
A Role-based Approach to Reuse in Agent-Oriented Programming

R. Collier1 R. Ross2 G.M.P. O’Hare1

1
School of Computer Science and Informatics,

University College Dublin, Ireland
 {rem.collier, gregory.ohare}@ucd.ie

2
Department of Computer Science,
Universität Bremen, Germany

robertr@informatik.uni-bremen.de

Abstract
This paper describes an extension to the ALPHA (A
Language for Programming Hybrid Agents) programming
language that employs roles as run-time constructs.
Specifically, this paper describes how the inclusion of this
concept has facilitated the use of a number of OOP-based
reuse mechanisms within the language. Finally, we
illustrate the new version of ALPHA through a simple
auction-based example.

Introduction
This paper describes an extension to the ALPHA (A
Language for Programming Hybrid Agents) programming
language that employs roles as run-time constructs.
Specifically, this paper describes how the inclusion of this
concept has facilitated the use of a number of OOP-based
reuse mechanisms within the language. Finally, we
illustrate the new version of ALPHA through a simple
auction-based example.
 One exception to this is the approach presented in
(Karageorgos, Thompson and Mehandjiev 2003), which
employs the notion of a role at implementation time to
provide a reusable library of partial agent programs, known
as roles, can be reused by Zeus developers. A key feature
of their approach is the inclusion of a role specialization
(which the authors acknowledge is similar to inheritance in
OOP) mechanism that allows developers to extend existing
roles to include new features.
 Another role-based approach that employs the concept
of a role at both implementation and run -time is RoleEP
(Ubayashi and Tamai 2000), a role-based evolutionary
programming environment for mobile agent systems that
uses the concept of a role to represent related
travelling/collaboration tasks. RoleEP engenders reuse
through the representation of roles as Java classes to which
agents bind dynamically at run-time.
 Agent-Oriented Programming (AOP) (Shoham 1993)
represents an alternative approach to programming agents
through the use of high-level languages whose syntax and
semantics are derived from models of agents as mental
entities that reason about how best to act through a mental
state architecture. Some of the more prominent AOP
languages include 3APL (Dastani et al. 2003),

AgentSpeak(L) (Rao, 1996), and Nuin (Dickinson and
Wooldridge, 2003)
 Recently work in this area has begun to explore how the
concept of a role can be applied to AOP languages
(Dastani et al. 2004). Specifically, the authors describe
how the pre-existing 3APL programming language
(Dastani et al., 2003) has been extended to support roles.
Underpinning this extension is a formal model of a role
that combines information received, objectives, and rules
that define conditional norms and obligations. This model
is used first to motivate the design of a role-playing agent,
whose structure is formally specified, and then to drive the
design of a revised agent interpreter. However, the work
does not consider the issue of reuse.
 In this paper, we build on this work by exploring how
Object-Oriented Programming (OOP) reuse mechanisms
such as inheritance, composition, and aggregation can be
applied to AOP. A key difference between the approach
presented here, and that presented in (Dastani et al. 2004)
arises from their specification, which seems to limit an
agent to only one active role at a time. Once activated, this
role exclusively drives the agents subsequent behaviour,
and will continue to do so until it is deactivated and
another role is activated. This is in contrast with the more
widely accepted view that an agent will potentially have
(1) many activated roles at any given instant in time
(Odell, Van Dyke Parunak and Bauer 2001), and (2) some
of those activated roles may be different instantiations of
the same role. For example, it is perfectly acceptable that
an auctioneer agent should be able to auction two items
simultaneously, as often happens in the context of property
sales.
 The ability of an agent to play the same role many times
at a given instance requires that the agent be able to
distinguish between each occurrence of the role. In our
property auctioneer example, it is possible to distinguish
each occurrence of the role by the property that the
auctioneer is selling. (Odell et al., 2003) discusses a
related problem in the context of reusable Agent Unified
Modelling Language (UML) Sequence Diagrams. The
problem discussed arises when a specific sequence of agent
interactions occurs repeatedly. Their solution to this
problem is to model the repeated sequence of interactions
as a separate protocol that has been generalised as a

template, which is then instantiated for each situation in
which the common protocol is required.
 This paper presents details of how a role-based approach
to reuse has been engendered in the ALPHA programming
language (Ross, Collier and O’Hare 2004), which sits at
the heart of the Agent Factory framework (Collier 2001)
(Collier et al. 2003). The approach adopted in this paper is
based on practical experience gained from the use of the
ALPHA programming language, and its predecessor, AF-
APL (Collier 2001), in the development of a number of
real world application domains (O’Hare and O’Grady
2003) (Muldoon et al. 2003).

ALPHA - A Language for Programming
Hybrid Agents

ALPHA is an agent programming language that supports
the development of agents that use a mental state
architecture to reason about how best to act. Due to space
constraints, only a brief summary of ALPHA is presented
here. For an informal overview of the syntax and
semantics of the language, the author is directed to (Ross,
Collier and O’Hare 2004), and for a detailed overview of
the logic that underpins the syntax and semantics of an
earlier version of this language, known as AF-APL, the
reader is directed to (Collier 2001).
 ALPHA supports the fabrication of agents whose mental
state is comprised of beliefs, goals, and commitments.
Beliefs describe - possibly incorrectly - the state of the
environment in which the agent is situated, goals describe
future states of the environment that the agent would like
to bring about, and commitments describe the activity that
the agent is committed to realising. The behaviour of the
agent is realised primarily through a purpose-built
execution algorithm that is centred about the notion of
commitment management (Collier 2001).
 Within ALPHA, commitments are viewed as the mental
equivalent of a contract. As such, they define a course of
action/activity that the agent has agreed to, when it must
realise that activity, to whom the commitment was made,
and finally, what conditions, if any, would lead to it not
having to fulfil the commitment. Commitment
management is then a meta-level process that ALPHA
agents employ to manipulate their commitments based
upon some underlying strategy known as a commitment
management strategy. This strategy specifies a set of sub-
strategies that define how an agent adopts new
commitments; maintains its existing commitments; refines
commitments to plans into additional commitments;
realises commitments to primitive actions; and handles
failed commitments.
 The principal sub-strategy that underpins the behaviour
of ALPHA agents is commitment adoption. Commitments
are adopted either as a result of a decision to realise some
activity, or through the refinement of an existing activity.
The former type of commitment is known as a primary
commitment and the latter as a secondary commitment.
The adoption of a primary commitment occurs as a result

of one of two processes: (1) in response to a decision to
attempt to achieve a goal using a plan of action, or (2) as a
result of the triggering of a commitment rule. Commitment
rules define situations (a conjunction of positive and
negative belief atoms) in which the agent should adopt a
primary commitment.
 A key feature of ALPHA, which differentiates it from
other agent programming languages, is the inclusion within
the language of a set of programming constructs that allow
the developer to explicitly specify how each agent can
interact with its environment. Specifically, ALPHA
includes a PERCEPTOR and an ACTUATOR construct,
which specify how the agent senses and effects its
environment respectively. These constructs associate Java
classes that implement the sensors and effectors of an
agent with the behaviour of that agent which is specified in
ALPHA. The set of actuators and perceptors that are
specified for a given agent is known as the embodiment
configuration of that agent.

Engendering Reuse in ALPHA

As is described in the previous section, an ALPHA agent
program traditionally takes the form of a set of
commitment rules together with an initial mental state and
an embodiment configuration. The ability to compose new
ALPHA agent programs from pre-existing programs that
are stored in different physical files, known as role files,
was previously supported via the USE_ROLE construct.
The initial motivation for the inclusion of this construct
was to support the decomposition of ALPHA agent
programs into their constituent roles, facilitating the reuse
of those roles at compile time. However, this approach,
whilst flexible, has proven to be inadequate for a number
of reasons:

§ The concept of a role only exists up to compile
time; hence the agent is not aware, at run-time, of
the role(s) that it is playing.

§ The relationship that exists between the different

roles is not clear - it can be viewed as either a
weak form of inheritance or as composition
depending on the nature of the underlying code.

§ Lack of support for the templatisation of the roles

makes the specification generic role
implementations more difficult.

Perhaps the main cause underlying the inadequacy of this
approach is that the USE_ROLE construct is, in essence,
the equivalent of the \#include construct of C. Such a
construct is insufficient to provide support for the
composition, extension, and templatisation of roles. As a
result, the construct has since been re-cast as an IMPORT
construct, and APLHA has now been re-engineered to
provide explicit support for roles. More importantly, by

applying the concept of a role as a run-time construct
within the language, it has been possible to develop more
extensive reuse mechanisms that were not available in the
previous version of the language.

Role Templates
The primary construct for defining behaviours in ALPHA
is the commitment rule. Informally, these rules define
situations in which the agent should adopt a primary
commitment (see section 2) to some activity.
Traditionally, these rules were located in the body of an
agent program. However, in our new framework,
behaviours are defined via roles.
 To facilitate the introduction of roles, we have defined a
ROLE construct. This construct combines a unique role
identifier, a set of commitment rules that define the
behaviour that underpins the role and a set trigger
conditions that cause the activation of the role. The
identifier provides a unique way of referring to a role, and
takes the form of a first-order structure whose arguments
may be variables; commitments rules take the form as
before, with the exception that their scope is now restricted
to the role in which they are defined; and finally, the
trigger conditions outline situations in which the role
should be activated. Allowing the identifier to take variable
arguments is the mechanism by which the role is
templatised.
 The instantiation of a role template is achieved through
the generation of a set of variable bindings that map the
arguments of the identifier to constants. This may occur in
one of two ways: (1) via the satisfaction of a trigger
condition, or (2) via the activate(?role) action. In the
former case, the variable bindings are generated from the
trigger condition (that is, each argument of the identifier
must occur within each trigger condition). Conversely, in
the latter case, the relevant variables must occur within the
action definition.
 We illustrate the ROLE construct through an example
that defines a Subscriber facilitator role:

ROLE Subscriber(?name, ?topic) {

TRIGGER BELIEF(fipaMessage(request,
 sender(?name, ?addr),

 subscribe(?topic)));

 BELIEF(fipaMessage(inform, ?sender,
 newInfo(?topic, ?content))) =>
 COMMIT(?self, ?now, BELIEF(true),
 inform(?name, newInfo(?topic, ?content)));

 BELIEF(fipaMessage(inform,
 sender(?name, ?addr),
 cancelSubscription(?topic))) =>
 COMMIT(?self, ?now, BELIEF(true),
 deactivate(Subscriber(?name, ?topic)));
}

 In the example above, we define a Subscriber role. This
role is used by middle agents, where a subscription agent
subscribes to the Subscriber agent, asking to be informed
whenever the Subscriber is informed of ?item (for

example, the ?item could be status information of the form
?status). The role is triggered whenever an agent sends a
request to subscribe for information on some specified
item. Whenever the Subscriber is informed of that item, it
relays the item on to the subscribed agent. A second
commitment rule handles the scenario in which a
subscribed agent wished to stop being informed about that
item.
 The activation of this role can occur either as the result
of a message from another agent or via the
activate(…)action. For example, an agent that had
enacted the Subscriber role was to perform the action
activate(Subscriber(Rem, fuelLevel(?level)), then
the Subscriber role would be instantiated and activated
using the following variable binding {?agent/Rem,
?item/fuelLevel(?level) }. This would result in all
occurrences of the variable ?agent in the commitment
rules associated with the role being replaced by Rem and all
the occurrences of ?item being replaced by
?fuelLevel(?level). Also, the instance will be assigned
the identifier Subscriber(Rem, fuelLevel(?level)).
This differentiates role templates from roles and enforces
the condition that each role instance must have a unique
identifier.

Inheritance of Roles
Inheritance refers to the technique of extending/
polymorphing the behaviour/properties of an existing class.
The value of inheritance arises from the ability to detect a
set of common behaviours/properties that are shared by
two or more classes, to extract them into a separate class,
and to reuse the common definition in the original classes.
In the context of AOP, the provision of such a technique
would allow the developer to identify common behaviours
and to reuse those behaviours, to extract them into an
abstract role, and then to reuse that abstract role in the
definition of a number of concrete roles. This has obvious
benefits for developers, as it allows them to construct
hierarchies of abstract roles that specify common
behaviours, and then reuse those abstract roles in the
design of concrete roles.
 ALPHA behaviours are specified as sets of commitment
rules that define situations in which the agent should act.
Further, the inclusion of role templates allows the
developer to specify sets of commitment rules that should
only be applied by an agent under specified trigger
conditions. In this context, the primary purpose of an
inheritance mechanism is to allow the developer to extend
the behaviour of the agent through the inclusion of
additional commitment rules and through the definition of
additional trigger conditions. Additionally, the developer
may include additional variables in the identifier of the
sub-role. Whenever an instance of the sub-role is
activated, the variable binding is applied to both the sub-
role and all parent roles.
 Use of the extension mechanism is realised through the
optional EXTENDS keyword as is shown in the example

below which illustrates how a Senior Lecturer role can be
defined in terms of a Lecturer role:

 ROLE SeniorLecturer(?subjects, ?admin)

EXTENDS Lecturer(?subjects) {
 ... role body defined here ...
 }

 ROLE Lecturer(?subjects) {
 .. role body defined here ...
 }

 In this example, the SeniorLecturer role requires two
parameters - the subjects that must be taught and the
administrative duties that must be undertaken. Conversely,
the Lecturer role only requires one parameter - the subjects
that must be taught.

Composition and Aggregation of Roles
In OOP, composition and aggregation are viewed as
similar techniques for building a composite object out of a
number of other objects. The primary difference between
these techniques arises from the lifetime of the component
objects. With composition, the component objects cannot
exist without the composite object. That is, if object A is
composed from object B and C, then object A must be
created before objects B and C, while objects B and C must
be destroyed before A can be destroyed. Conversely, with
aggregation, the component objects can exist before the
aggregated object is created.
 In the context of roles, the ability to build a role out of a
set of component roles would seem to be of value. For
example, consider an estate agent - the estate agent must, at
different times play the role of valuer, auctioneer, and
possibly salesman (in the context of showing a house to a
potential bidder). However, in terms of the lifetime of the
component roles, aggregation would not seem to make
sense. If aggregation of roles were to be supported, then it
would imply that an agent can enter into a role and, at a
latter date, subsume that role into a composite role. For
example, an agent should not be able to activate a salesman
role and then use that instance of the role within an estate
agent role. Instead, a more practical model for composite
roles is that a component role is only activated after the
composite role is activated. That is, an agent sells a
property be activating an instance of a salesman role only
after they have entered into the estate agent role.
In ALPHA, the composition of roles is supported through
the inclusion of a USES construct. This construct is used
within the body of a role to specify any component roles
that are used by that role. To illustrate this construct,
consider the estate agent role example discussed earlier in
this section. In ALPHA, this role would be represented as
follows:

 ROLE EstateAgent(?area) {
 USES Valuer, Auctioneer, Salesman;
 ... role body defined here ...
 }

This code specifies that that an Estate Agent role uses three
component roles: a Valuer role, an Auctioneer role, and a
Salesman role. The main purpose of the construct is to
ensure, at run-time, that the component roles required to
realise a composite role have been included in the
compiled agent program. Also, a similar check is carried
out at run-time before the activation of each role. Should
one of the component roles not be defined, the instantiation
of the composite role will fail and a belief outlining both
the failure and the offending role will be generated.

Example: Vickrey-type Auction
To illustrate the role-based extension to ALPHA that is
presented in this paper, we conclude with a simple case
study of a multi-agent auction. We present a simplified
auction protocol that implements a Vickrey-type auction
(Vickrey 1961) that consists of a single round of bidding
where the bidding agents are not aware of what each other
has bid.
 An overview of this protocol, modeled using an Agent
UML Sequence Diagram (Bauer, Muller and Odell 2001),
presented in figure 1. In this diagram, the Auctioneer
agent initiates the auction by sending out a request for the
Bidder agents make a bid for the specified item. The
Auctioneer then waits for each of the Bidders to send back
a bid in response. The Auctioneer evaluates each bid in
turn, and after all the bids have been received, informs
each Bidder whether or not they have won the auction.

Figure 1: AUML Sequence Diagram depicting the

interactions of a Vickrey-type auction

 Figure 2 presents an ALPHA program that implements
the Auctioneer and Bidder roles that are specified in the
above auction protocol. As can be seen in this figure, the
Auctioneer role is triggered by a belief that it wants to
auction an item to a list of bidders, and the Bidder role is
triggered by a belief that it has received a request to bid in
an auction.

 As can be seen in the embodiment configuration
declaration at the top of the file, actuators are included for
the startAuction(), endAuction(), and addBid()
actions. However, no actuator is provided for the
generateBid() action. The rationale for this is simple:
by making the declaration of the actuators available to an
agent explicit, it is possible to specify different actuators
for the same action. That is, the above code is partial code,
and should not be executed directed. Instead, the
developer is required to create a new ALPHA program, to
import the above file, and then to add an actuator definition
for the missing generateBid() action.
 For example, to create an agent that generates a random
bid in the range 0 to 1000, all that the developer must
perform the following steps: (1) write an actuator unit
(which is basically a Java class) whose action identifier is
specified as generateBid(?item), and (2) create a
simple ALPHA program that imports the “auction.alpha”
file and specifies the actuator created in step (1). The

resulting program would look something like the program
specified in figure 3.

IMPORT auction.alpha;

ACTUATOR actuator.MyGenerateBidActuator;
 //generateBid(?item)

Figure 3: “random.alpha” program using the example
ALPHA auction program

 To deploy this agent, the developer simply compiles the
source code into an ALPHA deployment file (denoted by a
“.agent” extension), writes the necessary agent platform
script (Collier 2005), and then starts an agent platform.
The screenshots in figure 4 shows a view of an Agent
Factory agent platform that contains three agents: Rem,
Fred, and Joe. The screenshots show Joe’s commitment

IMPORT com.agentfactory.core.fipa.agent.Agent;

LOAD_MODULE auctions module.AuctionModule;
ACTUATOR actuator.StartAuctionActuator; //startAuction(?item, ?bidder)
ACTUATOR actuator.EndAuctionActuator; //endAuction(?item)
ACTUATOR actuator.AddBidActuator; //addBid(?item, ?bidder, ?amt)
PERCEPTOR perceptor.AuctionPerceptor;

ROLE Bidder(?auct, ?item) {
 TRIGGER BELIEF(message(request, sender(?auct, ?addr), makeBid(?item)));

 BELIEF(message(request, sender(?auct, ?addr), makeBid(?item))) =>
 COMMIT(?self, ?now, BELIEF(true),
 PAR(generateBid(?item),
 SEQ(AWAIT(BELIEF(bid(?amt, ?item))),
 inform(?auct, bid(?amt, ?item)),
 OR(DO_WHEN(BELIEF(message(inform, sender(?auct, ?addr), bidAccepted(?item))),
 adoptBelief(ALWAYS(BELIEF(owner(?item))))),
 DO_WHEN(BELIEF(message(inform, sender(?auct, ?addr), bidFailed(?item))),
 adoptBelief(BELIEF(bidFailed(?item))))),
 deactivateRole(bidder(?auct, ?item)))));
}

ROLE Auctioneer(?item, ?bidders) {
 TRIGGER BELIEF(wantToAuction(?item, ?bidders));

 !BELIEF(auctioning(?item)) =>
 COMMIT(Self, Now, BELIEF(true), startAuction(?item, ?bidders));

 BELIEF(bidder(?bidder, ?item)) =>
 COMMIT(Self, Now, BELIEF(true),
 PAR(request(?bidder, makeBid(?item)),
 DO_WHEN(BELIEF(fipaMessage(inform,sender(?bidder, ?addr),bid(?amt, ?item))),
 PAR(addBid(?item, ?bidder, ?amt),
 OR(DO_WHEN(BELIEF(status(?item, ?winner, winner)),
 inform(?winner, bidAccepted(?item))),
 DO_WHEN(BELIEF(status(?item, ?winner, winner)),
 inform(?winner, bidFailed(?item))))))));

 BELIEF(auctioning(?item)) & BELIEF(status(?item, ?winner, winner)) =>
 COMMIT(Self, Now, BELIEF(true),
 PAR(endAuction(?item),
 deactivateRole(auctioneer(?item, ?bidders))));
}

Figure 2: “auction.alpha” – the ALPHA Source code for a Vickrey-type auction.

rules after the first and second iterations. Joe is given the
belief:

 BELIEF(wantToAuction(food, bidders(Rem, Fred)))

 As can be seen in the screenshots, this belief causes Joe
to trigger an instance of the Auction role. The first
screenshot at iteration zero shows that Joe has no
commitment rules relating to this role, while the screenshot
at iteration one shows that Joe has commitment rules
relating to this role. Once Joe creates an instance of the
Auction role, he sends a request for bids for some food to
Rem and Fred.
 Eventually, this causes Rem and Fred to trigger an
instance of the Bidder role, which requires that they each
make a random bid. These agents then inform Joe of their
respective bids. This is illustrated through the screenshot
of Joe’s beliefs (see figure 5), where it can be seen that Joe
believes that he has received bids of 440 and 241 from
Rem and Fred respectively. Joe awards the food to the
Bidder the made the largest bid, which in this case is Rem.
Those agents that lost the bid are informed of their failure,
and each of the participating agents deactivates the
corresponding role instance.

 This results in the role instance being destroyed and the
corresponding commitment rules being removed from the
agents’ commitment rule set.

Discussion
The concept of a role is becoming increasingly important
in the modelling of multi-agent systems. Recent work in
the area of AOP languages, and in particular, 3APL
(Dastani et al. 2004), has begun to focus on how the
concept of a role might be applied in this area.
Specifically, the authors present a formal model of a role-
playing agent and specify additional constructs that support
the activation and deactivation of roles.
 In this paper, we present an extension to the ALPHA
agent programming language that, while providing similar
support for the activation and deactivation of roles (here
role activation is also known as role instantiation), focuses
on how the concept of a role can be used to engender
support for reuse of agent programs. Specifically, we
introduce the concept of a role template, and show how
OOP reuse mechanisms such as inheritance and
composition may be employed within an AOP setting.

Figure 4: Commitment Rules of Joe after iterations zero and one

Iteration 1

Iteration 0

We view this work as a vital first step in our
investigation of how the concept of a role can be used in
the context of AOP to support the implementation of multi-
agent systems that are able to adapt their behaviour at run-
time. Specifically, future work in this area will investigate:
(1) an infrastructure to support the location and enactment
of roles at run-time, (2) the design of introspective
capabilities that will allow agents to reason about their
roles, and (3) the extension of our role concept to support
social programming constructs.

References
Bauer, B., Muller, J. P., and Odell, J., 2001. Agent uml: A
formalism for specifying multiagent interaction. In Agent-
Oriented Software Engineering (eds. P. Ciancarini and M.
Wooldridge),, Springer Verlag.

Collier, R., 2001: Agent Factory: A Framework for the
Engineering of Agent-Oriented Applications, Ph.D. Thesis,
Department of Computer Science, University College
Dublin.

Collier, R., O’Hare, G. M. P., Lowen, T. D., and Rooney,
C. F. B., 2003: Beyond Prototyping in the Factory of
Agents, in Proc. 3rd Int. Central and Eastern European
Conference on Multi-Agent Systems (CEEMAS), Prague,
Czech Republic, Springer Verlag.

Dastani, M., van Riensdijk, B., Dignum, F., and Meyer, J-J
Ch., 2003: A programming language for cognitive agents:
Goal directed 3apl, in Proc. of AAMAS2003, Melbourne.

Dastani, M., Birna van Riems-dijk, M., Hulstijn, J.,
Dignum, F., and Meyer J-J. Ch., 2004: Enacting and
deacting roles in agent programming, in Proceedings of

the 2nd International Workshop on Programming Multi-
Agent Systems (PROMAS2004), Springer Verlag.

Dickinson, I. and Wooldridge, M., 2003: Towards
practical reasoning agents for the semantic web, in 2nd
Int. Joint Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS-03), Melbourne, Australia.

Karageorgos, A., Thompson, S. and Mehandjiev, N.,
2003: Specifying Reuse Concerns in Agent System Design
Using a Role Algebra. In: Agent Technologies,
Infrastructures, Tools, and Applications for e-Services.
Lecture Notes in Artificial Intelligence LNAI, 2592.
Springer-Verlag.

Muldoon, C., O’Hare, G.M.P., Phelan, D., Strahan, R., and
Collier, R., 2003: ACCESS: An Agent Architecture for
Ubiquitous Service Delivery, Proc 7th Int’l Workshop on
Cooperative Information Agents (CIA2003), Helsinki.

Nwana, H., Ndumu, D., Lee, L., and Collis, J., 1999: Zeus:
A toolkit for building distributed multi-agent systems.
Applied Artificial Intelligence Journal, 13(1):129–186.

Odell, J., Van Dyke Parunak, H., and Bauer, B., 2001:
Representing agent interaction protocols in UML. In Paolo
Ciancarini and Michael Wooldridge, editors, Agent-
Oriented Software Engineering, Springer-Verlag.

Odell, J., Van Dyke Parunack, H., Brueckner, S., and
Sauter J., 2003: Temporal aspects of dynamic role
assignment, in Proceedings of the 4th International
Workshop on Agent-Oriented Software Engineering
(AOSE2003).

O'Hare, G. M. P., and O'Grady, M. J., 2003: Gulliver's
Genie: A Multi-Agent System for Ubiquitous and

Figure 5: The beliefs of Joe as he is informed of the bids of Rem and Fred

Intelligent Content Delivery, In Press, Computer
Communications, Elsevier Press.

Rao, A., 1996: AgentSpeak(L): BDI Agents Speak Out in a
Logical Computable Language, In de Velde, W., Perram,
W.J.V., eds.: Proceeding of the 7th International Workshop
on Modeling Autonomous Agents in a Multi-Agent World,
Eindhoven, The Netherlands.

Ross, R., Collier, R., and O’Hare, G. M. P., 2004: AF-
APL: Bridging principles & practices in agent oriented
languages, in Proc. 2nd International Workshop on
Programming Multiagent Systems Languages and tools
(PROMAS2004), New York, USA.

Ubayashi, N., and Tamai, T., 2000: RoleEP: role based
evolutionary programming for cooperative mobile agent
applications, in the International Symposium on Principles
of Software Evolution, Kanazawa, Japan.

Vickrey, W., 1961: Counter speculation, auctions, and
competitive sealed tenders, Journal of Finance, 16(1):8–37.

Shoham, Y., 1993: Agent-Oriented Programming,
Artificial Intelligence (60), pp 51-90

Collier, R., 2005: The Agent Factory Platform
Administrators Guide, url: http://www.agentfactory.com/
agentfactory/manual

