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Abstract

Unlike the world wide web or general libraries, digital
5braries typically serve a specialized community of ex-
perts sharing a relatively narrow focus, such as some as-
pect of law, science, technology, or business. Moreover,
these experts are not -casual users~; they have stringent.
information requirements. For these reasons, digital li-
braries increasingly invest in sophisticated methods for
indexing and retrieving their information assets.

The goal of this project is to develop and test a
method of knowledge-based information retrieval, in
which a request for information is posed as a question,
and information sources are identified that pertain to
steps in the logical process of answering the question.
We aim to develop this technology by leveraging our
results from fifteen years of research on building knowl-
edge bases and developing automated methods for using
them to answer questions. Vv’hile our previous research
required e.xtensive "knowledge bases that are costly to
build and maintain, our current research will signifi-
cantly reduce this requirement with a novel combina-
tion of symbolic reasoning and more conventional in-
formation retrieval.

To evaluate our results, we plan to build an informa-
tion retrieval system for the wide variety of users need-
ing information on the effects of global climate change,
and to measure its success compared with human ex-
perts and conventional systems.

This paper introduces knowledge-based.information
retrieval. ~Vhile our work on an integrated system is
preliminary, the components of our solution (an ex’ten-
sive tmowledge base and methods of using it to answer
questions) are well developed.

Knowledge-based Information Retrieval

We aim to develop automated methods that perform an
important new information-retriewal task:

¯ Given a user’s question requesting information,
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¯ Find relevant information sources, and explain their
relevance to the user’s request.1

As an example of this task, consider a question that
might be asked by a user concerned with the effects of
climate on one of the seven major food crops (wheat,
rice, potato, cassave, sorghum, groundnut, and maize)
(Tinker & Ingrain 1996): "How will the net primary
producti~4ty of rice in Madagascar change if the con-
centration of C02 in the atmosphere doubles?" Hypo-
theucally, a computer system (like the one we propose
to build) might find a variety, of information sources
that bear on this question, and ex-plain why each is rel-
evant: as shown in Fig~tre I.

As this example illustrates, with our approach ’~ele-
vance" is a sophisticated notion..An information source
is deemed relevant to a question [fit percain¢ to a step in
the logical process of answering the question. For exam-
ple, the journal paper entitled "The Effects of Temper-
ature on the Metabolic Rate in various strains of Rice"
is deemed relevant because net primary productivity
(the dependent variable of the query) is influenced 
metabolic rate via growth rate, and atmospheric C02
is known to influence temperature.

In contrast, contemporary methods of information
retrieval have a weak metric for measuring relevance
(for overviews, see (Kowals’ki 1997; Frants, Shapiro,
& Voiskunskii 1997; Goldman 1992; Salton & McGill
1983)). For most common search engines, a request for
information is e.xpressed with a boolean expression of
keywords (not a question), and relevance is measured
by matching words, either exactly or statistically (Bren-
ner 1996).-~ Efforts to improve search engines - e.g. by
adding, to the list of keywords, their synonyms (Ruge
1992) and stems (Frakes & Baeza-Yate 1992) - show
the benefits of using semantic knowledge, even within
the inherent confines of keyword systems. We expect to

iInformation sources are digital documents, databases,
images, multimedia objects, and so~,~re, as well as on-line
references to non-digital information.

2For some specialized search engines, such as WEST-
LAW, queries may be expressed in English (Turtle 1994;
1990)), and they are automatically converted to boolean
expressions.
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user: How will the net primary productivity of rice in
Madagascar change if the concentration of C02 in the at-
mosphere doubles over the next 60 years?
system: The information sources below are probably rel-
evant to your question. For more information on the con-
tents, structure, or accessibility of any information source,
simply click on it.

1. Projected atmospheric C02 eancentrations over the nezt
100 years a database, is relevant because it provides pre-
dicted magnitudes and rates of change of CO2.

2. Crop distribution in Madagascar, a digital map, is rele-
vant because it provides the location of rice growing areas.

3. Carbon diozide absorption rate as a function of temper-
ature in rice a database, is relevant because it provides
data on the amount of 6’02 available to rice plants.

4. The mean annual temperature by latitude and The mean
monthly temperature by latitude, both databases, are rel-
evant because they provide temperature data needed
by (3).

5. The Effects of Temperature on the Metabolic Rate in Var-
ious Strains of Rice a journal paper, is relevant because
growth rate is influenced by metabolic rate, and atmo-
spheric 6’O2 influences temperature.

6. The effect of atmospheric C02 on atmospheric tempera.
ture, a global climate model, is relevant because it esti-
mates the strength of the influence needed by (5).

Figure I: A hypothetical scenario illustrating
the functionality of our proposed system for
knowledge-based information retrieval. The user
poses a request for information as a question. The sys-
tem uses a knowledge base to step through the logi-
cal process of answering the question. Typically, only
a small portion of the knowledge base is relevant to
any particular question. The system collects references
to information sources, such as databases and digi-
tal maps. that are associated with that portion of the
knowledge base, and explains their relevance in terms
of steps in the question-answering process.

improve substantially on these results by utilizing more
knowledge in the information retrieval process.

Our approach, called knowledge-based inforvnation
retrieval, will use four component technologies. First,
it will include a knowledge base of basic information im-
portant in a subject area. For example, in the domain
of global warming, the knowledge base might include
the biological classification of rice as the genus Oryza
of the family Poaceae (grasses), which is in turn a fam-
ily of flowering plants, and that the rate of diffusion
of C02 into plant leaves is a function of temperature.
Second, the knowledge base will include summaries of
information sources. For example, a database on the
net primary productivity of rice over the last 30 years
might be referenced, and linked to the ra’ce attribute
of the gro~h process of the rice genus of the grass
family. Third, our approach will include an answer-
template generator, a program that identifies the por-

tion of the knowledge base relevant to answering the
question, including the pathways of influence between
independent variables (such as atmospheric C02) and
dependent variables (such as net primary productiv-
ity). Those information sources linked to the template
are potentially relevant to the query. Fourth, we will
develop an explanation generator, a program that ex-
plains the relevance of each information source to the
user’s question.

Knowledge Bases
Background We have built a series of large knowl-
edge bases in a variety- of domains, including botany,
law, and distributed computing. Each encodes a sub-
stantial body of information in a form that enables a
computer to go beyond merely" reciting "canned an-
swers" to anticipated questions by performing infer-
ences to derive information that is not explicitly en-
coded.

In ’contrast to the knowledge bases for most expert
systems, which include only the information needed to
perform a single, narrow task, our knowledge bases
cover broad domains without ~task boundaries." For
example, our Botany Knowledge Base conl;a]ns over
200,000 explicit facts, with several million more facts
readily derivable by automatic inferencing techniques
(Sojoodi-Haghigbi 1992). These facts are organized into
descriptions of 47 spaces (e.g. roots, stems, leaves), 172
substances in those spaces (e.g. ox-ygen in the leaves),
and 313 processes covering physiolo~- and development
(Rickel 1995, p. 133).

The information in our knowledge bases is encoded
as KM-term.~, a variant of conceptual graphs (Sown
1984). As with conceptual graphs, each term is a ~aph
of concepts and relations (called sorts and features in
psi-terms (Ait-Kaci, Podelski, L- Goldstein 1993)), or-
ganiT.ed in a taxonomic hierarchy. However, as com-
pared with conceptual graphs, the lanoo-uage of KM-
terms significantly improves the efficiency of automated
reasoning (Clark & Porter 1997). We add the construct
of access paths, previously used in the .algernon lan-
guage (Crawford & Kuipers 1991). Each access path ex-
presses co-reference of sub-terms in a KM-term, and is
used to encode domain-specific information that guides
inference by specifying preferred chains of subgoals for
each inference goal (and hence, other chains will not be
tried).

Extending the Knowledge Base We aim to ex-
tend the Botany Knowledge Base to support knowledge-
based information retrieval for an important, and very
active, community concerned with the effects of climate
change on botanical systems. WorkSng with experts in
this area, we will add to the knowledge base functional
information about the effects on plant distribution of

~for ’Knowledge Manager’, the name of the software
managing our KB.
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temperature, rainfall, insolation, and soil nutrient con-
centrations.

Past projects in areas of medicine (Findler 1991)
and law (Griffith 1993; Hafner 1981) demonstrate that
knowledge-based approaches to information retrieval
are both feasible and successful, at least for specialized
archives. Because these archives offer the best potential
for high quality indexing and retrieval of information,
we predict they will be increasingly common. Future
archives might focus on particular domains (e.g. molec-
ular biology) or particular resources (e.g. a database 
satelhte imagery). Other researchers share the vision
that information will be widely distributed into spe-
cialized archives, and some are developing information-
retrieval methods in which the first step is determining
which archives to search (Chakra~zrthy & Haase 1995;
Callan, Lu, &: Croft 1995).

Although building knowledge bases is e.x~pensive, this
cost should not deter the development of knowledge-
based information retrieval. Our experience building
the Botany Knowledge Base offers a point of com-
parison. Vv’hile that project required about 25 man-
years of effort, our proposed project will be simpler
in two important ways. First, much of the work-
such as developing the knowledge representation for-
realism - was a one-time effort yielding results that we
can reuse.4 Second, other aspects of our past work -
such as building fully automated question answering
methods (Lester &: Porter 1997; Rickel & Porter 1997;
Mallory 1998) - are not necessary for the current task.
Moreover. the expense of building a -knowledge base
can be amortized among a variety of applications, such
as: helping users navigate digital libraries (Adam et al.
1996, pp. 121-8), expanding users’ queries (Voorhees
1994); interpreting natural-language queries (Turtle
1994); and summarizing texts (Palce I990).

Indexing Information Sources

As an "’overlay" to the knowledge base, we will en-
code descriptions of information sources in the same
representational formalism used in the Botany Knowl-
edge Base. Figure 2 is an example of this encod-
ing. The source is a journal paper describing a model
that relates climate ~-ariables, such as temperature, to
plant growth variables, such as net-primary productiv-
ity (Woodward, Smith, & Emanuel 1995). The ab-
stract of the paper is given on the top half of the fig-
ure. The bottom half of the fig%tre shows the encod-
ing of the abstract and its integration into the Botany
Knowledge Base, which provides essential background
information to "tie together" the terms used in the ab-
stract. For example, the dependent variables in the
model -- Leaf Area Index (LAI) and Net Primary
Produc~:ivi1:y (NPP) -- are not connected to the in-
dependent variables (e.g. 1:empera1:ure) using only the

4For example, we will reuse our knowledge representa-
tion formalism; see
ht1:p ://~. cs. ul:exas, edu/users/m.fkb/km, h%ml

terms in the abstract. The Knowledge Base supplies
the relevant connections.

As this figure illustrates, the encoding of the sum-
mary of an information source is a graph of terms and
relations, embedded in the knowledge base. We will
exploit this fact extensively in our methods for finding
information sources relevant to a user’s question, as de-
scribed in the next section. However, before we turn to
the issue of using such indices, we first discuss the cost
of creating them.

Encoding summaries of every information source in a
digital library - or those added during the continuous
growth of the library - would be prohibitively expen-
sive. Fortunately, this is unnecessary, we believe. As
part of this research, we will ins~estigate a novel or-
ganization of digital libraries that promises to signifi-
cantly reduce the cost of using any sophisticated index-
ing method, such as ours.

Our proposed organization is motivated by two ob-
servations. First. methods of indedng vary. in quality
and cost,s and these dimensions are (usually) directly
related. For ex.ample, consider two indexing methods,
one that e.xtracts and uses key phrases from titles and
abstracts, and another that extracts this information
from entire documents. The former is likely to provide
lower quality results, but at less expense, than the lat-
ter.

Second. information retrieval is best thought of as a
dialogue between a user and an (automated) assistant,
not a "one-shot request." The dialogue begins when
the user requests information, then alternates between
the assistant suggesting candidate information sources
and the user selecting ones that are most (or le~t) in-
teresting and requesting "more (or none) like these".
By providing this relevance feedback (Salton &: Buck-
ley 1990). the user hillclimbs to increasingly relevant
information sources.

In light of these observations, we propose that accu-
rate, yet costly, indexing methods be applied to only
a small fraction of the information sources in a digi-
tal library.. When a user begins a dialogue requesting
information, these methods will select the information
sources that serve as the initial states for the hillclimb-
ing search. After the user ran~ these sources, indices
are generated from the best ones in order to search a
larger fraction of the digital library., a subcoUection that
has been indexed by a method that is less costly, but
of lower quality, than the first. With each iteration
of the dialogue, as the user hilIrI~mbs to the informa-
tion sources of greatest interest, the assistant searches
a larger fraction of the library ,~ng weaker indexing
methods.

As a first step, ~e plan to test th~_q search pro-
cess with only two levels of indexing, and to apply
it to the Virtual Library on Earth Sciences and the

SQuality is measured, for example, by recall and precision
rates; cost is measured by the time and expense of indexing
each information source.
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Abstract: A global primary productivity and phytogeography model is described. The model represents the biochemical pro-
cesses of photosynthesis and the dependence of ga~ exchange on stomatal conductance, which in turn depends on temperature
and soil moisture. Canopy conductance controls soil water loss by evapotranspiratiom The assignment of nitrogen uptake to
leaf layers is proportional to irradiance, and respiration and maximum ~-~+mil~tion rat~ depend on nitrogen uptake and tem-
perature. Total nitrogen uptake is derived from soil carbon and nitrogen and depends on temperature. The long-term average
annual carbon and hydrological budgets dictate canopy lea/area. The model is used to simulate the global distributions of
leaf area index and annual net primary productivity.

Figure 2: An example of the encocIi~g of an information source in the knowledge base. Top: The abstract
for a journal paper describing a model that relates changes in climate to plant growth. Bottom: T eh--e-encoclin£ of the
abstract and its integration into part of the Botany Knowledge Base. The boxed terms and the bold arrows come
from the abstract itself. The rest of the graph - the unboxed terms, the non-bold arrows, and the nature of the
qualitative influence (positive or negative) - is supplied by the Knowledge Base.
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Environment.8 This library contains about 1200 in-
formation sources indexed by conventional word-baaed
methods. To this base, we plan to index about 100
sources more extensively, by summarizing each with an
overlay of the Botany Knowledge Base, as described
above. Knowledge-based information retrieval, applied
to this two-level library, will work as follows. After the
user poses a question requesting information, our meth-
ods (which are described in the next section) will select
some of the 100 well-indexed information sources. Af-
ter the user ranks them. indices are generated from the
best ones in order to search the second (and final) level
of the library. Since the second level is indexed by con-
ventional word-based methods, the documents selected
from the first level (or selected portions of them) may
be used as examples to provide relevant keywords and
phrases (this commonly used method is called "query
by example" (Frants. Shapiro, & Voiskunskii 1997)).

In later research, we plan to test other types of in_
de.x_ing that might be intermediate - in terms of quality
and cost - between the two described above. Promising
types include: (semi-automatic) parsing of selected por-
tions of documents, such as abstracts and introductions;
automatic summarization of documents: and automatic
e.mraction of key phrases.

Finding Information Sources Relevant
to Users’ Questions

With our approach to information retrieval, a request
is posed as a question. This has two major advan-
tages over conventional approaches, in which a request
is posed as a boolean expression of keywords. First,
because it retains useful structure, a question can be
more precise. For example, a question may include a
preface (such as, "’in the context of increased levels of
precipitation ...") or ask for a causal influence (such
as. "what is the effect of elevated atmospheric C02 on
plant gro~-th rate?"). Ignoring this structure is a ma-
jor factor contributing to the ambiguity of conventional
queries.

Second. the structure of a question suggests the steps
required for answering it. For example, consider a ques-
tion about the causal influence between aa.indepen-
dent variable and a dependent variable. Answering the
question requires finding the pathway(s) connecting the
variables, then determining when they are active. Ques-
tions of a different form require different steps. By iden-
tih,-ing these steps, a system for knowledge-based infor-
mation retrieval can expand users’ questions to search
for information pertinent to the subgoals in answering
them.

For questions of many types, our goal is to develop
domain-independent methods to identify information
sources relevant to answering each one. In this phase
of our research, we plan to focus on two broad types of
questions:

%ee: b~p ://ear~hsys~ems. org/Environmen~, sh~ml

¯ questions that ask for descriptions

¯ questions that ask for predictions

In general, answering questions of these forms, auto-
matically or with art expert’s assistance, is very difficult,
requiring considerable domain knowledge and two steps
of automated reasoning:

1. identify the portion of the knowledge base that bears
on that question,

2. apply techniques of automated reasoning and
natural-language generation to just that portion of
the knowledge base to compute an answer to the
question

In contrast, our proposed research focuses on the more
tractable task of helping users answer their own ques-
tions, by identifying relevant information sources and
then explaining their relevance. Therefore, it empha-
sizes the first step, and not the second.

Description Questions

A description qL~estion has numerous surface forms, but
they all ask for ~ description of an object or process, or
some aspect of it. A description of art object typically
includes its function, structure, location, and history,
while a description of a process typically includes its
purpose, steps, and time and place of occurrence. In
addition to this information, a comprehensive descrip-
tion often contains embedded descriptions, generated
by recursive invocations of the description generator.
For example, the description of an object might include
the description of the process in which the object par-
ticipates, and vice-versa.

In previous work, which we plan to build on here,
we studied the content and oro~uization of descriptions
in order to construct a computational theory of how
descriptions are generated, and we implemented it in
a computer program called KNIGHT (Lester & Porter
1997; 1996). We found that many descriptions follow 
similar pattern, which we generalized and cast in a data
structure called an ezplanation design plan, or EDP.
As an example, Figure 3 shows an EDP for describing
processes.

An EDP is only a template for a description. X, Vhen
KNIGHT applies an EDP to a particular concept, the
template is instantiated with information specific to
that concept, thereby generating a description. The de-
scription’s content is specified by the leaf nodes of the
EDP, and its org~niTation is specified by the internal
nodes.

The leaf nodes of aa EDP specify content by describ-
ing the subgraphs of the knowledge base, termed view-
points, that should be included (Acker & Porter 1994;
Acker 1992). For example, in the EDP for describ-
ing processes (Figure 3), the left-most leaf node con-
tainR the specification for the viewpoint "As-a-kind-
of Process Description". This viewpoint contains all,
but only, the subgraph of the "knowledge base describ-
ing why one process is a taxonomic child of another.
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When KNIGHT applies the EDP to the process pho-
tosynthesis (a specialization of production), it extracts
from the knowledge base the viewpoint "photosynthesis
as-a-kind-of production", as shown in Figure 4.

An instantiated EDP selects a subgraph of the knowl-
edge base. i.e. the graph union of the viewpoints it spec-
ifies. This subgraph may intersect with the descriptions
of information sources that have been encoded in the
knowledge base, as described in Section. In this way,
an instantiated EDP identifies the information sources
relevant to a user’s description question.

After our methods instantiate an EDP, and thereby
identify relevant information sources, we will enable the
user to alter this subgraph using the following opera-
tions:

1. extending the graph by asking for descriptions of
terms it contain.~, and incorporating into the graph
their instantiated EDP’s.

2. constricting the graph by selectively omitting EDP
nodes on irrelevant topics

Each alteration of the graph can change the information
sources that the ~aph identifies.

Prediction Questions

Although they have many surface forms, in the sim-
plest case. prediction questions ask "How will a change
in variable X affect variable Y?" For example, Figure 1
gives a prediction question which asks for the effect of
increased atmospheric C02 on net primary, productiv-
ity. Vv’e have developed a modeling program, called
TRIPEL (Rickel & Porter 1997; Rickel 1995), that an-
swers prediction questions by first constructing quali-
tative models, then simulating their behavior to yield
predictions. As with KNIGHT, it is the first of these
capabilities, and not the second, that we plan to reuse
for knowledge-based information retrieval.

Constructing a qualitative model requires finding the
relevant portion of the "knowledge base: i.e. the in-
fluence diagram that includes all, and only, the im-
portant connections between the independent and de-
pendent wariables of the question. In TRIPEL’s case,
the variables are continuous and real-valued .quan-
tities and the connections are qualitative influences,
each specifying a positive or negative correlation be-
tween a pair of variables. .,ks an example, Figure 2
shows an influence diagram connecting climate vari-
ables (e.g. temperatuxe) to plant growth variables (e.g.
net-primary productivity).

Building an influence diagram can be difficult be-
cause questions are typically incomplete. For example,
the prediction question from Figure 2 mentions none
of the "structural conditions" (such as the fact that
the plant leaves are in the atmosphere) or "initial con-
ditions" (such as the fact that the plants are mature
and healthy). The automated modeler must infer these
structural and initial conditions by the process of sce-
nario elaboration.

Potentially. this process could produce a very large
influence diagram, especially in domains in which sub-
systems are highly integrated, such as biology. TRIPEL
employs various techniques to limit its size (Rickel 
Porter 1994). For example, TRIPEL is able to deter-
mine when variables are exogenous to the system being
modeled. An exogenous variable is one which influ-
ences the dependent variable, or an intervening vari-
able, but is not itself influenced by any variable within
the system, at least within the time-frame of interest.
Continuing with our example, the concentration of at-
mospheric CO2 influences the rate of photosynthesis of
plants on a time scale of days, but is not itself influenced
by the photosynthetic removal of atmospheric C02 ex-
cept over a time scale that is too long to be relevant to
the question.

We will not attempt to describe how TRIPEL con-
structs an influence diagram -- this detail is in our Ar-
tificial Intelligence journal article. The important point.
is this: an influence diagram references an information
source when the encoding of the source (a subgraph of
the knowledge base) intersects the influence diagram
(also a subgraph of the knowledge base). Again, Fig-
ure 2 illustrates this graph intersection.

Building on this work. we propose to develop domain-
independent ways of handling a wider variety of pre-
diction questions, which will require better methods
of controlling scenario elaboration. TR.IPEL handled
questions in which both the dependent and indepen-
dent ~m’iables were stated. Many prediction questions,
however, are more open-ended, such as "wha~ happens
if < event > occurs?" and "what causes (caused)
< event >?" In addition to using time scale informa-
tion, we will explore new ways of bounding the model.
The most promising method involves representing, in
the knowledge base. the relative strength of influences
and the conditions under which an influence is dotal-
naut. We will emend TRIPEL to use this knowledge to
build a series of models, be~nning with the one com-
prising only the dominant influences. We will enable
the user to steer this process, interjecting assumptions
and preferences as the model is constructed.

Expanding a Query

The information-retrieval methods described above
may discover too few information sources. In this event,
the user’s question can be expanded using the same
knowledge base that the informatiau-retrieval methods
use. For example, consider a question for which the
photosynthetic rate of a particular plant species is rel-
evant. (Or, more simply, consider this to be a query
posed directly by a user.) If this query fails to identify
enough relevant information from the archive, it can be
expanded with a ~-ariety of heuristic strategies, such as:

¯ inheritance: look at more general classes of plants
(e.g. the genus or tribe), or more general metabolic
processes

¯ transductive inheritance: look at "sibhngs" in.those
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Spec~=.on

Part Co~n.

Figure 3: The Explanation Design Plan for describing processes. Each leaf node specifies a triew~oint, i.e.
a subgraph of the knowledge base containing information about some aspect of the process. The internal nodes
determine the organization of the viewpoints into a comprehensive description.

Figure 4: The subgraph of the Botany Knowledge Base comprising the viewpoint of" photosynthesis as
a production process. The viewpoint was extracted by the View Retriever program, a version of which was used
in KNIGHT. The input to the View Retriever is a specification of the desired viewpoint. In this case, the viewpoint
includes all, and only, the information about photoslrnZhesis for the roles (or relations) unique to production, The
unlabeled arcs are specialization relations.
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same classification hierarchies

¯ induction: look at specific members of the plant
species (e.g. the varieties of the species)

These methods of heuristic reasoning are domain-
independent: they work in many domains, but not
without errors. However, these errors are not too seri-
ous. Because they are errors of commission (not omis-
sion), in the worst case they recommend information
sources which are not relevant, thereby lowering the
system’s precision. We expect that users will more eas-
ily detect these errors with our system than with con-
ventional systems because our system will explain the
purported relevance of each information source. The
explanations will include the role of heuristic strategies
in expanding the query.

Explanation Generation

After our system identifies information sources that are
relevant to a user’s question, it will be able to explain
why each is relevant. The explanation will describe the
relationships between information sources and steps in
the logical process of answering the question. Because
a summary of each information source is encoded in the
knowledge base, an explanation need only state why in-
formation from a summary was selected by the answer-
template generator.

We will develop domain-independent ways of present-
ing explanations to users both graphically and textu-
ally. The graphical presentation will show the overall
structure of the explanation. In response to description
questions, the structure will be the instantiated EDP;
In response to prediction questions, the structure will
be the generated model. We will build a browser to
enable the user to navigate through these structures,
querying our system for more detailed explanations of
the relevance of each information source.

Detailed explanations will be presented textually.
Each will include a summary of the information source
and an explanation of how it relates to one or more steps
in answering the question. These explanations should
be generated, not simply recited from "canned text",
because the relevant aspects of an information source
depend on the user’s question and should be related to
the overall structure of the explanation.

For description questions, we have considerable ex-
perience with automatically generating text from infor-
mation encoded in our knowledge-base formalism, and
we plan to leverage these results (Lester & Porter 1997;
1991). However, for prediction questions, our past work
is less applicable and new methods are required. We
have developed ways of describing the behavior of a
computational model, as determined by a simulator
(Mallory, Porter, & Kuipers 1996; Mallory 1998), but
we need a way of describing the model itself. A facil-
ity that describes qualitative models in English would
benefit everyone developing and using qualitative rea-
soning.

Empirical Evaluation
We will empirically test two conjectures: (1) For
users’ questions requesting information, knowledge-
based information retrieval selects appropriate informa-
tion sources and explains their relevance correctly; (2)
The precision and recall of our two-level search (as de-
scribed in Section ) is superior to conventional one-level
search.

To test the first conjecture, since there are no compa-
rable computer systems, we will compare our system’s
performance with human experts, with these steps:

1. assemble two panels of researchers who are interested
in the effects of climate change on botanical systems,
drawn from the large and diverse population of grad-
uate students and post-doctoral researchers at UT-
Austin. Call the panels the examiners and the exam-
inees.

2. describe to the examiners the scope of the extended
Botany Knowledge Base. Instruct the panel to gener-
ate about rift)- information-retrie~-al requests (in the
form of questiens, of the types described in Section ).

3. give the examinees these questions plus the descrip-
tions of the 100 information sources (i.e., the same
information that human indexers typically receive).
Instruct the panelists, working individually, to iden-
tify information sources pertinent to each question,
and to e.xplain the relevance of each one.

4. present the same questions to our computer system.

5. instruct the examiners to e~-aluate the output from
the examinees and our computer system, without
knowing the source of the output (or even that a com-
puter system is involved). E,,-aluations will be based
on errors of omission, errors of comrn~-~sion, and the
quality of the explanations. To control for factors
that are irrele~ant to this research, we will instruct
the examiners to judge errors with respect to only the
100 information sources in the knowledge base, and
we WIU normalize the writing quality of the e.xplana-
tions produced by the examinees and our computer
system,r

To test the second conjecture, we will compare the
two-level search -- i.e. knowledge-based information
retrieval applied to a small portion of the library, fol-
lowed by ~query by example" applied to the complete
library -- with conventional keyword-based, one-level
search, with these steps:

1. Randomly select about twenty of the fifty questions
generated in step 2 above, along with the information
sources and explanations produced by our system.

2. Search the complete library for relevant information
sources, in two ways:

7We have successfully used this basic experimental design
in four previous projects (Porter, Bareiss, & Holte 1990;
Branting & Porter 1991; Lester & Porter 1997; P,.ickel &
Porter 1997).
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¯ Produce the "~-level results:" Ask a panel of ex-
perts to consult the explanations and rank the in-
formation sources for relevance to each question.
Then, use the most relevant sources as examples
to query the complete library.

¯ Produce the "1-1evel results:" To normalize inputs,
ask professional librarians to cast each question as
a boolean query, then pose each query to a conven-
tional search engine.

3. ask the other panel of experts to judge the recall and
precision for the 2-level results and the l-level results.

While these experiments will yield rankings, our fur-
ther analysis will attempt to explain why and when one
approach performs better than another. One exper-
imental technique we plan to use is ablation studies,
which test the relative contribution of specific features
of our approach.

Summary
Because digita:l libraries typically serve a specialized
community of experts who have stringent information
requirements, sophisticated methods for indexing and
retrieving information are both necessary and feasible.
We propose to address a challenging issue at the core
of information retrieval: selecting, from all the informa-
tion in an archive, that portion which is relevant to a
user’s request. While many researchers have worked on
this issue, our approach is completely novel: a request
for information is posed as a question, and information
is deemed relevant if it pertains to a step in the logical
process of answering the question.

Our long-term goal is to develop automated methods
for handling a variety of types of questions. However,
our first step focuses on two types - description ques-
tions and prediction questions. We will develop auto-
mated methods that identi~- the information sources
relevant to each question, then e.x’plain their relevance
to the user’s question. We aim to develop this tech-
nology by leveraging our results from fifteen years of
research on building -knowledge bases and developing
automated methods for using them to answer questions.
While our previous research required extensive "knowl-
edge bases that are costly to build and maintain, our
proposed research will significantly reduce this require-
ment with a novel combination of symbolic reasoning
and more conventional information retrieval.

As a testbed for our work, we plan to use an archive
of information about the effects of climate change
on botanical systems - a burgeoning concern of sci-
entists, economists, agronomists, and many others -
and to thoroughly e~-aluate the performance of our
information-retrieval system as compared with human
experts and conventional methods.

B.eferences
Acker, L.. and Porter, B. 1994. Extracting viewpoints
from knowledge bases. In Proceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-
94), 547-.552. Menlo Park, CA: AAAI Press.
Acker, L. E. 1992. Access Methods for Large, Multi-
functional Knowledge Bases. Ph.D. Dissertation, De-
partment of Computer Sciences, University of Texas
at Austin.

Adam, N.; Bhargava, B.; Halem, M.; and Yesha, Y.,
eds. 1996. Digital Libraries: Research and Technology
Advances. Springer.

Ait-Kaci. H.; Podelski, A.: and Goldstein, S. C.
1993. Order-sorted feature theory unification.
Tech Report PRL-RR-32, Digital Paris Research
Labs. (http: / /www.isg.sfu.ca/ftp /pub /hak /prl/P RL-
RR-32.ps.Z).

Branting, K., and Porter, B. 1991. Rules and prece-
dents as complementary warrants. In Proceedings of
the Ninth National Cof~ference on Artificial Intelli-
gence, 3-9.
Brenner. E. 1996. Beyond Boolean -- New Approaches
to Information Retrieval The National Federation of
Abstracting and Information Services.

Callan, J.; Lu, Z.: and Croft, B. 1995. Searching dis-
tributed collections with inference networks. In Pro-
ceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, 21-28.
Chakravarthy, A.. and Haase, K. 1995. Netserf: Us-
ing semantic knowledge to find internet information
archives. In Proceedings of the 18th Annual Inter’na-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 4-11.

Clark, P., and Porter, B. 1997. Using access paths
to guide inference with conceptual graphs. In lukose,
D.; Delugach, H.: Keeler, M.; Searle, L.; and Sown,
J., eds., Proceedings of the 5th International Con-
ference on Conceptual Structures - ICCS’97 (Lecture
Notes in AI vol 1257), 521-535. Berlin: Springer.
(http:/ /www.cs.utexas.edu/users/pclark/papers/cg9"Lps).

Crawford, J. M.. and Kuipers, B. J. 1991. Alger-
non - a tractable system for knowledge-representation.
SIGART Bulletin 2(3):35-44.

Findler, N. 1991. An Artificial Intelligence Technique
for Information and Fact Retrieval: An Application in
Medical Knowledge Processing. ~HT Presz.

Frakes, W., and Baeza-Yate, I:L 1992. Information
Retrieval Data Structures and Algorithms. Prentice
Hall Publishers.

Frants, V.; Shapiro, l.; and Voiskunskii, V. 1997. Au-
tomated Information Retrieval. Academic Press Pub-
lishers.
Goldman, N. 1992. Online Information Hunting. Mc-
Graw Hill Publishers.

S,9



Griffith, C. 1993. WESTLAW’s winning ways. Law
Office Computing 31-38.

Hafner, C. 1981. An Information Retrieval System
Based on a Computer Model of Legal Knowledge. UMI
Research Press.

Kowalski, G. 1997. Information Retrieval Systems:
Theory and Implementation. Kluwer Academic Pub-
lishers.

Lester. J.. and Porter, B. 1991. A revision-based model
of instructional multi-paragraph discourse production.
In Proceedings of the Thirteenth Annual Conference of
the Cognitive Science Society.

Lester, J., and Porter, B. 1996. Scaling up explanation
generation: Large-scale knowledge bases and empirical
studies. In Proceedings of the National Conference on
Artificial Intelligence.

Lester~ J.. and Porter, B. 1997. Developing and
empirically evaluating robust explanation generators:
The KNIGHT ex-periments. Computational Linguis-
tics 23(1):65-101.

Mallory, R.; Porter, B.; and Kuipers, B. 1996. Com-
prehending complex behavior graphs through abstrac-
tion. In Proceedings of the International Workshop on
Qualitative Reasoning about Physical Systems.

Mallory, R. 1998. Generating St.ructured, Causal Ez-
planations of Qualitative Simulations. Ph.D. Disser-
tation, Department of Computer Sciences. University
of Texas at Austin.

Paice, C. 1990. Constructing literature abstracts by
computer: Techniques and prospects. Information
Processing and Management 26:171-186.

Porter, B.; Bareiss, R.; and Holte. R. 1990. Concept
learning and heuristic classification in weak-theory do-
mains. Artificial Intelligence Journal 45(2):229--263.

Rickel, J.. and Porter. B. 1994. Automated model-
ing for answering prediction questions: Selecting the
time scale and system boundary. In Proceedings of the
Twelfth National Conference on Artificial Intelligence
(AAAI-g4), I191-1198. Menlo Park, CA: AA.~ Press.

Rickel, J., and Porter, B. i997. Automated model-
ing of complex systems to answer prediction questions.
Artificial Intelligence 93(1-2):201-260.

Rickel, J. 1995. Automated Modeling of Complex Sys-
tems to Answer Prediction Questions. Ph.D. Disserta-
tion, Department of Computer Science, University of
Texas at Austin. Technical Report AI95-234.

Ruge, G. 1992. Experiments on linguistically based
term associations. Information Processing and Man-
agement 28(3):317-332.

Salton, G., and Buc’tdey, C. 1990. Impro~-ing retrieval
performance by rele~-ance feedback. Journal of the
American Society for Information Science 41:288--297.

Salton, G., and McGill, M. 1983. Introduction to Mod-
ern Information Retrieval. McGraw-Hill.

Sojoodi-Haghighi, O. 1992. An implementation of
access-llmlted logic for the KM system. Master’s the-
sis, University of Texas at Austin.
Sown, J. F. 1984. Cone.eptual structures: Information
processing in mind and machine. Addison Wesley.

Tinker, P., and IIlgram; J. 1996. The work of focus 3.
In Walker, B., and Steffen, W., eds., Global change and
terrestrial ecosystems. Cambridge: Cambridge Univer-
sity Press.

Turtle, H. 1990. Inference Networks for Document
Retrieval Ph.D. Dissertation, Computer Science De-
paxtment, University of Massachusetts, Amherst.

Turtle, H. 1994. Natural language vs. boolean query
evaluation: A comparison of retrieval performance. In
Proceedings of the 17th Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval, 212-220.
Voorhees, E. 1994. Query expansion using lexical-
semantic relations. In Proceedings of the 17th Annual
International A CM SIGIR Conference on Research
and Developm~t in Information Retrieval, 61-69.

Woodward, F.; Smith, T.; and Emanuel, W. 1995. A
global land primary productivity and phytogeography
model. Global Biogeochemical Cycles 9(4):471-490.

9O




