the list of possible
locations for each helix does not include any desirability
information; without additional knowledge, the best that this
problem-solving method can do is to try the next location in
the list. This view of the task also requires filtering map-
pings to create State-variables from each helix, indicat-
ing (a) the current location of that helix, and (b) a location-
pointer that shows the position of the current location in the
list of possible locations associated with that helix. As with
the elevator task, the distance constraints are mapped into
two fix-constraints, but here, the fix is always to increment
the location-pointer for some helix.

As we built up the set of mapping relations, we discov-
ered trade-offs between the complexity of the mapping rela-
tions and the simplicity of the design of the knowledge-
acquisition tool. For example, we needed to build a rela-
tively complex mapping to guarantee that the location-
pointer for a helix never exceeded the number of possible
locations for that helix. This filtering mapping would have
been simpler if the Objects class had included the number
of locations as a slot, rather than that information being in
the Location-file class (see Figure 5). However, this
modification would have resulted in a less convenient
knowledge-acquisition tool, requiring users to duplicate
information in two classes. A similar design decision
involved the addition of the class Violation-fix into the
application ontology. This class is not needed in the domain

∀ x, where x is a member of the RangeConstraints class,
∃ y, a member of the Fix-constraints class, such that:

(name y) equals (constraint-name x)
(condition y) equals (constraint.condition x)
(fixesList y) equals (constraint.lower.fixes x)
(expression y) equals (catenate “>”

(constraint.lower.value x)
(constraint.variable x))

Figure 7. A filtering mapping relation from RangeCon-
straints in the elevator application ontology to Fix-
constraints in the method ontology. In our notation,
(<identifier> x) is an accessor function to retrieve the slot
value of the slot named <identifier> in instance x.

ontology, but in this case, we decided that by requiring a
small amount of inconvenience at knowledge-acquisition
time, we would save a great deal of effort at mapping con-
struction time.

6. Conclusions
Our approach to software reuse has been driven by real-
world examples—by working with test cases such as
described here, we believe we can articulate a theory of
mapping relations in support of reuse. With the mapping
relations described in Section 5, we were able to apply the
same problem-solving method (the same software module)
to find solutions to both tasks: elevator configuration and
ribosome topology. As should be expected, the propose-
and-revise method was most successful with the elevator
configuration problem, where the search space is relatively
small and where the algorithm can terminate after finding a
single solution. With the ribosome problem, the number of
valid solutions and the size of the search space meant that,
for practical reasons, we could not use this problem-solving
method to find all possible solutions. This is appropriate—
the method is designed to find a single solution, and modify-
ing it to find all possible solutions is a significant change,
suggesting that perhaps developers should use an alternative
problem-solving method.

In general, there is a basic tradeoff between reusability
and efficiency; if developers wish to use pre-existing soft-
ware modules to reduce development and maintenance
effort, they may pay some price in the efficiency of the final
system. Although efficiency is important in the ribosome
topology problem, there are many applications where devel-
opment time and maintenance effort are of greater concern.
For tasks where fast prototyping is valuable, the use of an
architecture such as PROTÉGÉ-II and the construction of
mapping relations to connect components should lead to
successful reuse, where the benefit gained is greater than the
investment costs.

Without an architecture in support of reuse, and without
mapping relations, “reusable” problem-solving methods
such as propose-and-revise are not really very reusable. The
propose-and-revise method as used by the SALT system for
the elevator configuration task was originally described by
Marcus and McDermott in 1986, yet the only effort to reuse
the system for a different application task was described in
1987 (Stout, Caplain, Marcus, & McDermott, 1990). This
effort applied the method to the task of scheduling work-
shop tasks, and the authors reported that there was “a signif-
icant amount of effort” required to adopt the method to the
new domain. Our results here suggest that this overhead cost
was too high because of the lack of formal ontologies, map-
ping relations, and an environment for reuse.

We expect that further PROTÉGÉ-II tool development
could further decrease adaptation costs for reuse. In particu-
lar, the task of adapting components via mapping relations
could become less expensive with an improved, more intel-
ligent mapping builder tool. A version of MARBLE that
included techniques of apprentice or case-based learning
should be able to suggest plausible mappings to developers
as they adapt domains to problem-solving methods. A better
version of MARBLE also depends on the development of a

better mappings ontology. As we gain experience with dif-
ferent reuse scenarios, we should be able more precisely to
define and constrain the set of legal mapping relations.

The benefit of software reuse is that maintenance and
development costs are lower because of the ability to adapt
pre-existing software modules to new applications. The cost
of that adaptation process is critical to the success of reuse.
If the adaptation is relatively simple, well-defined, and iso-
lated from the software module, then reuse is more likely to
lead to a real savings in effort. A mappings interpreter and a
mappings builder tool (both of which require a well-defined
mappings ontology) provide developers with the tools
needed to achieve exactly those goals: simple, isolated and
well-defined adaptations of software for a new purpose.

Acknowledgments

This work has been supported in part by grants LM05157,
LM05652, and LM05208 from the National Library of Medicine,
by support from the Advanced Research Projects Agency (NRAD
contract #N66001-94-D-605), and by gifts from Digital Equipment
Corporation. Dr. Musen is the recipient of National Science Foun-
dation Young Investigator Award IRI-9257578. Dr. Altman is a
Culpeper Medical Scholar.

This work is a collaborative project by the PROTÉGÉ-II
research group. We would like thank Henrik Eriksson, Thomas
Rothenfluh, Samson Tu, and Angel Puerta for their comments and
discussion.

Appendix: Describing the contribution
A. Reasoning framework
1. What is the reasoning framework?

We consider the reasoning framework to be part of the prob-
lem-solving method. Our architecture and approach for reuse is
independent of choices made for the problem-solving method.
Thus, we are independent of task and domain, and our aim is to
characterize and model tasks and domains in such a way as to facil-
itate their reuse in the future.

5. What are the roles of adaptation, knowledge, and reuse in your
approach?

In our approach, the developer is responsible for modeling the
knowledge needed in both a declarative description of the domain,
and a procedural description of the problem-solving method. Cur-
rently, PROTÉGÉ-II includes tools for building models that use a
frame-based knowledge-representation language. These tools
include the generation of domain-specific knowledge-acquisition
tools (see Eriksson & Musen, 1993).

The mapping relations we use can be viewed as a way of adapt-
ing either the problem-solving method or the domain knowledge.
More accurately, neither the method nor domain knowledge is
modified. Instead, mapping relations bridge the differences
between the two, allowing the problem-solving method to view
domain knowledge in its own terms (and vice versa). Because the
original problem-solving code is not modified, it can then more
easily be reused in different domains.

C. Evaluation
1. What hypotheses were explored?

Our hypothesis is that the use of mapping relations lowers the
cost of adapting an existing component (a method or domain the-
ory) to a new situation. As a corollary, we expect that a theory and
model of mapping relations (a mappings ontology) will enable us

to build tools to more efficiently allow developers to construct
mappings.

2. What type of evaluation?
At present, we are testing our ideas in a variety of domains and

settings for reuse and this can be considered a very initial form of
evaluation. To date, our work is not yet mature enough for quantita-
tive, empirical evaluation. However, we envision experiments that
measure development time using PROTÉGÉ-II and mapping rela-
tions versus development time building the product “from scratch”,
without any reuse. Note that this measures only part of the benefit
of reuse—investment costs are recovered over the entire lifetime of
a component, and over the maintenance cost as well as the develop-
ment costs of the product.

References
Altman, R. B., Weiser, B., and Noller, H. F. (1994). Constraint sat-

isfaction techniques for modeling large complexes: Applica-
tion to central domain of the 16s ribosomal subunit. Pro-
ceedings of the Second International Conference on Intelligent
Systems for Molecular Biology, (pp. 10–18). Stanford, CA.

Barnes, B. H., and Bollinger, T. B. (1991). Making reuse cost-
effective. IEEE Software, 8(1), 13–24.

Eriksson, H., and Musen, M. (1993). Metatools for knowledge
acquisition. IEEE Software, 10(3), 23–29.

Gennari, J. H., Altman, R. B., and Musen, M. A. (1995). Reuse
with PROTÉGÉ-II : From elevators to ribosomes. Proceedings
of the Symposium on Software Reuse, (pp. 72–80). Seattle, WA.

Gennari, J. H., Tu, S. W., Rothenfluh, T. E., and Musen, M. A.
(1994). Mapping domains to methods in support of reuse.
International Journal of Human-Computer Studies, 41,
399–424.

Gruber, T.R. (1993). A translation approach to portable ontology
specifications. Knowledge Acquisition, 5, 199–220.

Guarino, N., and Giaretta, P. (1995). Ontologies and knowledge
bases: Toward a terminological clarification. In N.J.I. Mars
(ed.), Towards Very Large Knowledge Bases, IOS Press, pp.
25–32.

Krueger, C. W. (1992). Software reuse. ACM Computing Surveys,
24(2), 131–183.

Marcus, S., Stout, J., and McDermott, J. (1988). VT: An expert ele-
vator designer that uses knowledge-based backtracking. AI
Magazine, 9(1), 95–112.

Puerta, A. R., Egar, J. W., Tu, S. W., and Musen, M. A. (1992). A
multiple-method knowledge-acquisition shell for the automatic
generation of knowledge-acquisition tools. Knowledge Acqui-
sition, 4, 171–196.

Rothenfluh, T. E., Gennari, J. H., Eriksson, H., Puerta, A. R., Tu, S.
W., and Musen, M. A. (1994). Reusable ontologies, knowl-
edge-acquisition tools, and performance systems: PROTÉGÉ-
II solutions to Sisyphus-2. Proceedings of the Eighth Banff
Knowledge Acquisition for Knowledge-Based Systems Work-
shop (pp. 43.1–43.30) , Banff, Canada.

Stout, J., Caplain, G., Marcus, S. and McDermott, J. (1990).
Toward automating recognition of differing problem-solving
demands. In The Foundations of Knowledge Acquisition, J.
Boose & B. Gaines, Eds., pp. 325–337. Based on a paper pre-
sented at The Second Banff Knowledge Acquisition for Knowl-
edge-Based Systems Workshop, 1987.

Yost, G. R. (1992). Configuring Elevator Systems (Tech. report).
Marlboro, MA: Digital Equipment Corporation. See also
URL<http://camis.stanford.edu/protege/sisyphus-2/>.

