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Abstract

By identifying and pursuing analogies between causal and
logical influence I show how the Bayesian network formal-
ism can be applied to reasoning about logical deductions.

Despite the fact that deductive logic is concerned with
propositions that are certainly true or certainly false, logi-
cal reasoning takes place in a context of very little certainty.
In fact the very search for a proof of a proposition is usually
a search for certainty: we are unsure about the proposition
and want to become sure by finding a proof or a refutation.
Even the search for a better proof takes place under uncer-
tainty: we are sure of the conclusion but not of the altema-
tive premises or lemmas.

Uncertainty is rife in mathematics, for instance. A good
mathematician is one who can assess which conjectures are
likely to be true, and from where a proof of a conjecture
is likely to emerge -- which hypotheses, intermediary steps
and proof techniques are likely to be required and are most
plausible in themselves. Mathematics is not a list of theo-
rems but a web of beliefs, and mathematical propositions are
constantly being evaluated on the basis of the mathematical
and physical evidence available at the time.t

Of course logical reasoning has many other applications,
notably throughout the field of artificial intelligence. Plan-
ning a decision, parsing a sentence, querying a database,
checking a computer program, maintaining consistency of
a knowledge base and deriving predictions from a model are
only few of the tasks that can be considered theorem-proving
problems. Finding a proof is rarely An easy matter, thus au-
tomated theorem proving and automated proof planning are
important areas of active research.2 However, current sys-
tems do not tackle uncertainty in any fundamental way.

I will argue in this paper that Bayesian networks are par-
ticularly suited as a formalism for logical reasoning under
uncertainty, just as they are for causal reasoning under un-
certainty, their more usual domain of application.

The plan is first to describe Bayesian networks and in-
fluence relations. Influence relations are important because
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1This point is made very compellingly by (Corfield 2001).
2(Bundy 1999), (Bundy 2001), (Melis 1998), (Richardson 

Bundy 1999).

they permit the application of Bayesian networks: the fact
that causality, for example, is an influence relation explains
why Bayesian networks can be applied to causal reasoning.
I will argue that logical implication is also an influence rela-
tion, and so Bayesian networks can also be applied to logical
reasoning. I will then highlight further analogies between
logical and causal Bayesian networks, the presence of which
ensure that Bayesian networks offer an efficient representa-
tion for logical, as well as causal, reasoning. I will go on to
show how logical networks can be used to represent proba-
bility distributions over clauses in logic programs and then
to generalise the defined notion of logical network, so that
logical networks may be applied to problems like proof plan-
ning. Finally I will give an example to indicate the power of
the resulting formalism.

Preliminaries
Bayesian Networks

A Bayesian network consists of two components:

* a directed acyclic graph, or dag, G over variables
C1,...,C/v, (which for our purposes we may assume
binary-valued, Ci = v~ E {0, 1}, and I will abbreviate
literal Ci = 1 by +ci or just ci and literal Ci = 0 by -el
or ~Ci),

¯ a set of specifying probability values $ = {p(cildi) 
di is a state ±cjl A ... A ±cj~ of the parents Di =
{Cj,,...,Cj~} of Ci in G,i = 1,...,N}.3

Now, under an independence assumption,4 namely that
given its parents Di, each node Ci in G is probabilisti-
cally independent of any set S of other nodes not contain-
ing its descendants, p(cildi A s) = p(cildi), a Bayesian
network suffices to determine a probability function p over
the variables. This can be determined from the probabil-
ities of the atomic states, which are given by the formula
p(±Cl A... A +CN) = I’IN=I p(+cildi) where the d~ are the
parent states consistent with the atomic state. Furthermore,
any probability function on the variables can be represented

3If Ci has no parents, p(ci Idi) is just p(ci).
’*The Bayesian network independence assumption is often

called the Markx)v or causal Markov condition.
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by some Bayesian network.5

In particular, if the C~ are causal variables, and the graph
represents the causal relations amongst them, with an ar-

row from Ci to Cj if Ci is a direct cause of Cj, then it is
thought that ~ will necessarily be acyclic, and that the inde-
pendence assumption will be a valid assumption.6

A probability function p may also be represented without
appealing to a strong assumption like the independence as-
sumption, by directly specifying all the probabilities of the
atomic states p(±cl A... A ±CN). However a Bayesian net-
work offers the following advantages over this direct repre-
sentation. First, depending on the structure of the graph, the
number of specifying probabilities in a Bayesian network
may be relatively small. For example, if the number of par-
ents of a node is bounded then the number of probabilities
required to specify the measure is linear in N. In contrast
the direct representation requires the specification of 2N -- 1
probabilities (there are N atomic states and the probability
of one of these is determined from the others by additivity).
Second, also depending on the structure of the graph, prop-
agation techniques7 can be employed which allow the quick
calculation of conditional probabilities of the form p(cils),
where s is a state of other nodes. For example, if the graph
is singly-connected (there is at most one path between two
nodes) then propagation can be carried out in time linear
in N. Thus while in the worst case (which occurs when the
graph is complete, that is when there is an arrow between any
two nodes) there is nothing to be gained by using a Bayesian
network, if the graph is of a suitable structure then both the
space and time complexity will be dramatically reduced. It
is generally presumed that causal graphs are simple enough
to offer satisfactory reductions in complexity.

Influence Relations

The components G, $, of a Bayesian network may often be
thought of as the background knowledge of some rational
agent, X say. For example the graph may consist of X’s
causal knowledge, and the probability specification consist
of her corresponding probabilistic knowledge, the probabil-
ities of effects given their direct causes,s In this light, the
probability function determined by the Bayesian network
may be viewed as X’s rational belief function, given this
background knowledge. Specifically, if the Bayesian net-
work determines that p(s) = for some atomic state s of
C1,..., CN, then X’s degree of belief that s is true ought to
be x, given her background knowledge.

But this interpretation only works if the Bayesian network
independence assumption holds for rational belief. Further-
more, the question of whether the independence assumption

5See (Pearl 1988) or (Neapolitan 1990) for more on the formal
properties of Bayesian networks.

6(Pearl 1988), (Neapolitan 1990).
7(Neapolitan 1990).
sI leave it open as to whether the specified probabilities are ob-

jective or degrees of rational belief. If they are objective, I assume
that they directly constrain rational belief: if the objective proba-
bility of ci given state di of its parents is x then X should believe
ci to degree x, given di.

holds depends on the type of knowledge expressed by the
graph in the Bayesian network. If the graph is a causal
graph, for instance, then it is generally thought that the inde-
pendence assumption will hold. There is some evidence for
this as we shall now see.

Of all the probability functions that X might adopt, some
are more rational than others. Objective Bayesianism holds
that there is a most rational function # that X should adopt,9

and that # is the probability function that (i) is consistent
with X’s background knowledge K = (~, S), and (ii) 
imises the entropy function -~p(8)logp(s) where 
sum is taken over all atomic states s.I° The reason for this
second condition is that the maximum entropy function is
the most cautious -- it is the function that commits to the
background knowledge but as little as possible beyond the
background knowledge. For example, if a coin is to be
tossed, Cl signifies a head as outcome and -~cl a tail, and
X has no background knowledge pertaining to the outcome,
then p(cl) p(~cl) = 1/2 is thebelief function that max-
imises entropy, whereas a least cautious function will com-
mit degree of belief 1 to one of the outcomes and 0 to the
other.

According to the first condition the background knowl-
edge K = (G, S) somehow constrains/z. It is clear how the
probabilistic information S should constrain rational belief:
# should yield the probabilities expressed in S. We shall
consider one way in which the graph ~ can also constrain
#. Suppose the graph G expresses X’s knowledge about an
asymmetric relation R: there is an arrow from Ci to Cj in
G if X knows that CiRCj. For instance, R might be the re-
lation of direct causality, and CiRCj iff Ci is a direct cause
of Cj. Define R to be an influence relation if the following
condition holds:

¯ irrelevance: if K1 = (Ga, S1) consists of the compo-
nents of a Bayesian network on nodes C1,..., Cn, and
K2 = (~2, ,92) is the Bayesian network formed by adding
an extra node Cn+l that is not an ancestor of any of

Cx C. Ct C. ¯
C1,..., Cn, then #K2 ..... = #Kj ..... , he. the restric-
tion of the new most rational behef function to the old
domain is the same as the old most rational belief func-
tion. The new knowledge is irrelevant to beliefs on the
old domain.

Causality, for example, is an influence relation: coming
to learn that two variables have a common effect should not
change one’s beliefs in the original variables. In contrast, if
one finds out that two variables have a common cause then
this alone may be reason to believe the two variables are
more dependent than previously thought. Thus it is possible
to reason via common causes in a way that is not possible
for common effects. By way of example, consider the fol-
lowing situation. Agent X is concerned with two variables L
and B signifying lung cancer and bronchitis respectively and
initially she has no causal knowledge concerning these vari-
ables. Then she leams that smoking S causes each of lung

9In some circumstances there may be more than one most ra-
tional function, in which case X may adopt any one of them.

10 See (Jaynes 1998).
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Figure 1: Smoking, lung cancer and bronchitis.

Figure 2: Smoking, lung cancer, bronchitis and chest pains.

cancer and bronchitis, yielding causal graph Figure 1. One
can argue that learning of the existence of common cause S
should impact on X’s degrees of belief concerning L and/3,
making them more dependent. The reasoning is as follows:
if bronchitis is present, then this may be because the indi-
vidual is a smoker, and smoking may also have caused lung
cancer, so X should believe the individual has lung cancer
given bronchitis to a greater extent than before -- the two
variables become more dependent.

Next X learns that both lung cancer and bronchitis cause
chest pains C, giving Figure 2. But in this case one can not
argue that L and B should be rendered more dependent. If
the individual has bronchitis then he may well have chest
pains, but this does not render lung cancer any more prob-
able because there is already a perfectly good explanation
for the chest pains. One cannot reason via a common ef-
fect in the same way that one can via a common cause, and
the irrelevance condition picks up on this central feature of
causality.

It turns out that if ~ is knowledge of an influence rela-
tion, then the probability function that maximises entropy
subject to the constraints imposed by (~, S) does satisfy the
Bayesian network independence assumption. The most ra-
tional function is just the probability function determined by
the Bayesian network on (G, S). See (Williamson 2001) 
a proof.

This identity validates the rational belief interpretation of
Bayesian networks that was mooted at the beginning of this
section, and allows us to use Bayesian networks to represent,
and perform calculations on, rational belief functions con-
strained by causal and probabilistic knowledge. But there
are other influence relations apart from causality, and it is the
aim of this paper to show that direct logical implication is an
influence relation, and therefore that Bayesian networks can
be used to reason about logical as well as causal knowledge.

Figure 3: A logical dag.

Logical Networks
A logical proof of a sentence takes the form of an or-
dered list. Consider a propositional language with sentences
s, t, u,... and the following proofofs --+ t, t ---r u F s --4 u,
using the axiom system of (Mendelson 1964) section 1.4:
1: t --+ u [hypothesis]
2: s --+ t [hypothesis]
3: (s ---r (t -+ u)) --+ ((s ~ t) ~ (s --+ u)) 
4: (t --+ u) --+ (s --4 (t --+ u)) [axiom]
5: s --+ (t --+ u) [by 1, 
6: (s -+ t) ~ (s ~ u) [3, 
7: s --+ u [2, 6]

The important thing to note is that the ordering in a proof
defines a directed acyclic graph. If we let Ci signify the
sentence on line i, for i = 1,..., 7, and deem Ci to be a
parent of Cj if Ci is required in the step leading to Cj, we
get the dag in Figure 3.

By specifying probabilities of root nodes and conditional
probabilities of other nodes given states of their parents, we
can form the components of a Bayesian network. These
probabilities will depend on the meaning of the sentences
rather than simply their syntactic structure, and in this ex-
ample a specification might start like this: ,S = {p(cl) 

~,p(c3) = 1,p(c4) = 1,p(cslcl m c4) =
1, p( cs[-~Cl A c4) = ~,...}. Where do these probabilities
come from? From the objective Bayesian point of view they
should be a rational agent’s degrees of belief in the truth of
sentences conditional on states of their parents, influenced
where possible by objective considerations like known facts,
known logical relations and known objective probabilities,
and as cautious as possible about questions not resolved by
.this background knowledge. In this example the logical ax-
ioms have probability 1, but not so the hypotheses.

A causal Bayesian network is sometimes just called a
causal network. The above example may be called a log-
ical Bayesian network or simply a logical network. As in
the causal case, if logical implication is an influence relation
and the components ~ and S are thought of as background
knowledge, then one can use the Bayesian network to rep-
resent the most rational belief function that incorporates this
knowledge, and to calculate desired probabilities. If for ex-
ample one learns that (72, s --~ t, is true, then one can prop-
agate probabilities in the Bayesian network to update one’s
degree of beliefp(c7 ICe) in the conclusion (77.

In order for logical implication to be an influence rela-
tion, learning of a new node that is not a logical influence
of any of the other nodes in the network should not change
beliefs over the old nodes -- the new node must be irrel-
evant to the old. But this is rather plausible, for a similar
reason to the causal case. Suppose X has a logical graph

138



involving two nodes h(8), signifying that Socrates was hu-
man, and Vz(h(z) ~ m(z)), signifying that all humans are
mortal, and that these nodes have no arrows between them.
She has beliefs p(h(s)) = 0.3 and p(Vz(h(x) --+ re(x))) 
0.9 = p(Vx(h(x) ~ m(x))lh(s)) = 
m(x))l-~h(s)). Later she learns that these two nodes im-
ply rn(s), that Socrates is mortal. This new information
would not change X’s beliefs on the original two nodes:
there would be no reason to give a new value to p(h(s)),
nor to p(Vx(h(x) --+ m(x))), nor to render the two nodes
dependent in any way.ll On the other hand, if X were to
learn that the two original nodes had a new common parent
Vx(h(x) A m(x)), then she may well find reason to change
her original beliefs. She might render the two original nodes
more dependent, for example, by reasoning that if Socrates
were human then this might be because all things under con-
sideration are human and mortal, in which case it must be the
case that Vx(h(x) ~ m(x)).

Thus direct logical implication is an influence relation.
This means that a Bayesian network can be used to repre-
sent a rational probability function over the nodes in a logi-
cal proof graph, just as it can be used to represent a rational
probability function over the nodes in a causal graph. Just as
a parent in a causal graph may be called a causal influence
of its child, so too a parent in a logical graph may be called
a logical influence. A logical influence need not by itself
logically imply its child, but only in conjunction with the
child’s other parents: one state of the parent nodes logically
implies a literal involving the child node. Causal influence
and logical influence are both influence relations, but they
are not the only influence relations: subsumption of mean-
ing provides another example, where A influences B if a B
is a type of A. These influence relations are different con-
cepts in part because they are relations over different types
of domains: causality relates physical events, logical influ-
ence relates sentences and subsumption of meaning relates
wordsJ2

I have maintained that the methodology of Bayesian net-
works may be applied to logical influence, because, like di-
rect causality, direct logical implication is an influence re-
lation. But there are other reasons why this application is
effective, and I shall tum to these now.

Effectiveness of the Formalism
A causal Bayesian network offers an efficient representation
of a probability function, in the sense that it contains little re-
dundant information. This is partly due to the independence
assumption, which only requires that probabilities of nodes
given their parent states be provided. But what stops these

Nit is important to note that X learns only of the new node and
that it is a child of the two original nodes -- she does not learn of
the truth or falsity of re(s), which would provide such a reason.

12Some terminology: when we are dealing with an influence re-
lation a child of an influence may be called an effluence (generalis-
ing the causal notion of effect), a common effluence of two influ-
ences is a con.fluence (generalising common effect) and a common
influence of two effluences is a di.~fluence (generalising common
cause).

specified probabilities from being redundant themselves?
Might it be possible that further independencies obtain and
that a smaller graph in the Bayesian network would yield a
more compact representation of the same probability func-
tion? No, because causality seems to exclude further inde-
pendencies: a direct cause Cj increases (or, in the case o1’
prevention, lowers) the probability of its effect Ci, condi-
tional on its other direct causes, p(cilej A s) > p(cilTCj A 
for some state s of the other direct causes of Ci (with the re-
verse inequality in the case of prevention). We may call this
the dependence principle: it says that no parent is probabilis-
tically independent of its child, conditional on the other par-
ents.13 Now an arrow is required in the causal graph from Cj
to Ci in order to prevent the Bayesian network from imply-
ing an independency where there is this dependency. Thus
the fact that causality satisfies the dependence principle ex-
plains why the arrows in a causal network (and the corre-
sponding probability specifiers) are not redundant.

We have seen that logical influence is analogous to causal
influence because they are both influence relations, and that
this fact explains why the Bayesian network independence
assumption holds. But the analogy extends further because
the dependence principle also carries over to logical influ-
ence. Since one state di of the parents of Ci logically implies
one literal involving Ci, ci say, each of the parent nodes is
an influence in this implication and raises the probability of
ci, as follows. For parent node Cj, either cj or -~cj is in
di. If the former, then decomposing di as cj A 8 we have
that p(cilcj A s) = 1. If p(cil-~cj A s) = 1 too, then Cj
is redundant in the proof of Ci from its parents and is not
after all a logical influence, contrary to our assumption.~4

Hence p(cilcj A s) > p(cil-~cj A s). The same is true but
with the reverse inequality if ~cj occurs in di. Therefore the
dependence principle carries over to logical networks: each
node Ci is probabilistically dependent on each of its logical
influences Cj, conditional on the other logical influences of
ci.

The dependence principle explains why information in
a logical network is not redundant, but we require more,
namely that logical networks be computationally tractable.

Recall that both the space complexity of a Bayesian net-
work representation and the time complexity of propaga-
tion algorithms depend on the structure of the graph in the
Bayesian network. Sparse graphs lead to lower complex-
ity in the sense that, roughly speaking, fewer parents lead
to lower space complexity and fewer connections between
nodes lead to lower time complexity. Bayesian networks are
thought to be useful for causal reasoning just because, it is
thought, causal graphs are normally sparse.

But logical graphs are sparse too. The maximum number
of parents is dictated by the maximum number of premises

13See (Williamson 1999) for a justification of the dependence
principle.

14This assumes that only the logical truths have probability 1.
This is a common assumption for objective Bayesians to make:
once a sentence is awarded probability 1, this probability cannot
be changed by Bayesian conditionalisation, and so to be cautious
and undogmatic a rational agent should only award probability 1 to
those sentences that could not be false -- the logical truths.
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utilised by a rule &inference of the logic in question, and
this is usually small. In Mendelson’s propositional logic for
example, the only rule of inference is modus ponens, which
accepts two premises, and so a node in such a logical graph
will either have no parents (if it is an axiom or hypothesis)
or two parents (if it is the result of applying modus ponens).
Likewise, the connectivity in a logical graph tends to be low.
A graph will be multiply connected only to the extent that
a sentence is used more than once in the derivation of an-
other sentence. This may happen, but occasionally rather
than pathologically.15

In sum, while the fact that logical influence is an influence
relation explains why Bayesian networks are applicable at
all in this context, the dependence principle and the sparsity
of proofs explain why Bayesian networks provide an effi-
cient formalism for logical reasoning under uncertainty.

Logic Programming and Logical Networks
Logic programming offers one domain of application. A
logical network can be used to represent a probability dis-
tribution over clauses in a logic program: the graph in the
network can be constructed from proof trees involving the
clauses of interest,16 and one then specifies the probability
of each clause conditional on each state of its logical influ-
ences. By way of example, consider the following definite
logic program: 17
Of:proud(X) <- parent (X,Y), newborn(Y) 
02: parent (X,Y) <- father (X, Y) 
03: parent (X,Y) <- mother (X, Y) 
04: father (adam, mary) 
05: newborn (mary) 
If we then query <- proud (Z) and use Proiog 
find a refutation we get the chain of reasoning de-
picted in Figure 4, where 6’6 and C’r are the sentences
parent ( adam, mary) and proud (adam) respectively.
By adding a probability specification we can form a logical
network and use this network to calculate probabilities of
interest, such as p(c61c7 A ~c5), the probability that Adam
is a parent of Mary given that he is proud but Mary is not
newborn.

Thus given a logic program we can use a logical Bayesian
network to define a probability distribution over the clauses
in the program. Moreover, given a set of sentences that can
be written in clausal form, we can construct a logic program
representing those sentences and use this program to con-
struct a logical network on the original sentences: logic pro-
gramming can be used as a general tool for finding proof
graphs for logical networks.

15One can of course contest this claim by dreaming up a single-
axiom logic which requires an application of the axiom for each in-
ference: this logic will yield highly connected graphs. In the same
way one can dream up awkward highly connected causal scenarios
which will not be amenable to Bayesian network treatment. Thus
the pathological cases can occur, but there is no indication that they
are anything but rare in practice.

16(Nilsson & Maluszyfiski 1990) §9.2 shows how to collect
proof trees in Prolog.

t7This is the example of (Nilsson & Maluszyfiski 1990) §3.1.

Figure 4: Proof graph from a logic program.

Stochastic Logic Programming (SLP) also uses proofs 
clauses to define a probability distribution over clauses in
a logic program,18 but does so in a rather different way.
SLP works by assigning probabilistic labels to the arcs in
the proof tree for a clause, multiplying these together to ob-
tain the probability of each derivation of the clause, and
then summing these products to define the probability of
the clause itself. Thus SLP can be used to define proba-
bility distributions that can be broken down as a sum of such
products (log-linear distributions). Logical networks, on the
other hand, ascribe probabilities directly to clauses, and only
use proof trees to determine the logical relations amongst the
clauses and hence the graphical structure of the network. In
SLP the probability of a clause is the probability that it is
instantiated,19 whereas in a logical network the probability
of the clause is the probability that it is true, as a univer-
sally quantified sentence. SLP represents a Bayesian net-
work within the logic, by means of clauses which describe
the graphical structure and probability specification of the
corresponding Markov network (formed by linking parents
of each node, replacing arrows with undirected arcs, trian-
gulating this graph, and then specifying the marginal prob-
ability distributions over cliques in the resulting graph),z°

In contrast a logical Bayesian network over the clauses in a
logic program is external to the logic program which forms
its domain: the probabilities are not part of the logic, in the
sense that they are not integrated into the logic program as
with SLP.

Uncertainty about Structure
Thus far logical networks have been proposed as a mech-
anism for evaluating sentences within the context of a par-
ticular proof. However, just as we are often uncertain as to
causal structure, we may not have a perfect idea of what log-
ically implies what. In some situations logic programming
can help find a proof, but this is not always possible (if the
sentences of interest cannot be written in clausal form) or
successful (if the chains of reasoning to too long to be exe-
cuted in available time, or if the incompleteness of the logic
programming system fails to find all the required connec-
tions). It would be useful to be able to appeal to probabilis-
tic considerations to help find a proof, and in this section we
shall see how we might use logical networks to help plan a
proof when faced with uncertainty about logical structure.

18(Cussens 2001) §2.2, (Mugglcton 1995).
19(Cussens 2001) §2.4.
2°(Cussens 2001) §2.3.

140



Figure 5: Alternative lemmas ll and 12.

The graphs in our logical networks have, up to now, been
isomorphic to logical proofs. Several levels of generalisation
are possible.

Firstly, not every logical step need be included in a logical
network. We may only have a sketch of the key steps of the
proof, yet we may be able to form a logical network. Just as
a causal graph may represent causality on the macro-scale as
well as the micro-scale, so too a logical graph may represent
an argument involving large logical steps. At this level of
generalisation, some state of parents still logically implies
some literal involving their child, but the parents need not
be one rule of inference away from their child.

Second, we may not be aware even of all the key steps in
the proof, and some of the logical influences on which the
proof depends may be left out. Here it may no longer be true
that a parent-state logically implies a child-literal. All that
can be said is that each parent is involved in the derivation
of its child.

In these first two generalisations, the logical graph is a
subgraph of the correct proof graph (and therefore the logi-
cal graph is guaranteed to remain acyclic). But we can gen-
eralise in a third way by allowing logical influences which
are not part of the correct proof. We may want to prove a
conjecture c from some fixed premise pr, but have two al-
ternative lemmas ll, 12, and not know which is involved in
the correct proof, as in Figure 5. Here the premise is a gen-
uine logical influence of both 11 and 12, which are each log-
ical influences of the conclusion, but the only valid proof of
the conclusion from the premise may involve just one of the
lemmas, ll say. The logical network may be used to assess
the lemmas by evaluating p(lilpr),p(clli),/= 1, 2, for ex-
ample. Hence in this third generalisation we remain in the
context of a proof, and the logical graph makes correct as-
sertions of logical influence, but the logical graph contains
nodes not in a correct proof.

Note that in all these generalisations we remain in the
context of a particular problem. We do not try to form a
Bayesian network out of a large body of logical knowledge
and then apply this network to individual problems as they
arise. The reason for this is two-fold. Firstly, Bayesian
networks are built on acyclic graphs and if too much in-
formation is included there is a danger of cycles being
formed. Secondly, while Bayesian networks often allow an
efficient representation and inference mechanism for prob-
ability functions, it is still important to keep Bayesian net-
works small, for practical reasons. A large body of logical
knowledge will presumably be multiply-connected, and in-
ference in a Bayesian network will be correspondingly slow.

Figure 6: Existence and uniqueness together imply the hy-
pothesis.

Figure 7: Induction, construction and contradiction added.

One other point. Expositions of the theory of rational
belief often include a requirement of logical omniscience:
if set A of sentences logically implies sentence b then
p(blA) = 1. Clearly this requirement does not allow for un-
certainty of logical structure, and is too strong for practical
purposes. A more sensible substitute is: if X’s background
knowledge contains the fact that A logically implies b then
p(blA) = 1. This issue is addressed in (Williamson 1999b).

An Example
Consider the following example. Agent X conjectures that
for natural numbers n and m ¢ 0, there is a unique quotient
q and remainder r < m (also natural numbers) such that
n = qm + r. Let h be this hypothesis, Vn, m ¢ 0, 3!q, 7" <
m[n = qm + r]. X is not very confident in h, giving it
degree of belief 0.6. Her initial logical network contains as
logical graph the single node h and this specified degree of
belief.

X decides to try and prove h. She realises that a good
strategy for dealing with a hypothesis of this form is to first
prove the existence claim e : Vn, m ~ 0, 3q, 7" < m[n =
qm + r], and then prove uniqueness u : Vn, m ¢ 0, ql, rl <
m, q2,r2 < m[(n = qlm+rl)A(n = q2m+r2) --~ (ql 
q2) A (rl = r2)]. Figure 6 gives the picture. X decides 
write computer programs to generate numbers n, m at ran-
dom and test these claims and she finds that they are upheld
with frequency 1, although X is only 90 percent certain that
the uniqueness program is bug-free. X forms a new network
with degrees of beliefp(e) = 1,p(u) 0.9,p(hle A u)
1,p(hle A ~u) = 0 = p(hl-~e A u) = p(hl-~e A -~u). 
calculates that p(h) is now 0.9 and so presses ahead with the
proof.

X decides to tackle the existence e first, owing to its
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Figure 8: Base case and inductive step added.

higher probability. She is familiar with three techniques:
mathematical induction i, proof by construction c and proof
by contradiction cd. While these are techniques, not sen-
tences, each may be substituted for sentences and so can
be included as nodes in the graph, as in Figure 7.21 X
believes that induction is 70 percent likely to be success-
ful, construction 30 percent, and contradiction 60 percent.
Her new probability specifiers are p(i) = 0.7,p(c) 
0.3,p(cd) = 0.6,p(el-~i A -~c A ~cd) = 0.6, otherwise
p(el+i A +c A +cd) = 1 (each of the techniques may be
used to imply the existence component, whereas the exis-
tence and uniqueness components together imply the hy-
pothesis). Now the Bayesian net implies that p(e) = 0.97
and p(h) = 0.87.

X tries induction on n, splitting it into the base case io :
Vm ~ 0, 3q, r < m[0 = qm + r] and the inductive step
in : (Vm ~ 0,3ql,r1 < m[n = qlm + rl]) --+ (Vm
O, qq2, r2 < m[n + 1 = q2m + r2]), as in Figure 8, and adds
degrees of beliefp(io) = .9, p(in) = .7,p(ilio A il) = 1.

This gives the general gist of the process. In the next step
X would prove i0 by construction with q = r = 0, and
go on to tackle the inductive step (the idea here is that n 
1 = qlm -t- (rl + 1), and if rl d- 1 = m then we can write
n + 1 = (ql + 1)m + 0), and then the uniqueness claim.22

The key points of the example are that logical structure
does not need to be known in advance, and that whether and
how to proceed in the proof can be decided on the basis of
probabilities. In the example, probability specifiers were de-
termined from degrees of belief, frequencies in a random
experiment, and estimates of frequency of success. Nodes
corresponded to both sentences and techniques. This flexi-
bility and expressive power are crucial to the logical network
formalism if it is to be applied to realistic problems.

21In this context induction i may be taken to denote the sentence

(Vm ~ O, 3q, r < m[O = qm + r]) 

((Vn, m 0,3ql,rl < m[n = qlm + rl ]) --

(3q2, r2 < m[n + 1 = q2m + r2])),

and construction and contradiction can be treated similarly.
22A final proof would look like that of (Mendelson 1964) propo-

sition 3.1 I. If the constructive route were taken, the division algo-
rithm might be arrived at -- see (Nathanson 2000) theorem 1. 

Conclusion
Thus far metalogic has overlooked an account of the way
uncertainty guides logical inference. Yet uncertainty must
be confronted in any comprehensive approach to practical
theorem proving. One aim of this paper has been to intro-
duce probability into the metalanguage and put uncertainty
on the agenda. Another aim has been to give a practical for-
malism for reasoning about deductions. Logical Bayesian
networks provide a very general framework which can be
applied to important tasks such as conjecture evaluation and
proof planning.13
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