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Abstract 
This paper describes an extension to the ALPHA (A 
Language for Programming Hybrid Agents) programming 
language that employs roles as run-time constructs.  
Specifically, this paper describes how the inclusion of this 
concept has facilitated the use of a number of OOP-based 
reuse mechanisms within the language.  Finally, we 
illustrate the new version of ALPHA through a simple 
auction-based example. 

Introduction 
This paper describes an extension to the ALPHA (A 
Language for Programming Hybrid Agents) programming 
language that employs roles as run-time constructs.  
Specifically, this paper describes how the inclusion of this 
concept has facilitated the use of a number of OOP-based 
reuse mechanisms within the language.  Finally, we 
illustrate the new version of ALPHA through a simple 
auction-based example. 
 One exception to this is the approach presented in 
(Karageorgos, Thompson and Mehandjiev 2003), which 
employs the notion of a role at implementation time to 
provide a reusable library of partial agent programs, known 
as roles, can be reused by Zeus developers.  A key feature 
of their approach is the inclusion of a role specialization 
(which the authors acknowledge is similar to inheritance in 
OOP) mechanism that allows developers to extend existing 
roles to include new features.  
 Another role-based approach that employs the concept 
of a role at both implementation and run -time is RoleEP 
(Ubayashi and Tamai 2000), a role-based evolutionary 
programming environment for mobile agent systems that 
uses the concept of a role to represent related 
travelling/collaboration tasks. RoleEP engenders reuse 
through the representation of roles as Java classes to which 
agents bind dynamically at run-time. 
 Agent-Oriented Programming (AOP) (Shoham 1993) 
represents an alternative approach to programming agents 
through the use of high-level languages whose syntax and 
semantics are derived from models of agents as mental 
entities that reason about how best to act through a mental 
state architecture.  Some of the more prominent AOP 
languages include 3APL (Dastani et al. 2003), 

AgentSpeak(L) (Rao, 1996), and Nuin (Dickinson and 
Wooldridge, 2003) 
 Recently work in this area has begun to explore how the 
concept of a role can be applied to AOP languages 
(Dastani et al. 2004).  Specifically, the authors describe 
how the pre-existing 3APL programming language 
(Dastani et al., 2003) has been extended to support roles. 
Underpinning this extension is a formal model of a role 
that combines information received, objectives, and rules 
that define conditional norms and obligations.  This model 
is used first to motivate the design of a role-playing agent, 
whose structure is formally specified, and then to drive the 
design of a revised agent interpreter.  However, the work 
does not consider the issue of reuse. 
 In this paper, we build on this work by exploring how 
Object-Oriented Programming (OOP) reuse mechanisms 
such as inheritance, composition, and aggregation can be 
applied to AOP.  A key difference between the approach 
presented here, and that presented in (Dastani et al. 2004) 
arises from their specification, which seems to limit an 
agent to only one active role at a time.  Once activated, this 
role exclusively drives the agents subsequent behaviour, 
and will continue to do so until it is deactivated and 
another role is activated.  This is in contrast with the more 
widely accepted view that an agent will potentially have 
(1) many activated roles at any given instant in time 
(Odell, Van Dyke Parunak and Bauer 2001), and (2) some 
of those activated roles may be different instantiations of 
the same role.  For example, it is perfectly acceptable that 
an auctioneer agent should be able to auction two items 
simultaneously, as often happens in the context of property 
sales. 
 The ability of an agent to play the same role many times 
at a given instance requires that the agent be able to 
distinguish between each occurrence of the role.  In our 
property auctioneer example, it is possible to distinguish 
each occurrence of the role by the property that the 
auctioneer is selling.  (Odell et al., 2003) discusses a 
related problem in the context of reusable Agent Unified 
Modelling Language (UML) Sequence Diagrams. The 
problem discussed arises when a specific sequence of agent 
interactions occurs repeatedly.  Their solution to this 
problem is to model the repeated sequence of interactions 
as a separate protocol that has been generalised as a 



template, which is then instantiated for each situation in 
which the common protocol is required. 
 This paper presents details of how a role-based approach 
to reuse has been engendered in the ALPHA programming 
language (Ross, Collier and O’Hare 2004), which sits at 
the heart of the Agent Factory framework (Collier 2001) 
(Collier et al. 2003).  The approach adopted in this paper is 
based on practical experience gained from the use of the 
ALPHA programming language, and its predecessor, AF-
APL (Collier 2001), in the development of a number of 
real world application domains (O’Hare and O’Grady 
2003) (Muldoon et al. 2003). 

ALPHA - A Language for Programming 
Hybrid Agents 

ALPHA is an agent programming language that supports 
the development of agents that use a mental state 
architecture to reason about how best to act.  Due to space 
constraints, only a brief summary of ALPHA is presented 
here.  For an informal overview of the syntax and 
semantics of the language, the author is directed to (Ross, 
Collier and O’Hare 2004), and for a detailed overview of 
the logic that underpins the syntax and semantics of an 
earlier version of this language, known as AF-APL, the 
reader is directed to (Collier 2001). 
 ALPHA supports the fabrication of agents whose mental 
state is comprised of beliefs, goals, and commitments. 
Beliefs describe - possibly incorrectly - the state of the 
environment in which the agent is situated, goals describe 
future states of the environment that the agent would like 
to bring about, and commitments describe the activity that 
the agent is committed to realising.  The behaviour of the 
agent is realised primarily through a purpose-built 
execution algorithm that is centred about the notion of 
commitment management (Collier 2001). 
 Within ALPHA, commitments are viewed as the mental 
equivalent of a contract.  As such, they define a course of 
action/activity that the agent has agreed to, when it must 
realise that activity, to whom the commitment was made, 
and finally, what conditions, if any, would lead to it not 
having to fulfil the commitment.  Commitment 
management is then a meta-level process that ALPHA 
agents employ to manipulate their commitments based 
upon some underlying strategy known as a commitment 
management strategy.  This strategy specifies a set of sub-
strategies that define how an agent adopts new 
commitments; maintains its existing commitments; refines 
commitments to plans into additional commitments; 
realises commitments to primitive actions; and handles 
failed commitments. 
 The principal sub-strategy that underpins the behaviour 
of ALPHA agents is commitment adoption. Commitments 
are adopted either as a result of a decision to realise some 
activity, or through the refinement of an existing activity.  
The former type of commitment is known as a primary 
commitment and the latter as a secondary commitment.  
The adoption of a primary commitment occurs as a result 

of one of two processes: (1) in response to a decision to 
attempt to achieve a goal using a plan of action, or (2) as a 
result of the triggering of a commitment rule.  Commitment 
rules define situations (a conjunction of positive and 
negative belief atoms) in which the agent should adopt a 
primary commitment. 
  A key feature of ALPHA, which differentiates it from 
other agent programming languages, is the inclusion within 
the language of a set of programming constructs that allow 
the developer to explicitly specify how each agent can 
interact with its environment. Specifically, ALPHA 
includes a PERCEPTOR and an ACTUATOR construct, 
which specify how the agent senses and effects its 
environment respectively. These constructs associate Java 
classes that implement the sensors and effectors of an 
agent with the behaviour of that agent which is specified in 
ALPHA.  The set of actuators and perceptors that are 
specified for a given agent is known as the embodiment 
configuration of that agent. 

Engendering Reuse in ALPHA 
 
As is described in the previous section, an ALPHA agent 
program traditionally takes the form of a set of 
commitment rules together with an initial mental state and 
an embodiment configuration.  The ability to compose new 
ALPHA agent programs from pre-existing programs that 
are stored in different physical files, known as role files, 
was previously supported via the USE_ROLE construct.  
The initial motivation for the inclusion of this construct 
was to support the decomposition of ALPHA agent 
programs into their constituent roles, facilitating the reuse 
of those roles at compile time.  However, this approach, 
whilst flexible, has proven to be inadequate for a number 
of reasons: 
 

§ The concept of a role only exists up to compile 
time; hence the agent is not aware, at run-time, of 
the role(s) that it is playing. 

 
§ The relationship that exists between the different 

roles is not clear - it can be viewed as either a 
weak form of inheritance or as composition 
depending on the nature of the underlying code. 

 
§ Lack of support for the templatisation of the roles 

makes the specification generic role 
implementations more difficult. 

 
Perhaps the main cause underlying the inadequacy of this 
approach is that the USE_ROLE construct is, in essence, 
the equivalent of the \#include construct of C.  Such a 
construct is insufficient to provide support for the 
composition, extension, and templatisation of roles.  As a 
result, the construct has since been re-cast as an IMPORT 
construct, and APLHA has now been re-engineered to 
provide explicit support for roles.  More importantly, by 



applying the concept of a role as a run-time construct 
within the language, it has been possible to develop more 
extensive reuse mechanisms that were not available in the 
previous version of the language. 

Role Templates 
The primary construct for defining behaviours in ALPHA 
is the commitment rule. Informally, these rules define 
situations in which the agent should adopt a primary 
commitment (see section 2) to some activity.  
Traditionally, these rules were located in the body of an 
agent program.  However, in our new framework, 
behaviours are defined via roles. 
 To facilitate the introduction of roles, we have defined a 
ROLE construct. This construct combines a unique role 
identifier, a set of commitment rules that define the 
behaviour that underpins the role and a set trigger 
conditions that cause the activation of the role. The 
identifier provides a unique way of referring to a role, and 
takes the form of a first-order structure whose arguments 
may be variables; commitments rules take the form as 
before, with the exception that their scope is now restricted 
to the role in which they are defined; and finally, the 
trigger conditions outline situations in which the role 
should be activated. Allowing the identifier to take variable 
arguments is the mechanism by which the role is 
templatised. 
 The instantiation of a role template is achieved through 
the generation of a set of variable bindings that map the 
arguments of the identifier to constants.  This may occur in 
one of two ways: (1) via the satisfaction of a trigger 
condition, or (2) via the activate(?role) action.  In the 
former case, the variable bindings are generated from the 
trigger condition (that is, each argument of the identifier 
must occur within each trigger condition).  Conversely, in 
the latter case, the relevant variables must occur within the 
action definition. 
 We illustrate the ROLE construct through an example 
that defines a Subscriber facilitator role: 
 
ROLE Subscriber(?name, ?topic) { 

TRIGGER BELIEF(fipaMessage(request, 
            sender(?name, ?addr), 

              subscribe(?topic))); 
 
 BELIEF(fipaMessage(inform, ?sender, 
     newInfo(?topic, ?content))) => 
 COMMIT(?self, ?now, BELIEF(true), 
  inform(?name, newInfo(?topic, ?content))); 
 
 BELIEF(fipaMessage(inform, 
          sender(?name, ?addr), 
          cancelSubscription(?topic))) => 
 COMMIT(?self, ?now, BELIEF(true), 
  deactivate(Subscriber(?name, ?topic))); 
} 
 
 In the example above, we define a Subscriber role.  This 
role is used by middle agents, where a subscription agent 
subscribes to the Subscriber agent, asking to be informed 
whenever the Subscriber is informed of ?item (for 

example, the ?item could be status information of the form 
?status).  The role is triggered whenever an agent sends a 
request to subscribe for information on some specified 
item. Whenever the Subscriber is informed of that item, it 
relays the item on to the subscribed agent.  A second 
commitment rule handles the scenario in which a 
subscribed agent wished to stop being informed about that 
item. 
 The activation of this role can occur either as the result 
of a message from another agent or via the 
activate(…)action.  For example, an agent that had 
enacted the Subscriber role was to perform the action 
activate(Subscriber(Rem, fuelLevel(?level)), then 
the Subscriber role would be instantiated and activated 
using the following variable binding {?agent/Rem, 
?item/fuelLevel(?level) }.  This would result in all 
occurrences of the variable ?agent in the commitment 
rules associated with the role being replaced by Rem and all 
the occurrences of ?item being replaced by 
?fuelLevel(?level).  Also, the instance will be assigned 
the identifier Subscriber(Rem, fuelLevel(?level)). 
This differentiates role templates from roles and enforces 
the condition that each role instance must have a unique 
identifier. 

Inheritance of Roles 
Inheritance refers to the technique of extending/ 
polymorphing the behaviour/properties of an existing class.  
The value of inheritance arises from the ability to detect a 
set of common behaviours/properties that are shared by 
two or more classes, to extract them into a separate class, 
and to reuse the common definition in the original classes.  
In the context of AOP, the provision of such a technique 
would allow the developer to identify common behaviours 
and to reuse those behaviours, to extract them into an 
abstract role, and then to reuse that abstract role in the 
definition of a number of concrete roles.  This has obvious 
benefits for developers, as it allows them to construct 
hierarchies of abstract roles that specify common 
behaviours, and then reuse those abstract roles in the 
design of concrete roles. 
 ALPHA behaviours are specified as sets of commitment 
rules that define situations in which the agent should act.  
Further, the inclusion of role templates allows the 
developer to specify sets of commitment rules that should 
only be applied by an agent under specified trigger 
conditions.  In this context, the primary purpose of an 
inheritance mechanism is to allow the developer to extend 
the behaviour of the agent through the inclusion of 
additional commitment rules and through the definition of 
additional trigger conditions.  Additionally, the developer 
may include additional variables in the identifier of the 
sub-role.  Whenever an instance of the sub-role is 
activated, the variable binding is applied to both the sub-
role and all parent roles. 
 Use of the extension mechanism is realised through the 
optional EXTENDS keyword as is shown in the example 



below which illustrates how a Senior Lecturer role can be 
defined in terms of a Lecturer role: 
 
 
  ROLE SeniorLecturer(?subjects, ?admin) 

EXTENDS Lecturer(?subjects) { 
     ... role body defined here ... 
  } 
 
  ROLE Lecturer(?subjects) { 
    .. role body defined here ... 
  } 
 
 In this example, the SeniorLecturer role requires two 
parameters - the subjects that must be taught and the 
administrative duties that must be undertaken. Conversely, 
the Lecturer role only requires one parameter - the subjects 
that must be taught. 

Composition and Aggregation of Roles 
In OOP, composition and aggregation are viewed as 
similar techniques for building a composite object out of a 
number of other objects.  The primary difference between 
these techniques arises from the lifetime of the component 
objects.  With composition, the component objects cannot 
exist without the composite object.  That is, if object A is 
composed from object B and C, then object A must be 
created before objects B and C, while objects B and C must 
be destroyed before A can be destroyed.  Conversely, with 
aggregation, the component objects can exist before the 
aggregated object is created. 
 In the context of roles, the ability to build a role out of a 
set of component roles would seem to be of value.  For 
example, consider an estate agent - the estate agent must, at 
different times play the role of valuer, auctioneer, and 
possibly salesman (in the context of showing a house to a 
potential bidder).  However, in terms of the lifetime of the 
component roles, aggregation would not seem to make 
sense.  If aggregation of roles were to be supported, then it 
would imply that an agent can enter into a role and, at a 
latter date, subsume that role into a composite role.  For 
example, an agent should not be able to activate a salesman 
role and then use that instance of the role within an estate 
agent role. Instead, a more practical model for composite 
roles is that a component role is only activated after the 
composite role is activated.  That is, an agent sells a 
property be activating an instance of a salesman role only 
after they have entered into the estate agent role. 
In ALPHA, the composition of roles is supported through 
the inclusion of a USES construct.  This construct is used 
within the body of a role to specify any component roles 
that are used by that role.  To illustrate this construct, 
consider the estate agent role example discussed earlier in 
this section. In ALPHA, this role would be represented as 
follows: 
 
  ROLE EstateAgent(?area) { 
    USES Valuer, Auctioneer, Salesman; 
    ... role body defined here ... 
  } 
 

This code specifies that that an Estate Agent role uses three 
component roles: a Valuer role, an Auctioneer role, and a 
Salesman role.  The main purpose of the construct is to 
ensure, at run-time, that the component roles required to 
realise a composite role have been included in the 
compiled agent program.  Also, a similar check is carried 
out at run-time before the activation of each role.  Should 
one of the component roles not be defined, the instantiation 
of the composite role will fail and a belief outlining both 
the failure and the offending role will be generated. 

Example: Vickrey-type Auction 
To illustrate the role-based extension to ALPHA that is 
presented in this paper, we conclude with a simple case 
study of a multi-agent auction.  We present a simplified 
auction protocol that implements a Vickrey-type auction 
(Vickrey 1961) that consists of a single round of bidding 
where the bidding agents are not aware of what each other 
has bid. 
 An overview of this protocol, modeled using an Agent 
UML Sequence Diagram (Bauer, Muller and Odell 2001), 
presented in figure 1.  In this diagram, the Auctioneer 
agent initiates the auction by sending out a request for the 
Bidder agents make a bid for the specified item.  The 
Auctioneer then waits for each of the Bidders to send back 
a bid in response.  The Auctioneer evaluates each bid in 
turn, and after all the bids have been received, informs 
each Bidder whether or not they have won the auction. 

 
Figure 1: AUML Sequence Diagram depicting the 

interactions of a Vickrey-type auction 
 
 Figure 2 presents an ALPHA program that implements 
the Auctioneer and Bidder roles that are specified in the 
above auction protocol.  As can be seen in this figure, the 
Auctioneer role is triggered by a belief that it wants to 
auction an item to a list of bidders, and the Bidder role is 
triggered by a belief that it has received a request to bid in 
an auction. 



 As can be seen in the embodiment configuration 
declaration at the top of the file, actuators are included for 
the startAuction(), endAuction(), and addBid() 
actions.  However, no actuator is provided for the 
generateBid() action.  The rationale for this is simple: 
by making the declaration of the actuators available to an 
agent explicit, it is possible to specify different actuators 
for the same action.  That is, the above code is partial code, 
and should not be executed directed.  Instead, the 
developer is required to create a new ALPHA program, to 
import the above file, and then to add an actuator definition 
for the missing generateBid() action. 
 For example, to create an agent that generates a random 
bid in the range 0 to 1000, all that the developer must 
perform the following steps: (1) write an actuator unit 
(which is basically a Java class) whose action identifier is 
specified as generateBid(?item), and (2) create a 
simple ALPHA program that imports the “auction.alpha” 
file and specifies the actuator created in step (1).  The 

resulting program would look something like the program 
specified in figure 3. 
 
 
IMPORT auction.alpha; 
 
ACTUATOR actuator.MyGenerateBidActuator;     
                             //generateBid(?item) 
 

Figure 3: “random.alpha” program using the example 
ALPHA auction program 

 
 To deploy this agent, the developer simply compiles the 
source code into an ALPHA deployment file (denoted by a 
“.agent” extension), writes the necessary agent platform 
script (Collier 2005), and then starts an agent platform.  
The screenshots in figure 4 shows a view of an Agent 
Factory agent platform that contains three agents: Rem, 
Fred, and Joe. The screenshots show Joe’s commitment 

IMPORT com.agentfactory.core.fipa.agent.Agent; 
 
LOAD_MODULE auctions module.AuctionModule; 
ACTUATOR actuator.StartAuctionActuator;  //startAuction(?item, ?bidder) 
ACTUATOR actuator.EndAuctionActuator;    //endAuction(?item) 
ACTUATOR actuator.AddBidActuator;        //addBid(?item, ?bidder, ?amt) 
PERCEPTOR perceptor.AuctionPerceptor; 
 
ROLE Bidder(?auct, ?item) { 
    TRIGGER BELIEF(message(request, sender(?auct, ?addr), makeBid(?item))); 
 
    BELIEF(message(request, sender(?auct, ?addr), makeBid(?item))) => 
    COMMIT(?self, ?now, BELIEF(true), 
      PAR(generateBid(?item), 
          SEQ(AWAIT(BELIEF(bid(?amt, ?item))), 
              inform(?auct, bid(?amt, ?item)), 
              OR(DO_WHEN(BELIEF(message(inform, sender(?auct, ?addr), bidAccepted(?item))), 
                         adoptBelief(ALWAYS(BELIEF(owner(?item))))), 
                 DO_WHEN(BELIEF(message(inform, sender(?auct, ?addr), bidFailed(?item))), 
                         adoptBelief(BELIEF(bidFailed(?item))))), 
              deactivateRole(bidder(?auct, ?item))))); 
} 
 
ROLE Auctioneer(?item, ?bidders) { 
    TRIGGER BELIEF(wantToAuction(?item, ?bidders)); 
 
    !BELIEF(auctioning(?item)) => 
    COMMIT(Self, Now, BELIEF(true), startAuction(?item, ?bidders)); 
 
    BELIEF(bidder(?bidder, ?item)) => 
    COMMIT(Self, Now, BELIEF(true), 
      PAR(request(?bidder, makeBid(?item)), 
          DO_WHEN(BELIEF(fipaMessage(inform,sender(?bidder, ?addr),bid(?amt, ?item))), 
                  PAR(addBid(?item, ?bidder, ?amt), 
                      OR(DO_WHEN(BELIEF(status(?item, ?winner, winner)), 
                                 inform(?winner, bidAccepted(?item))), 
                         DO_WHEN(BELIEF(status(?item, ?winner, winner)), 
                                 inform(?winner, bidFailed(?item)))))))); 
 
    BELIEF(auctioning(?item)) & BELIEF(status(?item, ?winner, winner)) => 
    COMMIT(Self, Now, BELIEF(true), 
      PAR(endAuction(?item), 
          deactivateRole(auctioneer(?item, ?bidders)))); 
} 

Figure 2: “auction.alpha” – the ALPHA Source code for a Vickrey-type auction. 
 



rules after the first and second iterations.  Joe is given the 
belief: 
 
 BELIEF(wantToAuction(food, bidders(Rem, Fred))) 
 
 As can be seen in the screenshots, this belief causes Joe 
to trigger an instance of the Auction role.  The first 
screenshot at iteration zero shows that Joe has no 
commitment rules relating to this role, while the screenshot 
at iteration one shows that Joe has commitment rules 
relating to this role.  Once Joe creates an instance of the 
Auction role, he sends a request for bids for some food to 
Rem and Fred. 
 Eventually, this causes Rem and Fred to trigger an 
instance of the Bidder role, which requires that they each 
make a random bid.  These agents then inform Joe of their 
respective bids.  This is illustrated through the screenshot 
of Joe’s beliefs (see figure 5), where it can be seen that Joe 
believes that he has received bids of 440 and 241 from 
Rem and Fred respectively.  Joe awards the food to the 
Bidder the made the largest bid, which in this case is Rem.  
Those agents that lost the bid are informed of their failure, 
and each of the participating agents deactivates the 
corresponding role instance. 

 This results in the role instance being destroyed and the 
corresponding commitment rules being removed from the 
agents’ commitment rule set. 

Discussion 
The concept of a role is becoming increasingly important 
in the modelling of multi-agent systems. Recent work in 
the area of AOP languages, and in particular, 3APL 
(Dastani et al. 2004), has begun to focus on how the 
concept of a role might be applied in this area.  
Specifically, the authors present a formal model of a role-
playing agent and specify additional constructs that support 
the activation and deactivation of roles. 
 In this paper, we present an extension to the ALPHA 
agent programming language that, while providing similar 
support for the activation and deactivation of roles (here 
role activation is also known as role instantiation), focuses 
on how the concept of a role can be used to engender 
support for reuse of agent programs.  Specifically, we 
introduce the concept of a role template, and show how 
OOP reuse mechanisms such as inheritance and 
composition may be employed within an AOP setting. 

Figure 4: Commitment Rules of Joe after iterations zero and one 

Iteration 1 

Iteration 0 



We view this work as a vital first step in our 
investigation of how the concept of a role can be used in 
the context of AOP to support the implementation of multi-
agent systems that are able to adapt their behaviour at run-
time.  Specifically, future work in this area will investigate: 
(1) an infrastructure to support the location and enactment 
of roles at run-time, (2) the design of introspective 
capabilities that will allow agents to reason about their 
roles, and (3) the extension of our role concept to support 
social programming constructs.  
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