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Abstract

A characteristic shared by most approaches to natural lan-
guage understanding and generation is the use of symbolic
representations of word and sentence meanings. Frames and
semantic nets are two popular current approaches. Symbolic
methods alone are inadequate for applications such as con-
versational robotics that require natural language semantics
to be linked to perception and motor control. This paper
presents an overview of our efforts towards robust natural
spoken language understanding and generation systems with
sensory-motor grounded semantics. Each system is trained
by ‘show-and-tell’ based on cross-modal language acquisi-
tion algorithms. The first system learns to generate natu-
ral spoken descriptions of objects in synthetically generated
multi-object scenes. The second system performs the con-
verse task: given spoken descriptions, it finds the best match-
ing object and points at it. This system is embodied as a
robotic device and binds the semantics of spoken phrases to
objects identified by its real-time computer vision system. A
laser is used to point to the selected object. The third system,
in its early phases, is a trainable robotic manipulator. This
robot serves as the basis for our experiments in learning the
semantics of action verbs. These experimental implementa-
tions are part of our larger on-going effort to develop a com-
prehensive model of sensory-motor grounded semantics.

Introduction
Conversational robots and other multimodal situated spo-
ken dialogue systems raise serious design challenges regard-
ing the mappings between natural language semantics and
perception. Building on our previous investigations into
cognitively-inspired computational models of language ac-
quisition (Roy & Pentland 2002; Roy In press), this paper
describes three spoken language systems which ground se-
mantics in visual perception and machine actions. In each
system, the vision-to-language and action-to-language map-
pings are learned using statistical learning algorithms and
‘show-and-tell’ training by human teachers.

Grounding is used to refer, in part, to the process of
connecting language to referents in the language user’s en-
vironment. In contrast to methods which rely on sym-
bolic representations of semantics, grounded representa-
tions bind words (and sequences of words) directly to non-
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symbolic perceptual and motor control structures. Cru-
cially, bottom-up sub-symbolic structures are available to
influence symbolic processing (Roy 20002001). When pro-
cessing at higher symbolic levels fail, grounded systems
have the ability to switch to alternate levels of representa-
tion. The systems presented in this paper exemplify our ef-
fort to develop grounded language generation systems that
couple language semantics with sensory-motor representa-
tions. This work is related to (Siskind 2001; Regier 1996;
Bailey 1997), all of which also study aspects of grounding
word meaning in terms of perception and action.

Describer: Learning to Generate Spoken
Descriptions of Visual Scenes

We have implemented a trainable system called Describer
which learns to generate descriptions of visual scenes by
example (a more detailed description of this system can be
found in (Roy 2002)). A growing number of applications
such as automatic sports commentators, talking maps, and
web site description systems require the translation of per-
ceptual information into natural language descriptions. Our
eventual goal is to build a general purpose system which can
be trained by example to perform these kinds of tasks.

Natural language semantics in Describer are anchored in
features extracted from synthetic visual scenes. Input to the
system consists of visual scenes paired with naturally spo-
ken descriptions and their transcriptions. A set of statistical
learning algorithms extract syntactic and semantic structures
which link spoken utterances to visual scenes. These ac-
quired structures are used by a generation algorithm to pro-
duce spoken descriptions of novel visual scenes. Concate-
native synthesis is used to convert output of the generation
subsystem into speech. In evaluations of semantic compre-
hension by human judges, the performance of automatically
generated spoken descriptions is found to be comparable to
human-generated descriptions.

The problem of generating referring expressions has been
addressed in many previous computational systems (cf.
(Dale 1992; Andŕe & Rist 1995)). Most language genera-
tion systems may be contrasted with our work in two main
ways. First, our emphasis is on learning all necessary lin-
guistic structures from training data. Although some previ-
ous work has addressed trainable generation (for example,
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(Jordan & Walker 2000)), our goal is to automate training of
both lexical choice and grammatical constructions. A sec-
ond difference is that we take the notion of grounding se-
mantics in sub-symbolic representations to be a critical as-
pect of linking natural language to visual scenes. All lexical
and grammatical knowledge acquired by Describer is ulti-
mately tied to visual representations.

The Verbal Description Task

Figure 1: A typical scene processed by Describer. The arrow
indicates the target object that must be verbally described.

The description task is based on images of the kind shown
in Figure 1. The computer generated image contains a set
of ten non-overlapping rectangles. The height, width, x-y
position, and red-green-blue (RGB) color of each rectangle
is continuously varying and chosen from a uniform random
distribution. We addressed the following learning problem:
Given a set of images, each with atarget objectand a natural
language description of the target, learn to generatesyntac-
tically correct, semantically accurate, and contextually ap-
propriate descriptions of objects embedded in novel multi-
object scenes.

One basic problem is to establish the semantics of indi-
vidual words. To bootstrap the acquisition of word associa-
tions, utterances are treated as “bags of words”. Each word
in an utterance may potentially be a label for any subset of
co-occurring visual properties of the target. Thus the lan-
guage learner must select relevant properties, that is, choose
the subset of potential features which should be bound to
a word. A second problem is to cluster words into word
classes based on semantic and syntactic constraints. Word
classes are a necessary first step in acquiring rules of word
order. For example, before a language learner can learn the
English rule that adjectives precede nouns, some primitive
notion of adjective and noun word classes needs to be in
place. A third problem is learning word order. We address
the problems of learning adjective ordering (“the large blue
square” vs. “the blue large square”) and phrase ordering for
generating relative spatial clauses. In the latter, the seman-
tics of phrase order needs to be learned (i.e., the difference in

meaning between “the ball next to the block” vs. “the block
next to the ball”).

Once word semantics and syntax have been learned, the
system has at its disposal a grounded language model which
enables it to map novel visual scenes to natural language de-
scriptions. The language generation problem is treated as a
search problem in a probabilistic framework in which syn-
tactic, semantic, and contextual constraints are integrated.

Word and Grammar Learning
The ‘perceptual system’ of Describer consists of a set of fea-
ture extractors which operate on synthetic images. Each
rectangle is described by a vector of 8 real-valued visual
features: red, green, and blue color components, height-to-
width ratio, area, x-position, y-position, and the ratio of the
smaller dimension to the larger dimension. The training data
consists of visual feature vectors of all objects in a scene
paired with transcriptions of expressions referring to targets.
Learning consists of six stages.

Stage 1: Word Class Formation
In order to generate syntactically correct phrases such

as ‘large red square’ as opposed to ‘red large square’ or
‘square red’, word classes that integrate syntactic and se-
mantic structure must be learned. Two methods of cluster-
ing words into syntactically equivalent classes were inves-
tigated. The first relies on distributional analysis of word
co-occurrence patterns. The basic idea is that words which
co-occur in a description are unlikely to belong to the same
word class since they are probably labeling different prop-
erties of the target object. The second method uses shared
visual grounding as a basis for word classification. A hybrid
method which combines both methods led to optimal word
clustering.

Stage 2: Feature Selection for Words and Word Classes
A subset of visual features is automatically selected and

associated with each word. This is done by a search algo-
rithm that finds the subset of visual features for which the
distribution of feature values conditioned on the presence
of the word is maximally divergent from the unconditioned
feature distribution. Features are assumed to be normally
distributed. The Kullback-Leibler divergence is used as a
divergence metric between word-conditioned and uncondi-
tioned distributions. This method reliably selects appropri-
ate features from the eight dimensional feature space. Word
classes inherit the conjunction of all features assigned to all
words in that class.

Stage 3: Grounding Adjective/Noun Semantics
For each word (token type), a multidimensional Gaussian

model of feature distributions is computed using all obser-
vations which co-occur with that word. The Gaussian dis-
tribution for each word is only specified over the subset of
features assigned to that word’s class in Stage 2.

Stage 4: Learning Noun Phrase Word Order
A class-based bigram statistical language model is esti-

mated (based on frequency) to model the syntax of noun
phrases.

Stage 5: Grounding the Semantics of Spatial Terms
A probabilistic parser uses the noun phrase bigram lan-

guage model from Stage 4 to identify noun phrases in the



training corpus. Training utterances which are found to con-
tain two noun phrases are used as input for this stage and
Stage 6. Three spatial features between object pairs is intro-
duced to ground spatial terms: the proximal angle, center-
of-mass angle, and proximal distance (Regier 1996). The
procedures in Stages 2 and 3 are re-used to ground spatial
words in terms of these spatial features.

Stage 6: Learning Multi-Phrase Syntax
Multi-noun-phrase training utterances are used as a basis

for estimating a phrase-based bigram language model. The
class-based, noun phrase language models acquired in Stage
4 are embedded in nodes of the language model learned in
this stage.

Pilot Acquisition Results
To train Describer, two human participants verbally de-
scribed approximately 700 images. Figures 2-4 illustrate
the results of the learning algorithm using this transcribed
training corpus. The language model has a three-layer struc-
ture. Phrase order is modeled as a Markov model which
specifies possible sequences of noun phrases and connec-
tor words, most of which are spatial terms (Figure 2). Two
of the nodes in the phrase grammar designate noun phrases
(labeled TARGETOBJECT and LANDMARKOBJECT).
These nodes encapsulate copies of the phrase grammar
shown in Figure 3. The semantics of relative noun phrase
order have thus been learned and are encoded by the distinc-
tion of target and landmark phrases.

START

TARGET_OBJECT

above

to_the_right_of

below

to_the_left_of

touching

directly

LANDMARK_OBJECT

and

END

Figure 2: A grammar for combining object descriptions us-
ing relative spatial terms.

START

the

CLUSTER 2
light, white, dark

CLUSTER 3
pink, yellow, salmon, orange, 

grey, red, green, 
purple, colored, blue, 

brown

CLUSTER 4
horizontal, vertical, bright

CLUSTER 5
rectangle, square

CLUSTER 6
small, thin, large, largest, 

smallest

tall

olive

CLUSTER 9
leftmost, rightmost

CLUSTER 11
lowest, highest

END

Figure 3: Noun phrase structure acquired by Describer.

Each word class in Figure 3 is a result of learning Stage
1. Each word in the noun phrase language model is linked to
an associated visual model. The grounding models for one
word class are shown as an example in Figure 4. The words
‘dark’, ‘light’ and ‘white’ were clustered into a word class
in Stage 1. The blue and green color components were se-
lected as most salient for this class in Stage 2. The ellipses
in the figure depict iso-probability contours of the word-
conditional Gaussian models in the blue-green feature space
learned for each word in Stage 3. The model for ‘dark’ spec-
ifies low values of both blue and green components, whereas
‘light’ and ‘white’ specify high values. ’White’ is mapped
to a subset of ‘light’ for which the green color component is
especially saturated.

Language Generation
A planning system uses the grounded grammar to generate
semantically unambiguous, syntactically well formed, con-
textualized text descriptions of objects in novel scenes. A
concatenative speech synthesis procedure is used to auto-
matically convert the text string to speech using the input
training corpus. The final output of the system are spo-
ken descriptions of target objects in the voice of the human
teacher. The planner works as follows:

Stage 1: Generate Noun Phrases
Using the noun phrase model as a stochastic generator, the

most likely word sequence is generated to describe the target
object, and each non-target object in the scene. Each word
cluster specifies a probability distribution function for each
word within the cluster. The Viterbi algorithm is used to find
the most probable path through the graph (Figure 3) given
a target object’s visual features. The best path specifies a
natural language referring expression.
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Figure 4: Visual grounding of words for a sample word
class.

Table 1: Results of an evaluation of human and machine
generated descriptions (chance performance is 10%).

Judge Human-generated Machine-generated
(% correct) (% correct)

A 90.0 81.5
B 91.2 83.0
C 88.2 79.5
Average 89.8 81.3

Stage 2: Compute Ambiguity of Target Object Noun
Phrase

An ambiguity score is computed based on how well the
phrase generated in Stage 1 describes non-target objects in
the scene. If the closest competing object is not well de-
scribed by the phrase, then the planner terminates, otherwise
it proceeds to Stage 3.

Stage 3: Generate Relative Spatial Clause
A landmark object is automatically selected which can be

used to unambiguously identify the target. Stage 1 is used to
generate a noun phrase for the landmark. The phrase-based
language model is used to combine the target and landmark
noun phrases.

Sample output is shown in Figure 5 for four novel scenes
which were not part of the training corpus. Describer is able
to generate descriptive utterances for each scene. Language
generation is creative in the sense that the word sequences
generated by Describer did not occur in the training set.

Evaluation
We evaluated spoken descriptions from the original human-
generated training corpus and from the output of the gen-
eration system. Three human judges evaluated 200 human-
generated and 200 machine-generated referring expressions.
For each expression, judges were asked to select the best
matching rectangle. Table 1 shows the evaluation results.

On average, the original human-generated descriptions
were correctly understood 89.8% of the time. This result

The highest vertical rectangle.The thin pink rectangle.

The dark green rectangle above
the light green rectangle.

The dark purple rectangle touching
the light purple rectangle.

Figure 5: Sample Describer output.

reflects the inherent difficultly of the task. An analysis of
the errors reveals that a difference in intended versus in-
ferred referents sometimes hinged on subtle differences in
the speaker and listener’s conception of a word. The average
listener performance on the machine-generated descriptions
was 81.3%, i.e., a difference of only 8.5% compared to the
results with the human-generated set. An analysis of errors
reveals that the same causes of errors found with the human
set also were at play with the machine data.

In summary, Describer learns to generate verbal descrip-
tions of objects in synthetic scenes with semantic accura-
cies comparable to human performance. The next section
describes our efforts to address the converse problem: con-
necting verbal descriptions to objects in visual scenes.

Newt: Learning to Understand Descriptions of
Objects in Video

Newt is a visually-grounded spoken language understanding
system. The system processes spoken referring expressions
such as “The green apple to the left of the cup” and locates
the appropriate object in a visual scene. Newt is embod-
ied in an active vision system mounted on a two degree-of-
freedom pan-tilt base (Figure 6). A laser mounted in the
device is used to point to objects on a table top in response
to spoken utterances. This section provides an overview of
Newt’s implementation (more detailed descriptions may be
found in (Royet al. 2002)).

Visual System
Newt’s visual system tracks solid-colored objects placed on
a table top in real-time. The system extracts object proper-
ties and inter-object spatial relationships which are passed to



Figure 6: Newt is an interactive multimodal system which
points to objects in response to verbal descriptions.

the language processing system. We model the color distri-
bution of objects using mixtures of Gaussian distributions.
Although all objects are constrained to be single-colored,
shadow effects of three-dimensional objects necessitate the
use of a mixture of Gaussian distributions. For each object
used in the experiments, a color model is created by collect-
ing training images of each object and manually specifying
the region within each image that corresponds to the object.
The Expectation Maximization (EM) algorithm is used to
estimate both the mixture weights and the underlying Gaus-
sian parameters for each object. K-means clustering is used
to provide initial estimates of the parameters.

Shapes and colors are represented using multidimensional
histograms of local color and geometrical features as intro-
duced in (Roy, Schiele, & Pentland 1999). These represen-
tations have been found to be robust to changes in lighting,
scale, and in-plane rotation. An additional set of four shape
related features is computed based on the bounding box of
each object. These parameters are: height, width, height-to-
width ratio, and area.

To enable the system to ground the semantics of spatial
terms such as “above” and “to the left of”, the set of spatial
relations used in Described and described in (Regier 1996)
is measured between each pair of objects. The first feature is
the angle (relative to the horizon) of the line connecting the
centers of area of an object pair. The second feature is the
shortest distance between the edges of the objects. The third
spatial feature measures the angle of the line which connects
the two most proximal points of the objects.

Speech Recognition

We have significantly extended our continuous speech
recognition system (Yoder 2001) to support processing of
interactive spoken language. The recognizer performs real-
time medium vocabulary (up to 1000 word) recognition. We
chose to develop our own recognizer in anticipation of non-
standard decoder features which will be necessary to support
rich integration with visual processing. The system uses a

24-band Mel-scaled cepstral front-end, continuous density
HMM triphone acoustic sub-word models, and a back-off
trigram statistical language model trained on a mixture of
domain-specific and domain-independent data.

Language Learning by Show-and-Tell

Similar to Describer, Newt learns visually grounded lan-
guage by ‘show-and-tell’. During training sessions, Newt
randomly points (using its laser pointer) to one of the ob-
jects in its view and waits for a human trainer to speak.
This point-and-listen cycle is repeated with a variety of ob-
jects and object configurations as a rapid means of multi-
modal data collection. An on-line learning algorithm pro-
cesses video-speech training pairs in order to acquire a
visually-grounded grammar and lexicon which can be used
for speech understanding.

Training examples consist of visual features of a target
object and its spatial relation to other objects paired with
transcriptions of spoken descriptions provided by a human
trainer. As training examples arrive, statistical models of vi-
sual associations are spawned for each observed word. The
association strength of a word to a particular visual feature is
inspired by the methods developed for Describer. For each
word, a record of all past visual contexts in which that word
was observed are combined to estimate the parameters of
Guassian distributions over all possible combinations of vi-
sual features. A background Gaussian model is computed
using all past visual observations. The visual association
strength of a word is computed as the Kullback-Leibler dis-
tance between the word-conditioned Gaussian and the back-
ground Gaussian model.

Word classes are formed using a hybrid strategy which
combines distributional co-occurrence patterns of word us-
age with visual association similarities. For example, the
words red and green are likely to be clustered because they
rarely co-occur in the description of a single object, and both
terms have a strong visual association with color features
(and no other visual features).

A hierarchical clustering process learns grammar frag-
ments which encode the semantics of pairs of word classes
or other grammar fragments. This hierarchical structure en-
ables Newt to learn arbitrary depths of embedded phrase
structure when provided with sufficient training data. In
contrast, Describer is limited to a three level embedding of
phrases, word classes, and words.

Situated Language Understanding

The language model acquired by Newt is suited to robust
parsing of speech due to the distributed structure of the
grammar fragments. To parse novel input, each grammar
fragment attempts to explain the output of the speech rec-
ognizer. The set of fragments which best covers the input
utterance is selected as the interpretation of the speech. Is-
lands of words are sufficient for the understanding system
to operate – a complete parse is not necessary nor expected.
Each acquired word has an associated visual model (an ex-
pected Guassian distribution over a subset of visual fea-
tures). The operation of the language-to-vision matching



is best explained through an example. Consider the utter-
ance “the ball above the red cup”. The phrase red cup will
be covered by a color-shape grammar fragment. A three-
place grammar fragment will cover (the ball) (above) (the
red cup). The visual model associated with ball will induce
a probability mass distribution over all objects in the scenes,
assigning most of the probability mass to round objects (as-
suming that ball has been learned correctly as labeling round
shapes). Red cup will induce a second pmf over the objects
which meet the conjunctive semantics of red and cup (con-
junction is achieved at the moment by multiplying the pmf
induced independently by each constituent term). Finally,
‘above’ picks out the object pair which individually have
been assigned high probabilities, and whose spatial relation
best fits the model associated with ‘above’.

In a preliminary evaluation, we collected a dataset of 303
utterances from two trainers. Each utterance describes one
object in a scene of four objects chosen from a collection
of 10 objects in total, including objects with like shapes but
different colors and vice versa. When trained on three of the
sessions and evaluated on the fourth for all four sessions in
turn, Newt achieves 82% accuracy in picking out the correct
object, compared to a random baseline of25%. Due to the
small size of the dataset, we allowed Newt to use an example
in the fourth session as a training example after Newt had
selected an object for the example’s utterance. Doing this
increases performance by almost10%, indicating that the
dataset size is too small to achieve full performance. How-
ever, even this preliminary study shows that Newt does learn
the correct visual groundings for words and their combina-
tions.

Ripley: A Trainable Conversational Robot
Most language interfaces to robots spot keywords and key
phrases and use pre-programmed mappings to translate the
recognized words / phrases to robot actions. The challenge
in generalizing this approach is that the natural use of lan-
guage is generative. ”Generative” refers to the ability of
words and phrases to combine in novel yet meaningful ways.

Creative (or generative) language processing seems to be
at the heart of semantic interpretation (Pustejovsky 1995).
Consider the meaning of the phrases “fast car”, “fast road”,
and “fast food”. The semantics of “fast” shifts in each case,
yet some core aspect of its meaning remains constant. This
kind of shift in meaning relative to a core is found through-
out natural language and must be accounted for in computa-
tional terms if we are to build intelligent language process-
ing systems. It is impractical for a system to be programmed
to deal with every possible combination of linguistic con-
cepts that it might encounter.

Our goal is to develop a robot that can creatively under-
stand and generate spoken language references to its physi-
cal environment. Without a creative interpretation process,
the robot will be unable to generalize its programmed rou-
tines to deal with new inputs. A system that can creatively
understand the compositionality of language will have a
greater success in making sense of increasingly complex
phrase structures, even those that were not explicitly antici-
pated by the system designer.

As a first step towards a robust speech interface that can
creatively process language, we are developing a set of per-
ceptual and action primitives which will serve as the basis
for grounding words associated with object shapes, colors,
motion trajectories, and spatial relations. In the following
sections, we present our initial results in constructing a new
robot and low level sensory-motor processing.

The Robot
Ripley is an interactive robot that has been designed for
experiments in learning language grounded in sensor and
motor representations (Figure 7). To date, we have imple-
mented a multi-layer, extensible motor control system capa-
ble of using information from the multiple sensor channels
to move smoothly and to perform several primitive actions.
This section provides details of the robot, and our pilot ex-
periment in collecting show-and-tell training data for two
verbs: pick-up and put-down.

Figure 7: Ripley has 7 degrees of freedom powered by series
elastic actuators enabling it to manipulate objects in a 3 foot
radius workspace. The perceptual system includes stereo vi-
sion, audition, touch and proprioceptive sensors, and a sense
of gravity. The camera and microphones are placed on Rip-
ley’s ‘head’. Ripley is shown here looking up.

The robot has seven degrees of articulation powered by
series-elastic actuators (Robinsonet al. 1999). Five DOFs
enable articulation of the arm, one rotates its ‘head’, and one
for opening and closing its ‘claw’. The joints give Ripley a
range of motion that enables it to move objects around on a
tabletop placed in front of it. We chose this particular form
for Ripley in order to give it a sense of presence that people
would feel comfortable interacting with – with its ”head” on
the end of the robotic arm it behaves somewhat like a long-
necked bird.

Ripley has a relatively sophisticated perceptual system.
Each series elastic actuator includes a position and force sen-
sor. These give Ripley the capacity for proprioception both
in the sense of knowing where it is body is, and also knowing
how strenuously it is exerting itself at each joint. Two color
video cameras, an three-axis tilt accelerometer (for sensing



gravity), and two microphones are mounted in the head and
on the gripper. Pressure sensors on the inside and outside
surfaces of the gripper give tactile feedback on objects be-
ing held.

Layered Motor Control
Ripley’s software currently consists of five major modules:
a PC104 board, an RT-Linux real-time layer, an interface
layer that handles the control computations, a software layer
that parses user commands and produces graphical state rep-
resentations, and a visual object-recognition module.

The sensors and motors all connect to a PC104 micro-
controller board with a series of A/D and D/A converters.
The PC104 is responsible for low-level control and process-
ing (e.g., PD control), and other functions are delegated to a
more powerful motor controller running on a separate host
computer.

Movement towards a target point is done using a PD con-
trol loop running at 200 hertz. The PD controller itself is
only used for small, incremental motions, because gross mo-
tion using the PD controller tends to be jerky. To achieve
smooth large scale motions, point-by-point trajectories are
computed by the higher layers and given with appropriate
timing to the controller. Gradually transitioning a conver-
gence point targeted by a PD-like controller has been shown
to have biological analogues (Mussa-Ivaldi & Bizzi 2000),
and in our system it produces graceful motion from point to
point.

A ‘gravity-cancellation’ control mode takes advantage of
the force-sensitive aspect of our motors to apply exactly
enough force to counter the downwards pull of gravity, with-
out causing the robot to hold a single position stiffly. This
enables the user to act as a ‘puppeteer’ and move the robot
fluidly, as though it weighed very little, which makes it easy
for the human trainer to show the robot direct examples of
actions.

Visual System
Ripley’s vision system uses two cameras mounted on oppo-
site sides of its head. The current vision algorithm uses a
statistical color model with a mixture of Gaussians trained
on background images of the workspace table to determine
whether a visual region most likely belongs to the table or
an object. It then uses a standard contour-finding algorithm
to pick out the largest contours identified by the foreground
model. We have found this algorithm sufficient for our initial
purpose of finding simple shapes such as balls and beanbags.

A Pilot Show-and-Tell Verb Training Study
To achieve goal-directed behavior, we plan to train Ripley
to perform primitive actions which can be assembled into
more complex behaviors. The purpose in learning low-level
behaviors is to allow Ripley to have a selection of behaviors
that are possible at any given moment. It will then be up to
its goal-direction module to select which behaviors are most
relevant and would produce the most satisfaction. This idea
is inspired by the mechanisms found in human prefrontal
cortex studies.

Ripley learns primitive actions in two ways. Some actions
are hand-coded, and others can be demonstrated using the
”puppet” mode in which the human trainer physically guides
the robot through an action. These two methods are meant as
analogues to two of the ways in which human infants acquire
behaviors: preprogrammed, and taught by example and ex-
perimentation. For instance, human infants turn their heads,
suckle, and close their hands instinctively. Other actions are
learned later, either via direct experimentation or by ”mir-
roring” the actions of others.

We have collected a small pilot data set of ‘puppet’ mode
training for two actions: pick up and put down. We have
implemented a multi-sensor recording program that records
full bandwidth data streams from all of Ripley’s sensors
including all joint information and visual input. We are
currently using data clustering and sequence learning tech-
niques to infer statistical models of these actions encoded in
terms of requires motor control sequences combined with
expected perceptual experiences. These acquired action
models will form the basis for grounding the semantics of
action verbs, and will be combined with grounded models
of objects and spatial relations (as described in the other
systems in this paper). The representations of actions and
related perceptions are being designed to accommodate gen-
erative use of those concepts in novel concepts. More details
of this aspect of the work is forthcoming.

Conclusions and Future Directions
The problem of grounding natural language semantics is ex-
tremely complex. The projects presented in this paper are
clearly limited, yet we believe they demonstrate an interest-
ing approach to fusing linguistic and non-linguistic repre-
sentations in a way that will lead to robust language inter-
faces to robots and other embodied systems.

Future directions include expansion of Ripley’s architec-
ture and development of richer semantic models of words
grounded in Ripley’s perceptual and motor control systems
(which in turn, are in the process of being expanded).

We are also starting work along a new but related trajec-
tory. Not all natural language semantics are grounded in
perceptual and motor representations. Some of the most fre-
quent words in a young child’s vocabulary includeI, you,
my, yes, no, good, andwant. Motivated by such words (and
their underlying concepts), we are investigating rudimentary
models of intentionality and social reasoning to ground these
non-perceptual concepts and make use of them in situated
spoken dialogue.
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