Introduction
In multi-agent systems (MAS) roles are an important issue since they define responsibilities and obligations to the agents, i.e. they guide and restrict the behaviors of agents in a social context [Silva et al., 2004b]. Several agent oriented software methodologies such as MESSAGE [Caire et al., 2002], GAIA [Wooldridge et al., 2000] and TROPOS [Mylopoulos et al., 2001], modeling languages such as MAS-ML [Silva and Lucena, 2004a] and AUML [Odell et al., 2000], and software architecture such as JADE [Bellifemine et al., 2001] and ASF [Silva et al., 2004b] concern with agent roles.

Although roles are being used in developed MAS, there is still a need for case studies that demonstrate how to define roles in the context of organizations and how to assign agents to roles.

This paper presents a case study of the urban traffic domain that illustrates the use of roles during the analysis phase as well as the mapping of the generated role models into code. While using the urban traffic domain, we are interested in provide a semantic support to the governance of laws. In the attempt to enable law conscious among software agents, an ontology was used to describe the semantics of the laws that regulate MAS. The case study was modeled by using the MESSAGE methodology and was implemented with the ASF framework.

MESSAGE Methodology
MESSAGE is a methodology for agent oriented software engineering that extends UML [UML, 2005] with "knowledge level" agent-oriented concepts. In this level, the role concept is presented as a concrete entity. The methodology covers MAS analysis and design phases and it is easy to learn because it has a well-defined process for its two specific phases. In the analysis phase, Message provides a notation with very simple concept symbols and relations to create its diagrams, enabling focus in different aspects. From the analysis to the design, Message defines a process and UML diagrams are normally used to represent the product of the last phase.

In this paper, we will only consider the representations of the analysis phase. In this phase, MESSAGE uses a number of views or perspectives that emphasize different aspects of MAS such as autonomy, interaction and adaptation. Each view concentrate in a limited but consistent aspect and together they provide a comprehensive view. Diagrams are used to represent specific views, and roles can be modeled in most of them. For instance, in the organization view (acquaintance relationships diagram) roles played in organizations are identified and in the goal/task view (workflow diagram) tasks are associated with roles.

Agent Society Framework
The Agent Society Framework (ASF) is an object-oriented framework designed for implementing agent societies using JAVA. It defines agent applications’ architectures that support the implementation of agents, roles, organizations and environments as first-order abstractions. However, those entities are not abstractions available in object-oriented systems. Because of that, it is necessary to define a set of classes that embodies an abstract design for the new entities. The framework is composed of sets of object-oriented modules and their relationships. Each module represents an entity by mapping the entity into a set of classes and relationships [Silva et al., 2004b].

The Agent Role module defines the agent role entity by an abstract class called AgentRole. This class is associated with others, which correspond to goals (Goal class), beliefs (Belief class), duties (Duty class), rights (Right class) and protocols (Protocol class) – properties of agent roles. Fig.1 illustrates all the described classes from the module and their associations. The Action class not belongs to the module, but it is also illustrated in the Fig.1 because it has relationships with the Right and Duty classes.

To instantiate the agent role module, the abstract classes AgentRole and Protocol have to be extended and instantiated. After that, instances of the concrete classes Right, Duty, CompositeBelief, LeafBelief, CompositeGoal, LeafGoal and Message have to be created in order to represent the agent role’s permissions, agent role’s obligations, agent role’s beliefs and agent role’s goals, and to associate them to the agent role instance created.
Case Study

Urban Traffic Simulator System (UTSS) is an open multi-agent system with a semantic support to the governance of laws. UTSS represents an urban environment that simulates the behavior of three agent’s roles: car driver, police officer and pedestrian. Besides, there are other elements as traffic signs, urban paths and places.

An urban traffic’s scenario is illustrated in Fig.2. The proposed environment is composed (i) by agents playing the car driver role, the pedestrian role and/or the police officer role; (ii) by four types of traffic signs (traffic signals, speed limit control signs, one-way signs and two-way signs); (iii) by five numbered urban paths and (iv) by the four places: church (accessed via path 1), house in the town (accessed via paths 2 and 4), house on the mountains (accessed via path 3) and hospital (accessed via path 5).

UTSS’s Ontology

To provide consciousness of agents on MAS, a semantic support is desired. This type of support can be given by ontologies, making the represented information of a domain easier for machines to automatically process their meaning [McGuinness and Harmelen, 2004]. Ontologies are conceptual models that embody shared conceptualizations of a given domain [Gruber, 1993]. Ontologies languages are designed for use by applications (machines) that need to process the content of information instead of just presenting information to humans [Smith et al., 2004].

The UTSS case study has an ontology describing the inactive entities of the proposed urban traffic environment. All traffic signs, urban paths and places, as well as norms and their associated penalties are described in UTSS’s ontology, illustrated in Fig.3.

UTSS Agent’s Roles Modeled with the MESSAGE Methodology

Roles are modeled in most of the MESSAGE diagrams from the analysis phase. In this paper, we will only illustrate the use of the acquaintance relationships diagram, the agent/role diagram and the workflow diagram due to space limit.

The acquaintance relationships diagram, illustrated in Fig.4, shows the entities from the system and the
relationships among them. In this diagram, the roles called
Police Officer, Car Driver and Pedestrian are represented
with their acquaintance relationships. Each role knows
others roles, as illustrated by the acquaintance relationships
symbols. Agents playing their roles can access the
ontology resource and also police or perceive/react the
traffic signs according to specific relationships. Agents
playing the police officer role police traffic signs while
others playing the pedestrian or car driver role perceive
and react to them.

Fig.4. An acquaintance relationships diagram

The agent/role diagram focuses on the individual agents
and roles, but doesn’t provide how to relate goals to its
specific role. The only way to do that is to build one
diagram for the pair role and its goals.

Fig.5. An agent/role diagram

Fig.5 illustrates an example where the police officer role is
related to its generic goal called Police. This goal is
specialized into the sub-goals called: Police the street to
the church, Police the street from the church, Police the
street to the house on the mountains, Police the street from
the house on the mountains and Police the street to the
hospital, related to the five services that have the same
name (also illustrated in Fig.5). The ontology resource is
accessed by the agents that want to know the traffic signs
meanings.

The workflow diagram shows goals, tasks and the
dependencies among them. Fig.6 illustrates the workflow
needed to perform the police task. Agents playing the police
officer role ask for a desirable traffic sign’s meaning. The
ontology identify the requested traffic sign, get its meaning
and, then, answer it to whom requested the information.
The police task finishes when the policed traffic sign has
no more car drivers close to it.

Fig.6. A Workflow diagram

To permit resources perform tasks, the workflow diagram
illustrated in Fig.6 was extended. In that way, the ontology
resource can be responsible to perform the “Identify Sign”
and the “Get Sign’s Meaning” tasks.

All case study roles modeled with the MESSAGE
methodology are played by agents. By using the
MESSAGE diagrams, it was possible to model the
interactions between the roles, between the roles and the
ontology resource, and between the roles and the traffic
signs, as well as the services provided by those roles.

UTSS Agent’s Roles Implemented with the ASF
Framework

To implement agent roles in ASF, the abstract class
AgentRole was extended to represent the police officer, car
driver and pedestrian roles. The abstract class Protocol
was also extended to permit the exchange of messages.
The two extended classes were instantiated. After that,
instances of the concrete classes Right, Duty,
CompositeBelief, LeafBelief, CompositeGoal, LeafGoal
and Message were created and associated to the instance
created of the agent role extended class.

The ASF structure for the agent role class suggests that
this class must have specified in its constructor its goals,
beliefs, rights, duties and messages. For instance, the
police officer role class, that has its services illustrated in
Fig.5, has in its constructor the following goals with their
names, pairs of types and values, and priorities:

- policeTheStreetToTheChurch = new LeafGoal
 ("policeTheStreetToTheChurch", "boolean", "true", 1);
- policeTheStreetFromTheChurch = new LeafGoal
 ("policeTheStreetFromTheChurch", "boolean", "true", 2);
− policeTheStreetToTheHouseOnTheMountains = new LeafGoal
("policeTheStreetToTheHouseOnTheMountains",
"boolean", "true", 3);
− policeTheStreetFromTheHouseOnTheMountains = new LeafGoal
("policeTheStreetFromTheHouseOnTheMountains",
"boolean", "true", 4);
− policeTheStreetToTheHospital = new LeafGoal
("policeTheStreetToTheHospital", "boolean", "true", 5);

To police all the urban places’ traffic signs from the proposed environment, at least five agents playing the police officer role are required (one for each goal to be achieved).

For agents play roles and achieve their goals, plans were created in agent classes. Because agents’ plans are specific to roles’ goals, different types of agent classes were created, extending the abstract class Agent from ASF [Silva et al., 2004b]. An agent plan is related to one goal and can call various agent actions. For example, instances of agents from the CarDriverAgent class play the CarDriver role and have plans to achieve the Drive goal performing Drive actions; instances of agents from the PoliceOfficerAgent class play the PoliceOfficer role and have plans to achieve the Police goal performing Police actions; instances of agents from the PedestrianAgent class play the Pedestrian role and have plans to achieve the Walk goal performing Walk actions. Fig. 7 illustrates part of the UTSS implementation tree, according to the ASF structure, with the agent package with its sub-packages action and plan, and the agentRole package.

Fig. 7. The implementation by using the ASF

Agents can change roles. An agent playing the police officer role can also play the car driver role (and vice-versa) or the pedestrian role (and vice-versa); an agent playing the car driver role can change its role to play the pedestrian role (and vice-versa). To permit an easy change of roles, ASF implements all agents with one argument from the collection type that holds the roles been played by its agents.

Conclusion

This paper describes an overview of a MAS’s implementation by using the role concept as a first-order abstraction. The case study was based on roles modeled with an agent-oriented methodology called MESSAGE and it was implemented by using an agent-oriented framework called Agent Society Framework (ASF).

The MESSAGE methodology successfully addresses the analysis phase producing a good result for the understanding of the problem. However, the design phase was not fully supported by the methodology. Because of that, package, class and sequence UML diagrams were used during the case study design phase.

The ASF framework facilitates the implementation phase because it suggests a structure for the solution with specific packages for agents, agent roles, actions, plans, etc., (entities modeled with the MESSAGE methodology) and has implemented classes and methods.

The implementation of the case study is an ongoing work but, the level of difficulty in the design of organizations based on roles, already can be perceived.

References

We gratefully acknowledge the financial support provided by the CNPq as part of individual grants and of the ESSMA project (552068/2002-0).