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Abstract

We discuss why emotions are currently an important topic
for the intelligent agent paradigm. We explain which as-
pects of emotion research are relevant and indicate how cur-
rent architectures for intelligent agents may be extended with
resource managing constructs, inspired by ideas from cogni-
tive science, to produce emotionally intelligent agents.

Introduction
In the last few years, intelligent agents have become an im-
portant paradigm for software development, particularly on
the Internet (Bradshaw 1997). There are several reasons 
believe that emotions and related concepts will become in-
creasingly relevant for the design of such intelligent agents.

First, agents are being used to implement lifelike char-
acters in software for games, interactive drama, and gen-
eral user interfaces. The agent-oriented paradigm, where
actions are generated autonomously from high-level goals,
is arguably the best way to program them (Reynolds 1987).
In all forms of lifelike characters, the user is invited to sus-
pend disbelief and treat the object on the screen as if it were
a real person or animal. An important way to encourage
such disbelief is to endow the character with emotion-like
traits.

Second, another important use of agent software is to
represent the user in networked environments or assist the
user in complex interaction with such environments. For
this, the agent should have detailed knowledge of the user’s
preferences. Although mathematical models can be used to
describe preferences formally, the most natural way to de-
scribe what the users like, or would like to do, is in terms
of a model of the their personality and emotional make-up.
This is especially true when the agent is asked to work to-
wards several of the user’s goals in an unpredictable envi-
ronment with limited feedback from the user himself.

Third, there are several interconnected trends in research
into agent architectures that are related to emotions:

¯ A desire to accommodate more complicated goals and
goal activation mechanisms.

¯ A movement towards integrated agent architectures that
combine a broad spectrum of intelligent behaviour.

¯ An awareness of the pervasive nature of resource con-
straints.

All three trends naturally lead to an examination of the the-
odes of cognitive scientists, psychologists and ethologists
who are studying motivational and emotional mechanisms
in humans and animals.

Each of these three uses of emotions imposes different
design requirements on the underlying model of emotions.
Lifelike characters require a model that entertains. The
emotional behaviour it specifies may be a caricature of that
found in real life, a cartoon psychology. Agents acting
as a user’s representative require that the emotional model
matches as closely as possible the desires of the user and
that the user and the agent share a common, easily intel-
ligible vocabulary. The use of emotional mechanisms to
improve the control structures in agents may use abstrac-
tions of biological models that are unintuitive to the user
as long as the mechanisms can be used to engineer optimal
agents. The framework we give below arises from this last
use of emotional mechanisms. However, we hope that the
framework may also be extended to cover the first two uses
as well.

Logic and Motivation
In order show how emotional models can be used to struc-
ture resource management within an agent, we shall present
a symbolic account of how the agent reacts to the world,
typical of the logic-based AI tradition. We indicate how this
account must be improved by taking into account resource-
oriented, utility-based constructs and show how these are
related to emotional models. We base our account of utility
on the work of (Russell Wefald 1991). We start by outlin-
ing the resource management issues as they arise in an indi-
vidual agent and we go on to discuss how similar resource
related issues arise in a multi-agent society. The example
we give shows how the notion of an emotional state, such
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as fear, influences the control flow and computation within
each individual agent.

In order to show how motivational constructs play a role
at all levels of a multi-agent architecture we present a sce-
nario, which, despite its simplicity typifies the situation
found when several agents, each with more than one goal,
try to solve a time-critical task. The example uses the ab-
stract view of the INTERRAP agent architecture given in
Figure 1. The INTERRAP architecture is typical of today’s
multi-agent systems. It has low-level reactive behaviour in
the behaviour-based layer; it has deliberative, goal directed
planning in the plan-based later; and it reasons about the
social context of an agent in the social layer. For more in-
formation see (Miiller 1996). In the Figure, SPL, LPL
and BBL represent the programs that implement the pro-
cess at the social planning, local planning and behaviour-
based layer, respectively. ALPL and ABBL represent the
way an upper layer influences the layer below. The exact
way one layer may influence another is discussed later. I
and O are the input and output events of the agent. FLPL

and FBBL are abstractions of the processing at the lower
layer that the higher layer needs. We ignore, in this exam-
ple, the way data and control flow sometimes go up rather
than down the layer hierarchy.

SPL

FLPLI

LPL

Social Planning Layer

ALPL

Local Planning Layer

ABBL

Behaviour Based Layer

Figure 1: Intelligent Agent Architecture

Motivational Issues in the Reactive Layer of an
Agent

The simplest form of an agent might not plan at all, but
just react to a situation it finds itself in. It will only con-
sist of the program for the reactive layer (in INTERRAP,
the behaviour-based layer). An example of a specifica-
tion of such a program is given in Figure 2. It specifies

the relations that we would like to hold between the sens-
ing and acting events of the program BBL. The predi-
cate environment specifies an environment of an agent,
and execute(E, I, O, P) specifies the relation that holds
between the input and output events (I and O) of the pro-
gram P when it is run in the environment E. The be-
haviour we would like our reactive agent to exhibit is given
by the predicate bbl. The predicates sense_food(i) and
sense_predator(i) hold if the input event i is this particular
type of sensing event. The predicates eat_food_action(o)
and run_action(o) hold if o is an output event of the ap-
propriate action type. The function time maps events to
numbers, over which the usual < relation holds. The con-
stant 5 is a number.

In a framework such as (Gregory 1997) or (Fisher 1994)
the definition of the predicate bbl could, more or less, be
used as the program BBL. In a framework such as (Kowal-
ski Sadri 1997) it can be seen as the specification of the
temporal properties of a production rule system.

V E, I, 0 environment(E)A
execute(E, I, O, BBL) --+

bbt(Z, O)

V I, 0 bbl(I, O) 
(V i E I sense_food(i) 

3 o E 0 eat_food_action(o)A
timely(i, o, 5))

(V i E I sense_predator(i) 
3 o E 0 run_action(o)A
timely(i, o, 5))

V e, e’, D timely(e, e’, D) ~-~
time(e) < time(e’)A
time(e’) -- time(e) 

Figure 2: Simple Reactive Behaviour

The relevant motivational issues at the reactive level of
an agent are:

1. The sets of input and output events, I and O, are possibly
infinite, the agent could run as a non-terminating process.
Our ability to reason about the consequences of the agent
processes will depend on how we can chunk the input and
output into finite episodes.

2. The two actions relevant to eat_food_action and
run_action will sometimes lead to conflict, if the agent
cannot do both actions at the same time.

3. We may well require the agent to operate in several dif-
ferent environments, with different characteristics, i.e.
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the parameter E of execute may take on different val-
ues.

4. Here we do not specify all the properties of the actual
predicate bbl. However, it is intuitively clear that we
would prefer the agent to avoid a predator rather than to
continuously eat food. This is specified more completely
with a function that assigns a utility to the set of output
events O.

5. A consequence of 2, 3 and 4 is that in certain environ-
ments it may be better for the reactive program BBL to
delay food eating actions, when there is a high proba-
bility of a predator appearing. However, even then we
do not want the agent to postpone its eating behaviour
indefinitely. Within animals this dynamic control of be-
haviour is derived from the motivational states of hunger
and fear.

6. Related to 4 and 5 is the issue of using goals in the spec-
ification that are desirable but may not be attainable: if
the threat of a predator is too great then it may be bet-
ter for the agent to refrain from eating food before the 5
deadline.

7. We want our reactive agent to use the fewest possible re-
sources. As (Russell Subramanian 1995) points out, 
should express this in terms of bounded rationality, mak-
ing explicit the machine that the agent runs on, the range
of environments the agent could find itself in with their
associated probability, and we need a utility function that
describes how well the agent uses its resources to achieve
its goals. Thus, we need:

¯ to specify the abstract machine M,

¯ the set BB£ of programs for M that satisfy the speci-
fication in Figure 2,

¯ a utility function U,
¯ the class of environments £, and
¯ a valuation function V such that V(p, M, £,bl) de-

notes the value according to U obtained by the pro-
gram p on machine M in the environments £, where
we assume a probability distribution over the elements
of£.

The optimal reactive agent, bblopt, is then defined by:

bbl opt = argmax bbt~ t3t3£ V ( bbl, M, £ , H)

(Russell Subramanian 1995) offers some guiding prin-
ciples as to how one might find the optimal program for
the agent.

Flexible behaviour based on resource consumption at this
level has been investigated extensively. In computer science
it occurs as the problems of fairness and deadlock in con-
current systems. It is also a major subject in economics,

and can be seen in the ideas that have influenced agent sys-
tems, particularly game theory, decision theory and market-
oriented programming. However within agent architectures
many problems are still open. General mechanisms to deal
with the infinite time horizon (item above), the satisficing
goals problem (item 6 above) and the optimisation over all
environments and all programs to obtain bounded rational-
ity (item 7 above) have still not been found.

Motivational Issues in the Planning Layer of an
Agent

Figure 3 shows an example of the knowledge used at the
planning layer of an agent. The predicate lpl defines the
goal that the local planning layer is trying to achieve. The
predicates starve and be_prey define properties that we
do not want to hold in the input-output behaviour of the
agent. The predicates hunger_pang and sense_predator
are properties of input events of the agent. The predi-
cates goto_food_action, eat_food_action, run_action and
hide_action are properties of the output events. Thus, in
addition, to the reactive behaviour of the program BBL the
LPL program searches for additional behaviour to meet the
goals defined by the predicate lpl. Here this involves ac-
tively searching for food when hunger sets in and having
the option to either run or hide when a predator appears. In
Figure 1 we sketched the way the local planning layer af-
fects the behaviour-based layer through the transmission of
ATM, i.e. the modifications that the upper layer imposes.
We discuss in item 4 below the form these modifications
might take.

V I, O, E environment(E)A
execute(E, I, O, BBLIILPL) -~

lpl(I, O) A bbl(I, 

V I, 0 lpl(I, O)
-,starve(I, O) A -,be_prey(I, 

V I, 0 starve(I, O) 
3 i E I hunger_pang(i)A
-~(3 o, o’ E 0 goto_food_action(o)A
eat_food_action( o’)A
timely(i, o, 5))

V I, 0 be_prey(I, O) t-+
3 i E I sense_predator(i)A
-~(3o E 0 run_action(o) V hide_action(o))A
timely(i, o, 5’))

Figure 3: Simple Planning B ehaviour

The issues we discussed above for the reactive layer also
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arise at the planning level. In addition new issues arise:

1. Planning usually involves search between competing
alternatives. In the example we can see that both
run_action and hide_action will evade the predator. As
the agent considers whether to do one action or the other,
a branch opens up in the search space, The inference
process must now divide resources between competing
branches and resource consumption is an issue at the
level of the plan execution as well as at the planning
level. Does it cost more to run or to hide? And what
will it cost to find out?

2. Eventually the agent must commit to one of several com-
peting branches in the search space. It will, in general, be
impossible for the agent to commit at one time to a plan
representing all future behaviour. In the example when
a predator appears the agent must commit itself to either
running or hiding and do so quickly. It may not be able
to fully work out the consequences of the action and this
may even prove fatal: the agent could starve if it chose
to hide and the predator were to walt that long outside
the hideout. But a tradeoff must be made between wait-
ing for better knowledge about the effect of plans and the
decreasing utility of the plan.

3. Once the agent has committed to an action, there may be
a further tradeoff: should the agent reclaim the resources
devoted to alternative courses of action or should it keep
these search branches open in case the first choice falls:
that is, should it pay to hedge its bets.

There are also architectural, motivational issues between
the layers:

4. How do we realise the passing of the plan to the
behaviour-based layer (ATM in Figure 1)? In a typi-
cal hybrid agent architecture there may well be a reac-
tive program running in the lower layer. This means,
where possible, the planner should bear in mind the ac-
tions of these plans (for this FBBL in Figure 1 provides
an abstraction of the lower layer). It may also mean that
the interface between the planning layer and the reactive
layer should allow the planning layer to delete or restrict
the resources to the processes in the lower layer. In the
example, the planning layer might sense a predator and
decide that hiding is better than running. If the program
specified in Figure 2 is executing, the planning layer must
install a new process to get the agent to hide, and inhibit
the default processes that run from predators and eat any
food the agent senses.

5. The principle of bounded rationality requires in this set-
ting that the agent should divide its resources appropri-
ately between the behaviour-based and the reactive lay-
ers. In general, the optimum will depend on the cur-
rent environment. In an environment where there are no

predators and food is so common that the agent continu-
ally senses it, then our example agent need not plan at all;
the default behaviour embodied in the lower layer would
be sufficient. But the environment may change and this
happy situation may not continue. Related to this issue
is that of contingency planning: When is it worthwhile
for the agent to plan for situations that it is not sure will
happen?

.
Given the inter-layer resource issues mentioned above,
we will need cross layer categorisation of processes so
that:

¯ the agent recognises from the stream of primitive in-
put events when such a dangerous situation, such as a
predator appearing, is likely to be happening, and then

¯ how to devote all resources in knowledge updating,
planning and execution to sub-processes that will re-
alise predator avoidance, whilst inhibiting other sub-
processes.

.
To extend our definition of optimal agents, we take the set
Z:7~£ of programs for the machine M that meet the spec-
ification of Figure 3 and form the set BP = {(1311 )113 
1313£ APE £P£}, where II represents parallel composi-
tion of programs. The above discussion shows there are
many design options for the construction of the programs
in 1313£ and £P£, but we can say that we have made the
right design decisions, when we have found bpopt:

bp opt = arymaa: bp ~ t37~ V ( bp , M, 8 ,11)

An agent that makes best use of its resources at the re-
active and the planning layer is optimal in the bounded
rational sense.

There is plenty of research in agent systems that incor-
porate planning and reactive behaviour. However, little at-
tempt has been made to show that these systems are bound-
edly rational and no system has managed to dynamically
change the resources allocated to planning and reactive pro-
cesses according to the decisions carded out by the agent.
This is a novel research topic and is precisely the area where
motivation research in other areas outside of computing can
make a contribution.

Motivational Issues in the Social Planning Layer
of an Agent

The social planning layer modifies the goals of the local
planning layer and handles the cooperative aspect of plan-
ning for a set of agents. An example is sketched in Fig-
ure 4. Here, the planning layer is charged with high level
goals which have social implications. The predicate spl de-
fines the goal for this layer of the agent, friend is a prop-
erty of agents and input and output denote the input and
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output events. As a member of a social group the agent
should engineer its behaviour so that not only is the agent
itself free from hunger but also that its friends in the social
group do not starve. Typically, the social planning layer will
pass a goal, such as finding food for a group of agents, onto
the local planning layer of the individual agent (via ALPL

in Figure 1). The knowledge of which agents are friends
and what messages may be sent out to find out, whether a
friendly agent is hungry (or will perform the social favour
of giving the current agent some food) is represented at the
social planning layer. The social planning layer may be-
come aware of the need for such information from the local
planning layer via the abstraction I "LPL that the lower layer
offers.

V I, O, E environment(E)A
execute(E, I, O, BBLIILPLllSPL) --+

spl(I, O) A lpl(I, O) A bbl(I, 

V 1, 0 spl(I, O)
-,starve(self, I, O)A
V F, I’, O’ (friend(F) A input(F, I’)A
output(F, 0’) --+

-,starve(F, 1’, 0’))

Figure 4: Simple Social Planning Goal

Exactly how social goals arise, and what sort of be-
haviour the agent can expect other agents to generate, de-
pends on the society the agent finds itself in. We list below
some problems that show the way inter-agent relationships
affect the social planning layer:

¯ Multi-agent systems need social norms that describe how
agents may interact. In the example, we may need food
sharing mechanisms for instance. An autonomous agent
will cooperate with other friends in the group if it feels
the group norms guarantee that its own need for food re-
sources is satisfied. Thus some fair means of resolving
resource conflict should either be engineered by the de-
signers of the multi-agent system or it should be evolved
by the group of agents themselves.

¯ The control policy of the individual agents should reflect
the additional constraints on resource usage as imposed
by the environment. This could involve taking into ac-
count the penalties associated with unfulfilled commit-
ments, it may also mean expending resources to main-
tain a friendly alliance between agents. In the example
the agent should leave some food for friends. If it does
not, it may expect to receive social sanctions such having
to pay a fine to the group or being socially ostracised.

The agents should be able to monitor or predict the be-
haviour of other agents. If an agent trusts another not to
eat all the food, or food-eating is effectively policed by
some other agent, then agents can go off and fulfil other
goals. Reasoning about others’ social behaviour is an as-
pect of emotional intelligence.

Again, we can extend our definition of bounded rational-
ity to cover reasoning at the social layer. We define SP£"
as the set of all programs for M that meet the specifi-
cation in Figure 4, then define B79S = {(13117911s)113
1313£. A 79 E £.79~ A S C $7912}, and bpsovt makes opti-
mal use of resources at all layers of the INTERRAP agent
architecture if :

bps opt = argmax bpse B.ps V ( bps, M, £, H)

Cooperation among groups of goal-oriented agents has
been a major topic of research for economists, socio-
biologists and mathematicians interested in game-theory.
Not all of this research has found its way into architectures
for multi-agent systems and an optimal way for an agent
to reason about the cooperative behaviour of others has not
been discovered. A aspect that remains to be covered is the
affective component of inter-agent communication. Much
research looks at how formal descriptions of inter-agent
communication can be interpreted as speech acts. What
is ignored is how almost all human speech not only has a
propositional content but also conveys emotional informa-
tion, such as whether the speaker is happy, upset, or sur-
prised. This information is vital for cooperation in humans.
An analogue of such information, providing an ongoing re-
port on the state of goal directed processing within an agent,
is likely to prove useful for societies of emotionally intelli-
gent agents.

A Research Agenda
Above we have presented a logical characterisation of the
processes in each layer in a typical architecture for an intel-
ligent agent. Within the framework of logic programming
we can turn these logical specifications into programs, ac-
cording to the following equation (Kowalski 1979):

algorithm = logic + control

This has been the approach taken in recent research with
the INTERRAP architecture.

Although we use logic in the specification of goals, as
we indicated by our comments on the example above, logic
alone does not lead to an emotionally intelligent agent.
We must specify how the control component manages re-
sources so that the resulting system is boundedly optimal-
ity. We must also specify how goals arise (through FLPL

and I’BBL), how goals are weighted and how planning and
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cooperation eventually lead to actions (through ALPL and
ABBL). This combination of control within the layers of
our architecture and the way the layers influence one an-
other and generate actions we label motivation, resulting in
the following equation:

agent = logic + motivation

When the motivational component is such that the resource
consumption of the agent delivers something approaching
bounded optimality, then it is our contention that we will
have an emotionally intelligent agent.

There has been some work with the INTERRAP com-
bining techniques for reasoning about resources and utili-
ties with symbolic reasoning (Burt 1998). This has mainly
concentrated on reasoning within the planning layer. The
research that is now needed is based on extending this rea-
soning and incorporating related resource-oriented mecha-
nisms into the control component of the architecture.

The search for bounded optimality is not, however, the
sole reason we are interested in emotional mechanisms. We
see animated characters playing an important part in the fu-
ture computing environment and that agent-oriented tech-
niques will be used to program them. Indeed, we think it is
through programming these animated characters that agent-
oriented programming will reach mainstream computing,
in the same way that object-oriented programming arrived
with the programming of window-based interfaces. We are
thus forced to examine the emotions we are simulating in
the characters being programmed. Several researchers have
achieved this simulation with a separate module that rea-
sons about emotional state according to a particular psycho-
logical model (often that of (Ortony, Clore, Collins 1988)).
It is our hope that eventually these two strands of research
will eventually merge: that is to say that the emotions of
the character can be seen as natural extensions of the con-
trol constructs that we need in the character anyway in order
to program it efficiently.
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