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Abstract

An important question in cognitive science is whether in-
ternal models are encoded in the brain of higher animals
at birth, and are only subsequently refined through experi-
ence, or whether models are synthesized over the lifetime
of an animal – and if so, how are they formed. A further
question is whether animals maintain a single model of a
particular body part or tool, or whether multiple competing
models are maintained simultaneously. In this paper we de-
scribe a co-evolutionary algorithm that automatically synthe-
sizes and maintains multiple candidate models of a behav-
ing robot. These predictive models can then be used to gen-
erate new controllers to either elicit some desired behavior
under uncertainty (where competing models agree on the re-
sulting behavior); or determine actions that uncover hidden
components of the target robot (where models disagree, indi-
cating further model synthesis is required). We demonstrate
automated model synthesis from sensor data; model synthesis
‘from scratch’ (little initial knowledge about the robot’s mor-
phology is assumed); and integrated, continued model syn-
thesis and controller design. This new modeling methodol-
ogy may shed light on how models are acquired and main-
tained in higher organisms for the purpose of prediction and
anticipation.

Introduction
It has been argued that the brain evolved to control com-
plex movement (Llinas, 2001). However, the inherent de-
lays in biological sensors requires the use of models to cor-
rectly predict and anticipate the result of body motion. Evi-
dence regarding the nature and number of models is growing
(Wolpert, Miall, & Kawato, 1998), but this particular line
of neuroscience inquiry is still in its infancy. For example,
Imamizu et al. (2003) use brain imaging techniques to argue
that when humans learn to use a new tool, a new model of
that tool is created in the cerebellum. Yet despite the exis-
tence and modular nature of somatotopic maps in the same
brain region (Penfield & Boldrey, 1937; Snider & Eldred,
1951), it remains unclear whether humans create different
models of different body parts, or whether organisms main-
tain multiple competing models describing the same body
part. In this paper we present an algorithm that allows a
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robot to automatically create multiple candidate models de-
scribing its own morphology, based only on recorded sen-
sory data.

Internal models have been used since the beginning of
classical AI research (see for example Nilsson (1980)), how-
ever in most cases the models are hard-coded, or are quan-
titatively updated using learning. Brooks (1987) proposed a
model-less behavior based on purely reactive control. More
recently, the field of evolutionary robotics (Nolfi & Flore-
ano, 2000) has further reduced explicit modeling by using
simulated evolution to generate reactive controllers automat-
ically. In this method, a population of competing reactive
controllers for a virtual robot are evolved using natural se-
lection, after which the best controller is downloaded to the
physical robot. However, often the transfer is unsuccess-
ful due to inconsistencies between the physical and virtual
environments. There are several approaches to this chal-
lenge, including adding noise to the simulated robot’s sen-
sors (Jakobi, 1997); adding generic safety margins to the
simulated objects comprising the physical system (Funes
& Pollack, 1999); evolving directly on the physical system
(Thompson, 1997; Floreano & Mondada, 1998; Mahdavi &
Bentley, 2003); evolving first in simulation followed by fur-
ther adaptation on the physical robot (Pollack et al., 2000;
Mahdavi & Bentley, 2003); or implementing some neural
plasticity that allows the physical robot to adapt during its
lifetime to novel environments (Floreano & Urzelai, 2001;
DiPaolo, 2000; Tokura et al., 2001).

Here we reintroduce predictive internal models, but use
evolutionary processes to simultaneously generate both the
models and the reactive controllers based on them. In a
continuous cycle of adaptation, models generate actions and
actions are used to improve models. This co-evolutionary
process, which we term the Estimation-Exploration Algo-
rithm (EEA), can be used together with, or as an alternative
to other controller-adaptation methods (Bongard & Lipson,
2004b). The advance of EEA over these other methods is
two-fold: First, EEA uses automatically generated predic-
tive models (“simulators”) to minimize the number of tri-
als actually performed on the target robot, thereby reducing
the time, cost, and risk involved in physical learning. The
second advantage of EEA is that not only are controllers
evolved, but the robot’s internal models themselves are con-
tinuously adapted, and are therefore not static. The models



change over time to better reflect the target robot itself and
its local environment, and consequently controllers based on
these models adapt to generate more effective behavior.

By using evolutionary algorithms to automatically gener-
ate accurate simulators, it is possible to move beyond simple
parametric identification, in which some unknown physical
parameters of the robot are inferred using feedback from
the target robot, to topological identification. Evolution-
ary algorithms can search the space of possible robot mor-
phologies in order to discover increasingly accurate simula-
tors when the morphology of the robot may not be known.
Indeed many evolutionary algorithms have been introduced
that generate not only a robot controller suitable for a partic-
ular task, but also a suitable robot morphology (Sims, 1994;
Adamatzky, Komosinski, & Ulatowski, 2000; Lipson & Pol-
lack, 2000; Bongard & Pfeifer, 2001; Hornby & Pollack,
2002; Macinnes, 2003). The difference to the work here
is that those methods evolve a morphology for a particular
task; here, we demonstrate the use of the EEA to evolve a
simulated robot morphology that functionally matches the
morphology of the target robot and serve as a predictive in-
ternal model.

The next section describes the EEA in more detail. Sec-
tion describes the inference of unknown physical parame-
ters of a target robot. Section describes the inference of the
target robot’s morphology. The final section discusses var-
ious issues raised by the inference of robot morphologies,
and provides some concluding remarks.

The Estimation-Exploration Algorithm
The estimation-exploration algorithm (EEA) is a co-
evolutionary algorithm for performing system identification.
System identification involves automated construction of a
model of a target system, using only input supplied to the
system and observed output (Ljung, 1999). The EEA di-
vides the system identification into two components: the
generation of accurate models (the estimation phase) and the
generation of intelligent input data, or tests (the exploration
phase). In previous papers (Bongard & Lipson, 2005b,a) we
have demonstrated the application of the EEA to a number
of system identification tasks, and have demonstrated that by
intelligently selecting tests to perform on the target system,
the internal structure of the target system can be inferred us-
ing less tests than if tests are selected at random.

An accurate model is defined as one that produces similar
output data as the target system, when both the model and
target system are supplied with the same input. An intel-
ligent test can be much more broadly defined. In the case
of system identification, an intelligent test is one that indi-
rectly unveils hidden internal components of the target sys-
tem, thereby allowing the generation of more accurate mod-
els. This can be achieved by evolving a test that causes max-
imal disagreement among the current set of candidate mod-
els; the resulting target system output from such a test will
provide increased support of some models, and will prove
the other models are inaccurate. In other situations, an in-
telligent test is one that elicits some desirable behavior from
the most accurate model currently on hand; if the model is

Figure 1: Two complementary definitions of an intelli-
gent test. In this example a RoboCup team has access to a
database containing two candidate models of the robot and
its environment. The right-hand robot wishes to achieve a
particular result, Y , so chooses to perform action B because
both models agree that Y will result, though the models are
different. The left-hand robot, who wishes to know which
model is correct, chooses to perform action A, because the
two models disagree as to the result of this action. De-
pending on which result occurs, one of the models will be
invalidated.

accurate, then that same test should produce the same desir-
able behavior on the target system. This different interpreta-
tion of an intelligent test is shown in Figure 1. In the work
presented here the latter interpretation of an intelligent test
is used: a test is a sensor-based neural network, and a good
test is a network that, when downloaded on to the target sys-
tem (which in this case is a mobile robot) causes the robot
to maximize forward velocity.

Figure 2 illustrates the flow of the EEA pictorially. The
algorithmic flow of the algorithm is given as follows:

1. Initialization

(a) If an approximate model is available, goto 4).
(b) If no model is available, generate a random test.

2. Perform Target Trial

(a) Send evolved (or random) test to the target.
(b) Record the resulting output.

3. Evolve Candidate Models (Estimation Phase)

(a) If this is the first pass through the estimation phase,
generate a random set of candidate models.

(b) If it is the second or subsequent pass, seed the popula-
tion with the best models evolved so far.

(c) Provide the evolving models with all previous tests and
outputs, plus the new test/output pair.

(d) Output the best candidate models to the exploration
phase.

4. Evolve Informative Tests (Exploration Phase)



Figure 2: The enhanced estimation-exploration algorithm.
The original algorithm is shown above the dotted line; the
mechanism for ‘managing challenge’ is shown below the
line.

(a) Always begin the exploration phase with a random pop-
ulation of tests.

(b) Evolve a test that causes the most disagreement be-
tween the candidate model(s) provided by the estima-
tion phase, elicits some desirable behavior from the
candidate model(s), or some combination of these two
fitness criteria.

(c) Goto 2).

The EEA is cyclical in the sense that the evolution of
models alternates with the evolution of tests, such that test
data accumulates over the lifetime of the run: this stands in
contrast to many system identification and machine learning
methods in which a large amount of training data is gath-
ered before inference begins. In the EEA, during the nth
pass through the estimation phase there are n input/output
data pairs available for model generation.

The algorithm is evolutionary in the sense that the estima-
tion phase generates a population of candidate models using
an evolutionary algorithm, and the exploration phase gener-

ates a population of tests also using an evolutionary algo-
rithm. It should be noted however that an alternative search
method, a heuristic algorithm or a combination of the two
could be used in either phase in lieu of evolutionary search.
Co-evolution implies that the evolutionary progress of one
population is dependent on the evolutionary progress of the
other. In the EEA, tests are evolved using the current most
accurate models output by the estimation phase; and mod-
els are evolved based on the results of tests evolved in the
exploration phase.

In the next two sections we describe the application of the
EEA to the problem of automated model construction for
mobile robotics. In section , we assume that the topology
of the robot’s body plan is known, and we infer some of
the unknown parameters of the system, which we take to
be mass distribution and sensor time lags. In section we
assume less is known about the target robot: in this case we
attempt to evolve the actual body plan of the robot using
only observed sensor data.

Parametric Inference
In many robot applications the robot’s state is known, but
various physical aspects of itself and its environment are
unknown (such as friction properties of foot contact or the
robot’s inertial tensor) so that behaviors generated using
a model do not transfer well to the physical robot. This
problem is particularly pronounced in evolutionary robotics
(Nolfi & Floreano, 2000), in which behaviors are evolved
in simulation and then transferred to the physical robot. In a
previous paper (Bongard & Lipson, 2004b) we demonstrated
the use of EEA to automatically improve various unknown
physical parameters of the model robot such that behaviors
could be transferred from simulation to the target robot. We
will only outline this application here; the reader is referred
to (Bongard & Lipson, 2004b) for more details.

Six steps must be followed to apply the algorithm to a
given problem: characterization of the target system; initial-
ization; estimation phase; exploration phase; termination;
and validation.

1) Characterization of the target system. The target
robot is a virtual robot operating within a three-dimensional
physical simulator1. (As of yet we have not applied the EEA
to a physical robot, but we are currently in the process of do-
ing so.) Each of the nine objects comprising the robot has a
different, randomly assigned mass between 1 and 7kg. Each
of the eight sensors has an individual time lag that is selected
randomly from the range [0, 20] time steps; this value deter-
mines how many time steps elapse between the sensor read-
ing and its input into the neural network controller. More
details regarding the simulation of the robot can be found in
(Bongard & Lipson, 2004b).

2) Initialization. To start, a random neural network is
generated and supplied to the target robot. The target robot
is evaluated in the simulator for 1000 time steps, and the re-
sulting sensor time series are passed to the estimation phase.

1The robot simulator used throughout this paper is built on top
of Open Dynamics Engine, www.ode.org.
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Figure 3: a: The morphology of the robot, including the dis-
tribution of its four touch sensors (T1-T4), four angle sen-
sors (A1-A4), and eight motorized joints (M1-M8). b: The
neural network controller of the robot, which connects the
eight sensors to the eight motors via a single hidden layer,
and an additional two bias neurons (B1-B2).

3) Estimation Phase. The estimation phase uses a genetic
algorithm to evolve a population of 100 candidate models.
A candidate model is given as a simulated robot that is iden-
tical to the target robot in all respects, except for the nine
body part masses and the eight sensor time lags: the genome
specifying a candidate model supplies these missing 17 val-
ues. The fitness of a candidate model is calculated as fol-
lows. The 17 values from the genome are used to increase
the masses of the body parts and the time lags of the sensors:
before labeling, the masses of all the body parts are assumed
to be 1kg, and all sensor time lags are assumed to be zero.
The model robot is then evaluated using all n neural network
controllers have have been applied to the target robot so far,
and the sensor time series are recorded. The fitness is then
set to the inverse of the mean absolute difference between
the n target robot and model robot sensor time series (see
(Bongard & Lipson, 2004b) for details regarding this fitness
calculation). The 50 most fit genomes are copied, mutated
and crossed to produce 50 new genomes, which replace the
50 less fit genomes. This process continues for 30 gener-
ations, at which point the most fit model is output to the
exploration phase. At the beginning of each pass through
the estimation phase, the population is seeded with random
genomes.

4) Exploration Phase. The exploration phase also
evolves a population of 100 genomes for 30 generations, us-
ing the same mechanisms of mutation and crossover. How-
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Figure 4: Behavior recovery after controller transferal.
After the first pass through the exploration phase, the best
evolved controller was supplied to the first model robot. The
trajectory of its center of mass is given by the thin line in
a. The same controller was then supplied to the target robot,
and the resulting trajectory of its motion is given by the thick
line in a. The movement of the 20th model robot using the
20th controller is given by the thin line in b. The motion
of the target robot using the same controller is given by the
thick line in b. The horizontal axis indicates forward dis-
tance, and the vertical axis indicates height (both are in me-
ters).

ever in this case each genome encodes 68 synaptic weights
to specify a neural network controller. Each controller is ap-
plied to the model supplied by the estimation phase, and the
fitness is set to the forward distance achieved by the model
robot in 1000 time steps using that controller. At the end of
this phase, the neural network with the highest fitness is out-
put to the target robot. At the beginning of each pass through
the exploration phase, the population is seeded with random
genomes.

5) Termination. The algorithm terminates after 20 neural
networks have been evaluated on the target robot (i.e. 20
cycles through the EEA have been performed).

6) Validation. In this application, no validation was per-
formed: the forward distance traveled by the target robot
is considered an accurate metric of the algorithm’s perfor-
mance.

Results of Parametric Construction
Fifty independent runs of the EEA were performed: the
model output by each pass through the estimation phase was
recorded, as was the set of synaptic weights output by the
exploration phase. Figure 4 shows results from one of the
runs: as can be seen in Figure 4a, the neural network pro-
duced by the first pass through the exploration phase elicits
very different behavior from the first model and the target
robot, due to the inaccuracy of this first model. However
after 20 cycles, the 20th neural network elicits very similar
behavior from the 20th model and the target robot (Figure
4b), indicating that the 20th model was much more accurate.

Figure 5 reports the mean ability of the algorithm to in-
fer the 17 unknown physical parameters. Clearly, the sensor
time lags are more easy to infer than the body parts: this is
not surprising, as it is these same sensors that provide the
signals for inference. The morphological parameters how-
ever, are more difficult to infer because morphological must
be indirectly inferred using sensor data. The algorithm in-
fers, on average, the masses of body parts B2, B4 and B8
better than the other body parts. This may be due to the fact
that B2, B4, B6 and B8 contain touch sensors (which pro-
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Figure 5: Mean ability of the algorithm to identify hidden
physical parameters. The upper row shows the mean abil-
ity of the algorithm to infer the masses of the nine body parts
B1 to B9 (B1 is the torso; B2, B4, B6 and B8 are the lower
legs; B3, B5, B7 and B9 are the upper legs). The lower row
shows the ability to infer the time lags of the touch sensors
(T1-T4) and joint angle sensors (A1-A4). The open circles
indicate the differences between the default robot simulator
and the target robot (eg. the target torso is 1.5kg heavier
than the default torso). Horizontal trajectories indicate the
mean guess as to the correct parameter value, averaged over
the best models output at the end of that pass through the
estimation phase. Vertical lines indicate standard deviation.
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Figure 6: Average transferal success after each target
trial. The light gray bars indicate the average distance trav-
eled by the model robot using the best evolved controller
output by that pass through the exploration phase, over all
50 runs. The dark gray bars indicate the average distance
traveled by the target robot using the same controller, during
each target trial. Error bars indicate standard error with a
95% confidence interval.

duce signals used for inference), while the other body parts
do not. It may be that geometrical proximity to a sensor may
make parameters about that body part easier to infer, how-
ever more experimentation is required to support this claim.

Figure 6 reports the mean performance of the EEA in
terms of behavior transfer. As can be seen, the first evolved
controller incurs a significant drop in performance when ap-
plied to the target robot; however after only a few more
passes through the algorithm there is much less of a loss
in performance. This indicates that, on average, the target
robot travels only a little less far than the model robot using
those later controllers, providing evidence that an accurate
model has been evolved.

Topological Inference
In the previous example it was assumed that much was
known about the target robot, and only some parameters
of the system needed to be inferred: this is an example of
parametric identification for nonlinear systems. We now
demonstrate EEA’s ability to reconstruct topological infor-
mation about the target robot, such as which parts of the
robot’s body attach to which other parts: this is an exam-
ple of structural identification of nonlinear systems, which is
known to be a much more difficult endeavor Ljung (1999).
As such, few attempts to perform structural identification
of such systems have been made (Andrew, 1996; Gray et
al., 1998; Koza et al., 1999; Rodriguez-Vazquez & Fleming,
1999; Chen et al., 2005). To the best of our knowledge, this
is the first attempt to perform structural system identification
for nonlinear robot systems.

1) Characterization of the target system. The target
system is assumed to be a robot composed of five cylindrical
body parts: the robot itself is shown in Figure 7h. The robot
contains two binary touch sensors, one in the anterior and
posterior cylinders comprising the robot’s spine; and four
angle sensors, one in each of the robot’s four actuated joints.
The joints are actuated by one degree-of-freedom rotational
joints: the two joints in the spine rotate through the sagittal
plane; the two joints connecting the two front arms to the
spine rotate through the frontal plane. All joints can rotate
through [−π/6, π/6] of their default angle, which are such
that the robot lies flat on the ground plane.

Each cylindrical body part has a mass of 1kg. The three
spinal parts have a length of 1m, and the arms have lengths
of 80cm2; all body parts have a radius of 10cm. The arms
are anchored at the center of the anterior spinal body part.

The neural network controller for this robot is similar to
that shown in Figure 3b, except that the input layer contains
six neurons (corresponding to the six sensors) and the output
layer contains only four neurons (corresponding to the four
motors at the joints).

2) Initialization. As in the previous case, a random set of
synaptic weights are generated and downloaded to the target
robot, which is allowed to move for 20 time steps. Unlike
the previous case, the success of the algorithm is determined
to be how well the algorithm can reconstruct the topology
of the target robot, and not how far the algorithm can get
the target robot to move. It was found that only a few time
steps of observed sensor data was required in order to correct
infer the topology of the robot, so the algorithm was greatly
sped up by limiting the evaluation of the target robot (and
the model robots) to only 20 time steps. The time series of
the six sensors is then fed into the estimation phase.

3) Estimation Phase. The estimation attempts to recon-
struct the topology of the target robot, not just some of its
physical parameters. This is significantly more difficult be-

2The relatively large masses and sizes of the robot’s body
parts was implemented because of the particular collision detection
method of the underlying simulation, which performs more accu-
rate collision detection and resolution for large and heavy objects.
It is anticipated that the results acquired using this model would be
similar for a smaller and lighter robot.



cause the search space of possible models is much larger and
more deceptive.

In this application, the following data is assumed to be
known about the target robot:

• The robot is composed of five cylindrical body parts.

• The radii of the body parts.

• The masses of the body parts are known.

• All of the four joints are motorized by a one degree-of-
freedom rotational motor.

• Each joint contains an angle sensor.

• A body part may or may not contain a touch sensor.

• There are two touch sensors.

The following is assumed to be unknown:

• The lengths of the body parts.

• Which body part is attached to which other one.

• The relative position and orientation of a body part attach-
ment.

• The location of the two touch sensors.

The genomes of the estimation phase must encode these
missing morphological details in order to produce a candi-
date model. Genomes are therefore encoded as an n × 6
matrix with real values in [0, 1], where n = 5 equals the
number of robot body parts. Therefore row i of the genome
matrix then encodes the missing data for body part i.

Candidate model construction from a genome proceeds as
follows. For each row i, the first value in the row is scaled to
an integer in [0, i − 1]: this value indicates which body part
the current body part attaches to. This value in the first row
of the matrix—which corresponds to the first body part—is
ignored (this body part is considered as the root body part),
and this value in the second row is always set to 0 (the sec-
ond body part can only attach to the root body part). The
values of the second column are rounded to binary values: a
0 in this position indicates that the current body part attaches
to the tail of its parent body part; a 0 indicates it attaches to
the head of its parent body part. The tail of a body part cor-
responds to its attachment point to its own parent; the head is
the tip of the body part away from the attachment part. The
head of the root body part is considered to be the end with
a positive z-coordinate value3. The third value is scaled to a
real value in [lmin, lmax], which indicate the minimum and
maximum possible lengths of the body parts as set by the
user, respectively. The fourth and fifth values are scaled to
[0, π], and represent the two Euler angles used to calculate
the three-dimensional orientation of the current body part
relative to its parent body part.

The sixth value is scaled to a binary value, and indicates
whether the current body part contains a touch sensor or not.
If a genome encodes more than two touch sensors, then only

3The center of the root body part is always considered to be
located at [0, r, 0], where r is the known radii of the body parts.
The root body part is always oriented horizontally along the sagittal
plane. This ensures that no matter the length of the root body part,
one end will have a positive z-coordinate.

the first two touch sensors are included in the model robot,
reading from the top of the six column of the genome ma-
trix downward; the additional touch sensors are ignored and
not included in the robot. If less than two touch sensors are
encoded in the genome matrix, the unspecified touch sen-
sors are placed randomly in the model robot’s body, and are
disabled: they output a zero value during each time step of
the evaluation. Valid touch sensors provide either a 1 or −1
signal into the controller at each time step, corresponding to
whether the body part containing the sensor is touching the
ground plane or not; the four angle sensors take the current
joint angle (in [−π/6, π/6]), divide the value by π/6 and
input the resulting value in [−1, 1] into the controller.

Using each genome matrix, a fully specified model robot
is constructed, and its fitness is evaluated. The model robot
is evaluated using each of the n neural network controllers
that have been evaluated on the target robot so far, and the
resulting sensor signals from these n runs is recorded. The
model robot’s fitness is then given as the inverse of the sub-
jective error, where subjective error is calculated as:

es =

∑n
i=1

∑s
j=1

∑t
k=1 |oijk − aijk|

nst
, (1)

where s is the number of sensors contained in the robot, t =
20 is the number of time steps for which the target and model
robots are evaluated for, oijk is the observed value of sensor
j from the target robot using controller i during time step k,
aijk is the actual value of sensor j obtained from the model
robot using controller i during time step k.

During the first pass through the estimation phase, a pop-
ulation of 100 random genome matrices are generated. Af-
ter each encoded model robot has been evaluated, selec-
tion and mutation is performed (crossover is not currently
used). Seventy-five pairs of genome matrices are chosen in
sequence. For each pair, the genome with the higher fitness
is copied and overwrites the genome with lower fitness. The
copied genome is then mutated as follows. A single element
eij is selected at random in the matrix, and is set to:

eij =
{

α : β = 0
eij + γ10−δ : otherwise

(2)

where α, β, γ and δ are random variables: α is a real value
chosen from [0, 1]; β is a random binary value; γ is either
−1 or 1; δ is a real value chosen in [1, 7]. All random val-
ues are chosen using a uniform distribution. This mutation
operator ensures that half the time a new random value is
chosen, while otherwise the current value is nudged up and
down by a small randomly-determined amount. Because the
most fit genome cannot be overwritten, it is guaranteed to be
preserved into the next generation.

The estimation proceeds for 20 generations. At the end of
the estimation phase, the most accurate simulator is output to
the exploration phase. On the second and subsequent passes
through the estimation phase, the initial random population
is seeded i − 1 genome matrices, which describe the most
accurate model robots output by the previous i − 1 passes
through the estimation phase.

4) Exploration Phase.



The exploration phase is currently not enabled for this ap-
plication: this phase simply outputs a random neural net-
work controller. In this application the goal is not produce a
controller that can be transferred from simulation to the tar-
get robot, but rather to produce an accurate simulation of the
target robot automatically. In previous applications (includ-
ing the one described in section ) we have found that random
sensor-based controllers are sufficient to elicit varied behav-
ior from the target robot, and therefore to indirectly elicit
morphological information about the target robot through
the sensors. The random controller is downloaded on to the
target robot, and the target robot is evaluated.

5) Termination. The algorithm was run for only 10 cy-
cles, as in many runs the accuracy of robot models output by
the estimation phase did not increase much past that point.

6) Validation. In order to validate the accuracy of the
robot models, an objective error metric was formulated:

eo =

∑5
i=1

√
(tix − mi

x)2 + (tiy − mi
y)2 + (tiz − mi

z)2

5
,(3)

Where tix|y|z is the x-, y- or z- coordinate of the center of

the ith body part of the target robot and m i
x|y|z is the x-,

y- or z- coordinate of the center of the ith body part of the
model robot. Computing the mean distance between body
parts gives a good approximation of how well the algorithm
has inferred the overall body plan of the target robot.

Results of Topological Construction
Three sets of 15 independent runs were performed using the
algorithm described in the previous sub-section. In the first
set, the target robot returned the six time series of the sig-
nals from the two touch and four angle sensors. In the sec-
ond set of runs, a range sensor was attached to each of the
five body parts. A simulated range sensor returns a value
at each time indicating the distance from the center of that
body part to a fixed external point at [−1,−1, 0]; this is a
simulated analogue of a beacon, a laser range finder or light
sensor in which luminosity is an indirect measure of distance
from a light source. In the third set of experiments each body
part contained four range sensors, providing distance infor-
mation of how far the center of that body part is from four
external fixed points at [−1,−1, 0], [−1, 1, 0], [1,−1, 0] and
[1, 1, 0]. In the first set of experiments the touch and an-
gle sensors drive behavior by stimulating the neural network
controller as well as provide time series for inference; in the
second and third experiment sets the touch and angle sen-
sors continue to be used to drive behavior, but the additional
range sensors (which do not provide data to the controller)
provide the data for inference.

Figure 7 shows some sample model robots from a typical
run of the third experiment set. Four random model robots
are shown (a-d), as well as the best model output by the first
pass through the estimation phase (e); the best model after
the second pass (f); the best model after the tenth pass (g);
and the target robot itself (h). As can be seen, the algo-
rithm converges on an approximate description of the target
robot’s morphology.

a e

b f

c g

d h

Figure 7: The experimental enclosure for simulated ex-
perimentation with self assembly and reconfiguration. a:
The enclosure, top view. b: Enclosure, side view. c: Mag-
nification of the seed plate. The cross indicates that the top
face of the middle block is magnetized.

Figure 8 reports the progress of one typical run from each
of the three experimental regimes. As can be seen in Fig-
ure 8a, the touch and angle sensors do not provide suf-
ficient information for morphological inference; this algo-
rithm variant does not discover models more accurate than
those generated in the initial random model population. In
the case when range sensors are used for inference instead
of touch and joint angle information (Figure 8b), some infer-
ence takes place; later models tend to be more accurate than
earlier models, although not by very much. In the typical run
from the third regime (Figure 8c), in which four range sen-
sors are used on each body part, significant inference takes
place: later models are much more accurate than those gen-
erated in the initial random population.

The most accurate model output by each pass through the
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Figure 8: Evolutionary progress of a typical run from each experimental regime. a: A typical run from the first regime, in
which the two touch and four angle sensors return signal time series for inference. b: A typical run from the second regime,
in which the five range sensors (one for each body part) return signal time series for inference. c: A typical run from the third
regime, in which the 20 range sensors (four for each body part) return signal time series for inference. Each point represents
the objective error (Eq. 3) of one model robot.

estimation phase was recorded: the objective errors of these
15 models from each run were calculated and averaged. Fig-
ure 9 reports these means for all three experimental regimes.
As can be seen, the use of range sensors is much more infor-
mative for morphological inference than the combined touch
and joint angle sensors: both the second and third regimes
perform significantly better than the first regime. Addition-
ally, the use of only five range sensors allowed for infer-
ence to occur, while six sensors of different modality (touch
and angle) did not: this indicates that the amount of sensors
used for inference is less important than the type of sensor
used: range information yields (indirectly) more morpho-
logical data than touch and joint angle information do. It is
also clear from Figure 9 that the regime in which 20 range
sensors were used for inference far outperformed the other
two regimes, indicating that amount of sensor data is also
important: range data from four external points yields more
information about a body part than range data from only one
external point. We hypothesize (although as of yet have not
proven) that the multiple range signals for each body part
allow the EEA to perform some kind of triangulation and
thereby infer more morphological detail than if only a single
range datum is available for each body part, per time step.

Figure 9 also indicates that the third regime allows for
significant inference to occur using only a single target robot
trial; the third regime produces more accurate models (e o ≈
0.21) after only a single pass compared to the first regime
(eo ≈ 0.325) and the second regime (eo ≈ 0.275).

Discussion and Conclusions
In this paper we have described the application of our sys-
tem identification algorithm—the estimation-exploration al-
gorithm (EEA)—for the automatic generation of robot pre-
dictive internal models (simulators). In the first set of ex-
periments we demonstrated that EEA can be used to recon-
struct unknown physical parameters of a target robot. We
demonstrated that even though the algorithm may not cor-
rectly infer all of the unknown parameters (Figure 5), it is
sufficient to allow for successful transferal of neural network

controllers evolved using the inferred robot simulator to the
target robot (Figure 6).

In the second set of experiments we demonstrated that the
algorithm can reconstruct the morphology of a hidden target
robot ‘from scratch’. Even if the detailed topology of the
robot’s body plan is unknown, it can be reconstructed only
from sensor data. Furthermore, we demonstrated that cer-
tain sensor modalities are more valuable for inference than
others. In this case, range sensors provides more indirect
morphological information than a combination of touch and
joint angle sensors does. One of the unique properties of the
EEA is that sensors serve a dual role: They guide behavior
via sensor-based neural network controllers, and they also
provide signals for use in the inference process.

Generating a robot simulator automatically, with little
prior assumed knowledge, could be valuable in a number
of situations. In a previous paper we demonstrated that EEA
could be used for damage diagnosis and recovery in remote
environments. If a robot’s morphology alters as a result
of physical damage, it may be necessary to reconstruct a
new simulation describing the changed, unknown morphol-
ogy in order to generate a compensatory controller Bongard
& Lipson (2004a). Also, in reality a mobile robot con-
tains many components—electronics, batteries, wires, flex-
ible parts, scientific instrumentation—that make creating a
detailed physical model of the robot very difficult and time
consuming. By accelerating the simulation generation cycle
through automation, the method outlined here could greatly
speed the entire process of robot design, manufacture and
deployment.

One major question in cognitive science, as it relates to
modeling, is whether higher animals are born with mod-
els encoded in the brain which are then subsequently re-
fined through experience, or are models synthesized ‘from
scratch’ as the animal learns about its body and the world
around it. In this paper we have documented two such ap-
proaches to modeling in robotics: the parametric identifi-
cation of various physical properties of a fixed robot simu-
lator; and the topological identification of the robot’s mor-
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Figure 9: Mean inferential ability of the three experimen-
tal regimes. The mean objective errors (Eq. 3) of the best
models output by the 10 passes through the estimation phase
were calculated and averaged for each experimental regime.
Error bars indicate standard error with a confidence interval
of 95%.

phology. Another major question is whether higher animals
maintain one or multiple models of their morphology. The
EEA demonstrates how multiple models can be useful for
predication and anticipation: synthesizing controllers that
cause the models to agree increases the probability that the
physical robot will reproduce the desired behavior synthe-
sized in simulation; and synthesizing controllers that cause
the models to disagree increases the probability of obtain-
ing novel motor-sensor transformations that allow for fur-
ther model refinement. Therefore this methodology may ul-
timately shed light on how models are created and main-
tained in higher organisms, what role they play in prediction
and anticipation, and eventually, in intelligence.
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