Over-estimating cognition time: The benefits of modelling interaction

Gary Jones (g.jones@derby.ac.uk)
Institute of Behavioural Science, University of Derby, Mickleover, Derby, DE3 5GX (UK)

Frank E. Ritter (frank.ritter@ist.psu.edu)
School of Information Sciences & Technology, Penn-State University

Abstract
Tying a cognitive model to a task simulation and having it interact using a model eye and hand provides many benefits, such as accounting for both the physical constraints of the task and the time spent interacting with the task. A cognitive model and task simulation of a physical problem solving task (constructing a pyramid from 21 blocks) are presented. Analysing the interactions between the model and the task simulation shows that approximately 50% of the model’s task time is spent on interaction, that is, eye movements, eye fixations, and hand movements. The breakdown shows that any cognitive model of a physical task, including all human-computer interaction tasks, that does not simulate task interactions is likely to over-estimate the time spent on cognition and therefore attribute too much emphasis to cognition and cognitive learning.

Introduction
Cognitive models have provided valuable insight into the possible ways in which humans may be solving particular tasks (e.g., Anderson & Lebiere, 1998; Newell & Simon, 1972). The models can provide a test of a particular verbal theory, or the model itself can be the theory of how the task is accomplished. Modelling has been applied to various task domains, including those involving physical interaction (i.e., eye movements, hand movements, or both).

Which aspects of human behaviour are worth capturing in human modelling architectures? This paper presents a case for including models of perception to interact with an external task simulation. The central part of the paper illustrates several benefits of modelling interaction. It details a task for which a model and simulation have been developed, and shows that the influence of cognitive aspects of the task could easily have been over-estimated if the model was not linked to an external task simulation. In addition, the benefits of examining particular aspects of simulation use (e.g., the amount of time spent on visual search) are shown to provide insights into the task that would not have been available had an external task simulation been omitted.

Why have relatively few cognitive models used a task simulation?
There appear to be three simple reasons as to why task simulations have not been used extensively with cognitive models. First, the task particulars may not demand it because there is little observable behaviour. Second, the model of the task may have been developed in an architecture or modelling environment for which there is little support for the development of a task simulation. Only recently have cognitive architectures begun incorporating simulation environments within the architecture (Byrne, 1994, for CAPS; Byrne & Anderson, 1997, for ACT-R; Ritter, Baxter, Jones & Young, 1999, for Soar) to create integrated cognitive architectures (Pew & Mavor, 1998). Third, in the absence of an assortment of tools to help build a task simulation, the development of an adequate simulation requires additional time and effort which many researchers do not have. Although current cognitive architectures (in particular: ACT-R, Anderson & Lebiere, 1998; EPIC, Kieras & Meyer, 1997; Soar, Congdon & Laird, 1996) now include support for creating task simulations, they are recent developments. There is still comparatively little use of task simulations in models of tasks which involve interaction.

Benefits of including an external task simulation
An interactive task means that a cognitive model of the task is very likely to require a task simulation. There are two methods for linking the task simulation with the model: either include the task environment within the model's implementation language, or have the model interact with an external simulation of the task environment (usually a graphical simulation written in a fairly specialised language, but possibly a graphical environment attached to a cognitive architecture) 1. Incorporating aspects of the simulation within the modelling environment (e.g., John, Vera & Newell, 1994; John, Vera & Newell, 1994; 1 A further review of approaches is available in Ritter and Major (1995).
able to profit from it. Work within a variety of subjects are children). tasks are difficult to obtain (especially ones where the task would require tracking eye movements which for some subjects (i.e., providing further measures of behaviour). Another problem for representing the simulation within the modelling environment is that the modelling environment is not ideal for representing a simulation (because it is not a language which is specialised for writing simulations) and so the task representation is often simplified.

The above problems highlight the need to complete the modelling task by including an external task simulation, which can be linked to any cognitive model of the task and not just the particular model which has been developed. The development of an external task simulation has clear advantages over including the task environment within the model (or not including a task environment at all):

1. The simulation can indicate how complex the task is and how great a role the eye and hands play, based on the number of times the model has to interact with the simulation, and for what length of time.
2. Modelling only the high-level processes involved in the task assumes that access to the external task information is effortless. Accessing the external task information may in fact influence speed and accuracy in the task (Anderson, Matessa & Lebiere, 1997).
3. Modelling only the high-level processes involved in the task, and not modelling how information is obtained, may mean modellers are “granting themselves unanalysed degrees of freedom in terms of choice of representation” (Anderson et al., 1997, p.442). The success of the model may simply be because of the chosen representation and not because of the high-level processes that have been modelled.
4. A task simulation offers the opportunity to examine task behaviour that is difficult to obtain from subjects (i.e., providing further measures of behaviour). For example, the time spent performing visual search would require tracking eye movements which for some tasks are difficult to obtain (especially ones where the subjects are children).

Allowing a model to interact with a clear task simulation allows more fine-grained comparisons to be performed. Models that have interacted with a task similar or identical to that seen by subjects have generally been able to profit from it. Work within a variety of architectures, for example, EPIC (Kieras, Wood & Meyer, 1997), EPIC-Soar (Chong & Laird, 1997), Soar (Nelson, Lehman & John, 1994), and ACT-R (Anderson, Matessa & Lebiere, 1997) have shown that it is possible and that the resulting models can be quite accurate and useful.

What has not been fully done, which is presented here, is a break down and summary of where the task time goes—what proportion of the behaviour in an example task is spent on cognition and what proportion is spent on interaction. The model and simulation of the example task used (which is similar to many tasks in HCI and cognitive psychology) will show that the time spent on interaction is about equal to the time spent on cognition.

The Task, the Model, and its Simulation

The task, the model, and the task simulation are only discussed briefly here. More detailed descriptions are available for the task (e.g., Wood, Bruner & Ross, 1976), and the model and task simulation (Jones, 1998; Jones, Ritter & Wood, 2000).

The Tower task is analogous in many ways to direct manipulation graphical user interfaces. Like them, the problem solver in this task has to choose objects to manipulate, pick up or select objects, and arrange or manipulate objects. The difference here is the objects are modelled and represent three-dimensional objects, but in terms of timing and distribution of effort, it will be very similar to numerous tasks, such as drawing in MacDraw, circuit layout with a graphical user interface, and simulation games like Sim-City.

The Tower task

The Tower task (Wood & Middleton, 1975) is a problem solving puzzle in which a pyramid (shown in Figure 1) must be assembled from a set of 21 wooden blocks. There are six layers to the pyramid; the lower five consist of four blocks each, with a single block as the top layer. The blocks which comprise each layer are all of the same size, but the size of blocks changes uniformly across layers. The blocks in the lower layers all share the same characteristics (as shown in Figure 1), differing only in size.

The task has been used extensively to examine the effects of instruction and tutoring in children, who show a wide range of behaviour across different ages. Three year old children are complete novices who can hardly be taught the task, while eight year old children are relative experts who can teach themselves. In general, older children accomplish more correct operations, produce fewer errors, and take less time than their younger counterparts (Murphy & Wood, 1981; Wood & Middleton, 1975).
Figure 1. On the top are the four blocks that make up each of the lower five layers in the Tower task, together with (on the bottom) the final assembly of the Tower.

The interactive nature of the task enables a variety of measures of behaviour to be taken. Matching subject data on multiple measures provides more constraints on the model because it has to fit the subject data on more data points. Providing a good match to subject data also allows the processes of cognition and interaction to be examined to give indications as to how tasks are being completed, and where task learning is occurring. In addition, the task allows timing data to be recorded. Timing data is often neglected by cognitive models even though it provides a very important measure, partly because it indicates possible areas where learning takes place, and helps to indicate areas where the model is either too quick or too slow in accomplishing a component of the task. Where the model does not match the subject data can indicate where the model can be improved.

A model and simulation of the Tower task
Both a cognitive model and a task simulation have been developed for the task; the two interact in order to complete the pyramid. The cognitive model is based in the ACT-R cognitive architecture (Anderson, 1993) and consists of 317 rules. Learning involves altering the strength of rules based on the perceived success or failure of the rules in achieving construction goals. The model interacts with a simulation of the task which includes all blocks and block features, and an eye and two hands (i.e., the simulation is a graphical approximation of the physical task which includes all important features of the task). The model directs the eye and hands in order to look at what objects are on the table, and to pick up, drop, assemble, and disassemble blocks and constructions.

For the simulated eye, three areas of decreasing visual quality are defined: fovea, parafovea, and periphery. To be certain of viewing blocks and features correctly, they must be seen in the fovea. New information concerning what the simulated eye sees is only given to the model when the model requests a fixation from the simulated eye. Both the decreasing visual quality and the model being forced to request information from the simulated eye mean that the model's view of the world is not the same as the external task simulations. This causes occasions where blocks will be selected which do not have the particular features that the model was looking for. Subjects also show this type of behaviour.

The model also incorporates timing estimates, meaning timings for the complete task and sub-components of the task can be predicted by the model. The timings are based on combining cognition and interaction. Times for cognition are taken from ACT-R and are based on its default parameters (50 ms for a rule firing). For interaction times, times for eye movements (50 ms) and fixations (200 ms) are in accordance with a review of the vision literature (Baxter & Ritter, 1996), and the hand movement timing (550 ms) is based on an estimate from the adult subjects (Jones & Ritter, 1997). Timings are therefore attributed to actions within the model based on architectural constraints, both in respect of the modelling architecture and the simulation eye and hands.

A Comparison of the Model's Behaviour and Adult's Behaviour on the Tower
The behaviour of ten runs of the model will be compared to the behaviour of five adult subjects completing the Tower task. The methods by which the subject and model data were obtained will be briefly described, followed by a comparison of the two across several measures of behaviour. The validated model can then be used to examine specific aspects of interaction, such as the specific allocation of task time to each different process of interaction.

Obtaining the adult and model data
Five adult subjects who had never encountered the task before were used. The subjects were asked to build the Tower unaided, while giving verbal protocols. All construction behaviour and verbalisations were transcribed. The results of the construction behaviour will be reported here (the verbalisations aided the development of the cognitive model). Ten runs of the model are used to compare the model's results to the subject's results, in order to minimise the effects of the random components that the model has (e.g., a random unseen block is selected when the model wishes to fixate on a block it does not yet

2 Note: The model is written in ACT-R V3.0, a transitional version of ACT-R.
know the features of). The construction behaviour of the model was automatically transcribed in exactly the same way as the transcriptions for the adult behaviour. In this way, exactly the same analyses can be carried out for both the adults and the model.

Comparison of adult and model behaviour

There are two types of measure that the model has been compared with: overall measures and the same measures taken over a series of layers (Jones, 1998). The overall measures describe general task behaviour in building the Tower, such as the time taken and the number of constructions made.

These same measures taken over a series of layers indicate if there is any learning taking place while building the Tower. Learning is expected to occur throughout the task because the blocks comprising the layers of the Tower all share the same characteristics. Subsequent layers should take less time to construct. The overall measures and layer-by-layer measures will be shown in turn so as to illustrate the general fit of the model to the adult data.

Overall measures

A variety of overall measures exist. The two most important measures, which are reported here, are the time taken to complete the Tower, and the number of constructions made (a construction is a physical assembly of two or more blocks) in completing the Tower (these define the task and influence scores on other overall measures). Table 1 shows that the model provides a close match to the subjects for the two primary measures of overall behaviour. Jones (1998) shows that the model matches the subject data on a total of seven out of nine measures of overall behaviour.

<table>
<thead>
<tr>
<th></th>
<th>Adults (N=5)</th>
<th>Model (N=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time taken</td>
<td>126.6 s (34.0)</td>
<td>129.0 s (31.5)</td>
</tr>
<tr>
<td>Construction attempts</td>
<td>22.8 (2.9)</td>
<td>23.1 (2.4)</td>
</tr>
</tbody>
</table>

Layer-by-layer measures

Subjects should be faster at constructing subsequent layers as they become more familiar with the block and construction characteristics. Figure 2 shows the mean time taken to construct each layer for the adults and the model. There is a good correlation between the adults and the model for the mean time taken to construct each layer (r=0.96). The RMS error for each layer is also favourable (4.1%; the RMS error indicates the average percentage difference between the model scores and the subject scores for each layer). The adult curve for constructions made per layer is almost flat, so the correlation is poor (r=0.40) although the RMS error is still good (5.7%).

![Figure 2](image_url)
Figure 2. Time taken (in seconds) for adults and the model to complete each layer. Error bars are to the left for adults, right for the model.

Looking at the Inner Working of the Model

Having a model which matches the data this well and which interacts with an external task simulation, allows several questions regarding interaction to be answered in a more theoretical way. The first is to examine whether the speed-up in constructing subsequent layers is because of the reduced visual search that is required (because there are fewer blocks on the table). The second is to examine to what extent eye and hand timings predict task behaviour. The third shows additional benefits of using a task simulation which is external to a cognitive model.
Does reduced visual search account for all of the speed-up in layer building?

The reduction in the time to produce subsequent layers could be because there are fewer blocks to select from as the task progresses (i.e., the reduction in time is due to reduced visual search). The task simulation enables the behaviour of the model to be analysed in more detail to find where the time is spent when constructing each layer. The interaction between the model and the task simulation allows the extraction of timings for moving and fixating the eye, manipulating the blocks, and cognizing. The time spent on each of these processes can be seen in Figure 3.

The model does not incorporate learning in its simulation eye and simulation hands, so a decrease in interaction time thus represents fewer interactions, not faster interactions. The lack of learning in perception/action may slightly over-estimate interaction timings, but the perceptual skills used in the task should be well practised enough for this to be negligible.

The reduction in the amount of eye and hand use accounts for 84% of the total reduction in time taken between constructing the first layer (size6) and the second layer (size5). The reduction in the amount of eye and hand use accounts for 42% of the reduction in time taken for the second and third layers constructed (size5 and size4). A reduction in cognitive effort therefore accounts for 16% and 58% of the reduction in time taken between the first and second, and second and third layers respectively. The reduction in time between the first, second, and third layers is due to cognitive learning as well as a reduction in visual search.

The timings for the eye and hands remain constant after the size4 layer is produced, suggesting a minimum time for searching and constructing the blocks involved in the task. This helps to explain why adult performance does not improve much after completing the size4 layer.

The fact that eye movements, fixations, and hand movements are having a marked influence on the reduction in layer timings (they also account for 52% of the total time to complete the Tower) indicates that to ignore interactions with the environment will lead to cognitive models under-predicting task elements.

It should be emphasised that in the model presented, cognition and interaction occur serially. EPIC (a parallel architecture) has been used to examine menu search and been able to rule out purely serial search strategies, because if this was the case subjects would not be able to complete the task in the time they had (Kieras & Meyer, 1997). However, given the high amount of interaction in the Tower task, even if parallel processing accounted for half of the 52% interaction time reported, interaction will still account for a significant amount of the task time.

To what extent do eye and hand timings predict task behaviour?

The extent to which the eye and hand timings influence the overall behaviour of the model can be examined by seeing how well the eye timings, and the hand timings, correlate with the model timings as a whole. The time spent on each of the three individual processes (eye, hands, cognition) in the model correlate very well with the full model for timings per layer (minimum $r=0.97$).

Having eye and hand timings that are easy to extract from the model means that it is relatively straightforward to see the extent to which the eye and hand timings predict the behaviour of the adult subjects on the task. If eye/hand timings are a good predictor, then this suggests that the eye and hands play a significant role in task behaviour. The extent to which the eye and hand timings predict the behaviour of adult subjects can be examined by correlating the time spent on each process with the time the adult subjects take to complete each layer. This is shown in Table 2 (which includes cognition timings, for clarity).
Table 2. Correlations between adult subjects and the model when individual model processes are extracted out of the timing data.

<table>
<thead>
<tr>
<th>Model process</th>
<th>Process time</th>
<th>Correlation with adult layer timings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye movements and fixations</td>
<td>27.5 s (21.8%)</td>
<td>0.97</td>
</tr>
<tr>
<td>Hand movements</td>
<td>38.5 s (30.6%)</td>
<td>0.98</td>
</tr>
<tr>
<td>Cognition</td>
<td>60.0 s (47.6%)</td>
<td>0.91</td>
</tr>
<tr>
<td>Full model (excluding stacking final top block)</td>
<td>126.0 s (100.0%)</td>
<td>0.96</td>
</tr>
</tbody>
</table>

The correlations for the eye, hand, and full model timings are all similar in how well they correlate with the adult subject layer timings. This suggests that a good predictor of task time is the time spent looking at and manipulating blocks (this data is not available for the adult subjects).

The correlations show that the eye and hand timings are a better predictor of task behaviour than cognition timings. This is an important finding because it again shows the importance of using a task simulation for interactive tasks: the time spent on interaction is the best predictor of task behaviour.

What benefits does an external task simulation give?

Tasks of a physical nature, such as the Tower task, gain clear advantages by having an external task simulation. One reason for this is that all of the important features of the task environment can be properly represented. In the Tower task, the simulation is able to precisely ascertain whenever any object prevents two other objects from being fit together (for example, if there is an obstructing block in between two blocks that the model is trying to fit together). When the model knows the hands are holding two blocks (or constructions), it performs a mental operation of fitting the blocks together. The model only proceeds with actually fitting the blocks if the result of this mental operation is positive. There is an average of 17.4 of these pseudo-construction attempts (in that they are not actually carried out) each time the model completes the Tower, suggesting that they account for a reasonable amount of the task time. Determining whether a block will obstruct the fitting together of two other blocks would be more difficult to accomplish if done within the modelling environment, because the modelling environment is not normally a specialised language for dealing with graphical objects.

There are other advantages to having an external task simulation, such as the ease with which simulation specific variables can be altered to test alternative theories. For example, the timings associated with eye movements and fixations can be altered easily to test developmental psychology hypotheses that propose that children’s behaviour may be due to taking longer to look and act. These and other similar modifications have been used examine theories of behavioural differences between adults and children’s performances on the Tower (Jones, 1998).

Conclusions

Having a model interact with an external task simulation provides several benefits in this example task. Most importantly, it has allowed a fine-grained comparison between subject behaviour and the model’s behaviour. An external task simulation provided the model with an environment where it could perform more of the actions that the subject performed. This allowed the model’s behaviour to closely match subject behaviour on the task. The explicit perceptions and actions supported more detailed predictions of task times, which could be compared with subject times. These comparisons also hold across learning—the timing predictions from the model, on a layer-by-layer basis, matched the adult subjects.

The closeness of the match between the behaviour of the model and that of subjects’ supported a detailed analysis of task time. Analysing the time spent on cognition and interaction showed that the interactive nature of the task accounted for just over half of the total task time. The model was able to predict this based on the number of interactions with the external task simulation that were necessary to complete the Tower. Although the time spent on interaction may be slightly high because no learning occurs in the model’s perception and action components, and because interaction and cognition are performed serially, interaction still clearly represents a significant amount of total task time. The close fit between the model and subject data suggests that adults must also spend a significant amount of time interacting with the task.

The model shows that, for tasks of a highly interactive nature (such as many direct manipulation HCI tasks), any
cognitive model which does not include a simulation of the task is likely to over-estimate the cognitive aspects of the task. This is likely to be one of the aspects of behaviour that Kieras (1985) has alluded to when models run too fast. The task used is comparable to larger scale HCI tasks such as CAD/CAM design where a large proportion of the task involves interaction. As such, any models of user behaviour on HCI tasks will be best served by having the model interact with an external task simulation.

The results have shown that a physical and highly interactive task can be successfully modelled using a cognitive model and an external task simulation. The variety of measures used meant that a detailed analysis of the task behaviour (such as how much time was spent interacting) was possible. Using various measures to match model-subject data also has a welcome side-effect: it helps to reduce the "black box" criticism of cognitive models (e.g., Searle, 1980/1997). This criticism suggests that there is little way of knowing that the processes carried out in the model reflect the processes carried out by subjects. By matching the subject behaviour on as many measures as possible, the scope for this criticism is reduced. This is a general advantage of modelling tasks which have many observable measures.

The findings that have been presented indicate that when modelling any task which involves interaction, it is important to also have a simulation of the task which the model is able to interact with. Two critical benefits arise from including a task simulation: there is less likelihood that cognition time will be over-estimated, and a more fine grained analysis of task behaviour can be carried out. In combination, these benefits allow attention to be focused more appropriately on how much time the user spends performing each task process.

Acknowledgements

The authors would like to thank three anonymous reviewers for their helpful comments on this paper.

References

