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Abstract 

The task of matching patterns in graph-structured data has 
applications in such diverse areas as computer vision, 
biology, electronics, computer aided design, social 
networks, and intelligence analysis. Consequently, work on 
graph-based pattern matching spans a wide range of 
research communities. Due to variations in graph 
characteristics and application requirements, graph 
matching is not a single problem, but a set of related 
problems. This paper presents a survey of existing work on 
graph matching, describing variations among problems, 
general and specific solution approaches, evaluation 
techniques, and directions for further research. An emphasis 
is given to techniques that apply to general graphs with 
semantic characteristics. 

1. Introduction 

Work on pattern matching in graphs spans a diverse range 
of research communities within and beyond computer 
science. Relevant research and application areas include 
databases, computer vision, mathematical graph theory, 
artificial intelligence, information retrieval, biology, 
electronics, computer aided design, and knowledge 
discovery and data mining. 
 Graph-based pattern matching is not a single problem, 
but a set of related problems. These range from the NP-
complete subgraph isomorphism problem, in which 
matches are based strictly on graph structure, to finding 
inexact matches to complex patterns in semantic graphs 
with millions of typed and attributed vertices and edges. 
The focus of this survey is on techniques applicable to 
general graphs that may have semantic characteristics. It 
does not cover specialized matching approaches for 
structural subclasses of graphs, such as trees or planar 
graphs. 
 In the remainder of this section I present a formal 
description of the basic graph pattern matching problem 
and discuss a number of common problem variations. In 
section 2, I outline a general strategy that has been applied 
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by many graph matching approaches. In section 3, I 
discuss a number of specific approaches in detail. Section 4 
covers the evaluation of graph pattern matching 
algorithms. Section 5 summarizes the findings of this 
survey and discusses directions for future research. 

1.1 The Graph Pattern Matching Problem 
The basic graph pattern matching problem is to find 
matches in a graph for a specified pattern. More formally, 
we are given: 
1. A data graph G = (V, E), composed of a set of vertices 

V and a set of edges E. Each e∈E is a pair (vi,vj) where 
vi,vj∈V. The vertices and/or edges of G may be typed 
and/or attributed. 

2. A pattern graph (or pattern query) P = (VP, EP), 
which specifies the structural and semantic requirements 
that a subgraph of G must satisfy in order to match the 
pattern P. 

 The task is to find the set M of subgraphs of G that 
"match" the pattern P. A graph G' = (V', E') is a subgraph 
of G if and only if V' ⊆ V and E' ⊆ E. Problem 
formulations often require that P represent a single 
connected graph and, therefore, that m∈M is connected as 
well. A graph is connected if there exists some path 
between every pair of its vertices. 
 The precise definition of a match varies among 
problems, but is generally based on a combination of (1) 
isomorphism (i.e., structural matching) or near 
isomorphism between P and m∈M and (2) equality or 
similarity between the types and attribute values of the 
vertices and edges in P and those in m∈M. Formally, a 
match may be thought of as a pair of bijections, one from 
VP to a subset of V and the other from EP to a subset of E. 

1.2 Problem Variations 
There are a number of variations on the basic graph pattern 
matching problem. Variation generally occurs along the 
following dimensions. 
Graph properties. All graphs share the basic structural 
elements, vertices and edges, but other structural and 
semantic graph properties vary among applications. 



 Most structural differences are due to restrictions on 
edges. For example, graphs may allow or disallow directed 
or undirected edges, weights on edges, multiple edges 
between a pair of vertices (multigraphs), and edges that 
connect a single vertex to itself (self-loops). 
 In their simplest form, graphs are mathematical objects. 
However, like many ideas from mathematics, graphs may 
be used to model real-world phenomena. In particular, 
vertices are often used to represent objects or entities (e.g., 
people, places, events, molecules) and edges are used to 
represent relationships between entities. We can extend the 
idea of a graph from a set of homogeneous vertices 
connected by homogeneous edges to a collection of 
individual entities, possibly of different types, each with 
their own unique characteristics, and each involved in 
relationships with one another. To support this expanded 
notion, graphs may be typed. That is, each vertex and/or 
edge in the graph may be assigned a type (or label) from 
predefined sets. For example, if our domain of interest is 
movies, vertex types may include movie, actor, and 
producer and edge types may include (actor) appeared-in 
(movie), (movie) sequel-to (movie), and (producer) 
produced (movie). In addition, graphs may be attributed. 
That is, vertices and edges may contain attributes. For 
example, a movie vertex may have attributes such as title, 
year, and genre and an actor vertex may have attributes 
such as name and age. 
 A semantic graph is a graph-structured data 
representation in which vertices represent concepts (e.g., 
movie, actor) and edges represent relationships between 
concepts (e.g., appeared-in). Both vertices and edges in a 
semantic graph are typed and attributed. Furthermore, a 
semantic graph has an associated ontology, which specifies 
the possible concepts, the relationships allowed between 
each pair of concepts, and the attributes associated with 
each concept and relationship. 
Structural vs. semantic matching. Many graph matching 
approaches find matches based strictly on structural 
similarity (McKay 1990; Messmer and Bunke 1995; 
Ullmann 1976; Washio and Motoda 2003). However, since 
graphs can serve as conceptual representations, it can be 
useful to match graphs based not strictly on their similarity 
as graphs, but on the similarity of their interpretations in 
some domain of interest. Since the meaning of semantic 
graphs is contained largely within the type and attribute 
information stored on individual vertices and edges, 
structural matching is often insufficient for finding 
conceptually similar graphs. Semantic matching 
approaches attempt to match graphs based on their 
meaning by taking into account vertex and edge types and 
attributes as well as graph structure (Aleman-Mesa et al. 
2005; Coffman, Greenblatt, and Marcus 2004; Wolverton 
et al. 2003). 
Single-graph vs. graph-transaction setting. Graph data 
may consist of a single large graph or a set of relatively 
small graphs (often called transactions). These cases are 
referred to as the single-graph setting and the graph-
transaction setting, respectively (Kuramochi and Karypis 

2005). The single-graph setting is more general and 
algorithms developed for this setting can be readily applied 
to the graph-transaction setting, although the converse is 
generally not true. Throughout this survey, I use the 
generic term graph data set (or just data set) to refer to a 
collection of related graph-structured data, whether it is 
organized as a single large graph or many small graphs. 
Exact vs. inexact matching. A graph matching algorithm 
may return only results that match a specified pattern 
exactly or it may return a ranked list of the most similar 
matches (i.e., inexact matching). Inexact matching 
algorithms are often referred to as error-correcting since 
they enable matching in the presence of noise or errors in 
data (Shapiro and Haralick 1981; Tsai and Fu 1979). In 
addition, some systems allow patterns to be left only 
partially specified (e.g., using "wildcards" or cardinality 
operators) (Blau, Immerman, and Jensen 2002; Wolverton 
et al. 2003). In such cases, while results may match the 
pattern exactly, this is a form of inexact matching because 
the pattern itself is imprecise (e.g., "find all movie vertices" 
vs. "find all movie vertices linked to an actor vertex").  
Optimal vs. approximate solutions. Distinct from 
whether an algorithm performs exact or inexact matching, 
algorithms vary in terms of solution quality guarantees. 
Optimal algorithms are guaranteed to find a correct 
solution (e.g., for exact matching, a set of exactly those 
subgraphs that match the pattern; for inexact matching, the 
closest match or a correctly ranked list of matches), but 
have exponential worst-case complexity (Shasha, Wang, 
and Giugno 2002). Approximate algorithms (Christmas, 
Kittler, and Petrou 1995; Umeyama 1998) often have 
polynomial complexity, but are not guaranteed to find a 
correct solution (e.g., for exact matching, some, but not all 
matches; for inexact matching, a close match, but not the 
closest). Optimal algorithms are generally search-based 
and approximate algorithms tend to be numerical (Kim, 
Yun, and Lee 2004). 
Graph matching vs. graph mining. There are a variety of 
problems that build on graph matching. One such problem 
is that of graph mining or structural motif finding. Whereas 
the goal of graph matching is to find occurrences of a 
specific pattern in a graph, the goal of graph mining is to 
find a set of the most common or most "interesting" 
patterns in a graph (Cook and Holder 1994; Goethals, 
Hoekx, and Van den Bussche 2005; Kuramochi and 
Karypis 2005; Washio and Motoda 2003; Wörlein et al. 
2005). This survey discusses only the graph matching 
aspects of graph mining systems. For a more thorough 
treatment of graph mining, see the surveys by Washio and 
Motoda and Wörlein et al. (Washio and Motoda 2003; 
Wörlein et al. 2005). In addition, an earlier version of this 
paper discusses several graph mining algorithms in more 
detail (Gallagher 2006). 

2. A General-Purpose Matching Approach 

Subgraph isomorphism is the problem of determining 
whether one graph P is isomorphic to a subgraph of 



another graph G (i.e., whether the pattern P has a structural 
match in G). Since subgraph isomorphism is NP-complete 
(Washio and Motoda 2003), all known algorithms are 
exponential in the size of the input graphs. Therefore, it is 
impractical to solve subgraph isomorphism directly in 
large graphs. This leaves two options for fast pattern 
matching in large general graphs: (1) use an approximate 
algorithm, which may yield non-optimal solutions or (2) 
use an optimal algorithm, but apply it to only a subset of 
the data. In general, this second approach is achieved by 
performing some pre-processing to filter out unpromising 
portions of a data set before any direct matching takes 
place. This data filtering step is known as candidate 
selection. 
 The GraphGrep graph matching algorithm (Giugno and 
Shasha 2002) consists of three basic components: index 
construction, database filtering, and subgraph matching. 
This framework can be generalized to describe the majority 
of optimal graph matching algorithms. In general, these 
algorithms have three phases: data analysis and metadata 
construction, candidate selection, and matching. 

Data analysis and metadata construction 
Many algorithms perform some sort of pre-processing on a 
data set to create summary information, which informs the 
pattern matching process. Graph invariants are a common 
example of such summary information. An invariant is a 
quantity used to characterize a graph (Washio and Motoda 
2003). If two graphs are identical, they will have identical 
invariants, although the converse is not necessarily true. 
Due to this property, a simple comparison of invariant 
values between pattern and data graphs may be sufficient 
to eliminate many non-matches. Graph invariants are most 
commonly used in the graph-transaction setting and are 
generally applied to exact matching. The nauty algorithm 
(McKay 1990) computes graph invariants for each vertex 
in a graph (e.g., degree). Several algorithms use a 
canonical graph representation to derive invariants 
(Washio and Motoda 2003). GraphGrep (Giugno and 
Shasha 2002) creates a "fingerprint" for each graph in a 
data set using path-based invariants. 
 A complimentary approach to calculating invariants is to 
create statistical summaries of an entire graph data set. For 
example, Statistical Relational Models (SRMs) (Getoor 
2001) model dependencies among attributes in relational 
data by utilizing conditional independence properties 
among attributes. SRMs can provide approximate answers 
to counting queries (e.g., how many movies have actors 
with the last name "Smith"?). These approximate counts 
are helpful for determining an efficient ordering of filtering 
criteria when multiple criteria exist for eliminating non-
matches (e.g., multiple graph invariants). 
 In addition to the types of summary information already 
mentioned, it is often useful to construct indices into a 
graph data set. Indices for graph data can take many forms. 
For example, we may index occurrences of common 
structural patterns in a large graph so that we can locate 
them quickly. The embedding lists used by graph mining 

algorithms are an example of this (Wörlein et al. 2005). In 
semantic graphs, it is common to retrieve all vertices or 
edges of a particular type or with a particular attribute 
value (e.g., 'find all movies' or 'find all actors with the last 
name "Smith"'). These operations can be sped up using 
indices on types and attributes. 

Candidate selection 
Once we have constructed appropriate metadata, we can 
use it to direct our search for matching subgraphs. If graph 
invariants differ between a subgraph S and a pattern P, 
there is no need to perform direct matching between P and 
S. If an SRM tells us that a match to our query is very 
unlikely, we may not bother searching for an exact match. 
Statistical models such as SRMS can also help us decide 
which non-matches to filter out first by providing 
selectivity estimates (i.e., determining which criteria in a 
pattern are the most selective or occur least frequently in 
the data set). The TRAKS (Aleman-Mesa et al. 2005) and 
LAW (Wolverton et al. 2003) systems use simple 
frequency statistics to perform this kind of selective 
pruning on the space of potential matches. 
 It is worth noting that effective candidate selection in 
semantic graphs is possible without generating graph 
invariants since semantic graphs already contain rich data 
on which to filter potential matches (i.e., the types and 
attributes of vertices and edges). For example, if a pattern 
contains a vertex M of type movie, we don't need to 
consider every vertex in a data graph as a potential match 
to M, only those vertices of type movie. Even so, type and 
attribute based indices can speed up this filtering process 
and statistical summaries such as SRMs may prove useful 
for creating an efficient ordering of candidate filters. 
 Upon completing candidate selection, we have a list of 
candidates on which to perform matching. Candidate 
selection aims to produce as small a list of candidates as 
possible without eliminating any true matches from the list. 

Matching 
In the matching phase, candidates identified during 
candidate selection are checked against the specified 
pattern. Researchers have proposed numerous matching 
algorithms, which may be generally categorized as search-
based (optimal algorithms) or numerical (approximate 
algorithms) (Kim, Yun, and Lee 2004). The focus of this 
survey is on search-based solutions. The next section 
provides details on several specific matching approaches. 

3. Specific Matching Approaches 

This section discusses specific approaches for exact and 
inexact matching based on graph structure and semantics. 
The set of approaches covered here is illustrative, but not 
exhaustive. For additional matching approaches see the 
survey by Shasha et al. (Shasha, Wang, and Giugno 2002). 



3.1 Structural Matching Approaches 
One of the earliest and most highly-cited approaches to 
exact pattern matching is the subgraph isomorphism 
algorithm proposed by Ullmann (Ullmann 1976). This 
algorithm operates on single untyped graphs with directed 
or undirected edges. Suppose we want to find matches to 
the pattern graph P in the data graph G (Figure 1). 
 

 
Figure 1: An example pattern graph P and data graph G 

 
 Ullmann's basic approach is to enumerate all possible 
mappings of vertices in P to those in G using a depth-first 
tree-search algorithm. Each node at level i of the search-
tree maps vertex  VPi in  P to some vertex  in G  (Figure 2). 
 
 
 
 
 
 
 
 
 

 

 

Figure 2: A partial search-tree for Ullmann's algorithm, mapping 
vertices from pattern graph P to data graph G. The highlighted 
path represents a match for P in G. 
 
Each path from  root to leaf  in the  search-tree represents a 
complete mapping of the vertices in P to those in G. Any 
such mapping that preserves adjacency in P and G (i.e., 
vertices that are neighbors in P map to vertices that are 
neighbors in G) represents an isomorphism from P to a 
subgraph of G. If no such mapping preserves adjacency, 
then no isomorphism exists. Since the search-space 
considered by this approach increases exponentially with 
the size of the input graphs, Ullmann suggests a refinement 
procedure to prune unpromising sub-trees, eliminating the 
need to search them. This procedure eliminates vertex 
mappings from consideration based on three criteria: 
Vertex degree. If the degree of vertex VPi (i.e., the number 
of edges adjacent to VPi) is greater than the degree of VGj 
then VPi cannot map to VGj. For example, in Figure 1, VP1 
cannot map to VG4 since degree(VP1)=2 and degree(VG4)=1. 
One-to-one mapping of vertices. Once we decide to map 
VPi to VGj, along a particular path through the tree, we 

cannot map to VPi any other vertex in G and we cannot map 
any other vertex in P to VGj. 
Forward checking. As we work our way down the tree, 
for any possible vertex mapping that remains, we can 
eliminate the mapping if it cannot preserve adjacency 
between P and G. For example, suppose that we have 
mapped VP1 to VG1 and we are considering the possible 
mapping from VP2 to VG3. Regardless of what we do further 
down the tree, mapping VP2 to VG3 cannot possibly preserve 
adjacency since VP1 and VP2 are neighbors in P, but VG1 and 
VG3 are not neighbors in G. So, we can eliminate the 
mapping from VP2 to VG3 from further consideration. 
 As Ullmann's algorithm expands a particular path in the 
search-tree, one of two things happens: 
1. The algorithm eliminates all possible mappings for some 

vertex in P. In this case, the path we are on cannot yield 
a match. We can safely stop, without expanding 
additional nodes along the current path, and backtrack. 

2. The algorithm reaches a leaf in the tree, having mapped 
each vertex in P to a vertex in G. In this case, the path 
represents a match for P in G (Figure 2). 

As noted by Messmer and Bunke, despite the refinement 
procedure, Ullmann's algorithm has exponential worst-case 
time-complexity (Messmer and Bunke 1995). They 
propose an alternative method for exact subgraph 
isomorphism that has only quadratic worst-case time 
complexity. Their algorithm also operates on multiple 
untyped graphs with directed or undirected edges. The 
approach is to pre-process the graph data set to generate all 
possible permutations of the graph adjacency matrices 
offline and use them to build a decision tree. At run time 
the decision tree is used to classify the adjacency matrix of 
the pattern graph. The drawback to this approach is that the 
size of the decision tree grows exponentially with respect 
to the size of the data graph. To address this issue, the 
authors present pruning techniques, which are effective in 
reducing decision tree size. However, the pruned decision 
trees can no longer guarantee polynomial run times. 
 The nauty algorithm (McKay 1990) detects isomorphism 
between untyped graphs that may be directed or 
undirected. Nauty uses transformations to reduce graphs to 
a canonical form that may be checked relatively quickly 
for isomorphism (Washio and Motoda 2003). Specifically, 
the algorithm computes invariants for each vertex in a 
graph (e.g., degree and counts of adjacent vertices of 
various degrees) that are used for candidate selection. 
Nauty partitions a graph into non-overlapping sets of 
vertices based on invariant values. Sets having the same 
invariant values can then be compared between graphs. If 
all sets are isomorphic between two graphs, then the two 
graphs must be isomorphic. Alternatively, if two graphs 
contain sets with differing invariants, there is no need to 
test isomorphism between the sets directly. 
 SUBDUE (Cook and Holder 1994) operates in a single-
graph setting with typed vertices and typed, directed edges. 
SUBDUE is a graph mining system, but performs pattern 
matching as a supporting step in the mining process. The 
general approach is similar to Ullmann's. They construct a 
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search-tree, where the nodes at the ith level map the ith 
vertex from P to some vertex in G. A path through the tree 
represents a complete mapping of vertices. Since SUBDUE 
performs inexact matching, each node in the search-tree 
has an associated cost that captures how well P matches G. 
If P and G are exactly isomorphic, there will be a mapping 
between them with cost 0. The less similar P and G are, the 
higher the cost will be. These costs are based on graph edit 
distance (Meyers, Wilson, and Hancock 2000). The edit 
distance between two graphs is the minimum cost of edit 
operations required to transform one graph into another. 
Edit operations include deletion, insertion, and substitution 
of vertices and edges. For inexact matching, the goal state 
is the final state (i.e., leaf) with the least cost of all final 
states. Since the search-space is again exponentially large, 
SUBDUE applies a branch-and-bound search to the tree. 
Because branch-and-bound is guaranteed to find an 
optimal solution, the search terminates once any complete 
mapping is found. The algorithm also allows an upper limit 
to be placed on the number of search nodes considered, 
which can lead to a significant savings in search time at the 
expense of solution quality. 

3.2 Semantic Matching Approaches 
So far, I have discussed techniques that match graphs 
based solely on structure. Here, I present several 
techniques that attempt to match graphs based on their 
conceptual interpretations. 
 Early approaches to inexact matching were proposed by 
Tsai and Fu (Tsai and Fu 1979) and Shapiro and Haralick 
(Shapiro and Haralick 1981). Both approaches are based 
on the idea of measuring similarity between graphs as the 
probability that one graph could result from a random 
alteration of the other. Both approaches match based on 
graph structure and on the attributes of individual graph 
elements. Both approaches are implemented using search-
based algorithms with various pruning strategies. Tsai and 
Fu require an exact structural match, but allow for attribute 
value differences. They propose calculating empirical 
probabilities of attribute deformations based on 
observations from data. In addition, they propose the 
weighted distance and weighted-square-error distance 
measures for cases where such data is unavailable. Shapiro 
and Haralick support inexact structural matching by 
considering graphs to match only if the amount of non-
matching structure falls within some threshold. More 
important structural elements are given more weight and 
the presence or absence of these elements more heavily 
influences the determination of a match. Likewise, graphs 
only match if differences between attribute values of 
corresponding graph elements fall within some threshold. 
 As previously discussed, SUBDUE determines 
similarity between graphs using graph edit distance. The 
edit operations used and their associated costs may be 
purely structural or they may be based on semantics as 
well. For example, the cost of a vertex substitution could 
vary based on the semantic similarity of the vertex types 
involved (Djoko, Cook, and Holder 1997). 

 GraphGrep (Giugno and Shasha 2002) operates in the 
graph-transaction setting on undirected graphs with typed 
vertices. The algorithm makes implicit use of vertex type 
information to perform matching. Matching in GraphGrep 
relies on the concept of a label path, which is a sequence 
of type labels along a path in a graph (e.g., actor-movie-
director-movie-actor). During index construction, the 
algorithm computes a "fingerprint" for each graph in the 
data set. The fingerprint of a graph is a set of pairs 
h(labelPath), count , one for each unique label path in the 

graph. Here h is a hash function and count is the number of 
instances of the specified label path in the graph. During 
candidate selection, the data set is filtered based on the 
fingerprint of the pattern graph P. Specifically, if a graph G 
has a lower count value than P for any labelPath, then G 
cannot contain an exact match for P and G is eliminated 
from consideration. During the subgraph matching phase, 
P is broken up into a set of overlapping label paths, which 
are compared against the candidate graphs. Label paths of 
the candidate graphs that match P's label paths may be 
combined into matching subgraphs. 
 A number of semantic matching approaches have grown 
out of the conceptual graphs literature. The theory of 
conceptual graphs is extensive and a full treatment is 
beyond the scope of this paper. See Chein and Mugnier 
(Chein and Mugnier 1992) and Sowa (Sowa 1984) for 
more background on conceptual graphs. For our purposes, 
conceptual graphs may be thought of simply as graphs with 
typed vertices and edges. Here we describe OntoSeek as an 
example of a conceptual graph matcher. In section 3.3, we 
describe the work of Poole and Campbell, which makes 
use of a more sophisticated similarity model for matching 
conceptual graphs. 
 OntoSeek (Guarino, Masolo, and Vetere 1999) is an 
information retrieval system that matches documents to 
queries by representing each as conceptual graphs and then 
measuring the semantic similarity between graphs. The 
matching of a query Q to a document R requires an exact 
structural match between Q and a subgraph of R. However, 
individual vertices (i.e., concepts) are considered to match 
only if the type of a vertex in R is subsumed by the type of 
the corresponding vertex in Q (i.e., if the query concept is a 
generalization of the document concept). Matches are 
found using search with a "first-fail" heuristic (i.e., the 
least probable links are checked first, so that non-matches 
are discovered more quickly). 
 TMODS (Coffman, Greenblatt, and Marcus 2004; 
Greenblatt, Marcus, and Darr. 2005) uses genetic 
algorithms to find exact and inexact pattern matches in 
directed, attributed graphs. Patterns may specify both 
structural and attribute characteristics. TMODS searches 
for patterns from the bottom-up, finding sub-patterns first 
and then composing them into more complex higher-level 
patterns. Coffman et al. do not describe the TMODS 
pattern matching algorithm in further detail. 
 TRAKS (Aleman-Mesa et al. 2005) performs inexact 
pattern matching in typed, directed graphs. Matches are 
ranked by similarity to the original pattern, taking into 



account ontological distance between types. Entities in a 
pattern are processed in ascending order of the frequency 
of their type to eliminate non-matches more quickly. The 
algorithm searches for matches in a depth-first fashion by 
expanding partial matches by one vertex or edge at a time. 
 LAW (Wolverton et al. 2003) performs inexact pattern 
matching on typed, directed graphs. Patterns are 
represented as graphs with typed vertices and edges. The 
pattern language also supports the construction of more 
sophisticated pattern queries through constraints between 
vertices, hierarchy (i.e., sub-patterns), disjunction, and 
cardinality (i.e., the number occurrences of a vertex or 
edge). Like SUDBUE, LAW uses graph edit distance to 
measure similarity between potential matches. LAW's 
graph edit operations include deletion and replacement of 
vertices and edges. LAW uses ontological distance to 
measure differences between types. The LAW search 
algorithm is based on A* and selects tree nodes for 
expansion based on the minimum worst-case cost. This 
cost is calculated as the true cost of the mappings so far 
plus the cost of deleting all unexplored vertices and edges 
in the pattern. Although the worst-case cost heuristic is not 
admissible (in fact, it is an upper bound on the actual cost), 
LAW does find the lowest-cost matches because, unlike 
pure A*, LAW uses the heuristic only as a selection rule 
and not as its termination condition (Wolverton 2006). 
 Like TRAKS, LAW generates start states by selecting 
the vertex in a pattern with the fewest legal mappings in 
the data. Partial matches are expanded by selecting 
unexplored vertex mappings and generating adjacent edge 
mappings. LAW uses an "anytime" version of A* that may 
be terminated at any point and will return the matches it 
has found so far. The set of matches is guaranteed to 
monotonically improve as the algorithm continues to run. 
The LAW pattern matcher uses a "search plan" to 
determine the order in which query elements are processed. 
Search plans may be specified by the user or automatically 
calculated based on a "statistical analysis of the data" 
(Wolverton et al. 2006). The authors do not describe the 
details of this statistical analysis or the search plan 
calculation. 
 Statistical Relational Models (SRMs) model the joint 
distribution over tuples in relational data and capture the 
frequencies with which the tuples join (Getoor 2001). 
Although this work does not provide an explicit pattern 
matching algorithm, it does demonstrate that SRMs exhibit 
substantially lower relative error than previous methods for 
estimating the size of a query's result set (i.e., methods that 
assume attribute independence or join uniformity). This 
suggests an approach for optimizing pattern queries for 
semantic graphs using query optimization techniques, as 
have been studied in the XML and database communities 
(Gibbons and Garofalakis 2001; Ioannidis and Poosala 
1995; Polyzotis and Garofalakis 2002; Wang et al. 2004). 

3.3 Similarity-Based Matching Approaches 
Inexact matching approaches, such as those employed by 
SUBDUE, OntoSeek, TMODS, TRAKS, and LAW, as 

well as the approaches of Tsai and Fu and Shapiro and 
Haralick, match graphs based on their "similarity" to each 
other. Such approaches depend upon similarity measures to 
make this determination. 
 Since graphs may contain type and attribute information 
as well as structural information, a graph similarity 
measure must potentially take all of these characteristics 
into account. Structural similarity is often measured using 
graph edit distance, as described in sections 3.1 and 3.2 
above. Edit distance can also capture semantic similarity if 
edit operations and costs reflect graph semantics. For 
example, LAW determines vertex replacement costs based 
on the ontological distance between the vertex types 
involved (Wolverton et al. 2003). Graph edit operations 
and costs can also take into account differences in attribute 
values of vertices and edges. 
 A drawback to edit-based distance measures (e.g., graph 
edit distance) is that they require the specification of costs 
for specific edit operations. It is generally not clear how to 
optimally assign these costs and changes in cost 
assignments can dramatically affect the resulting distance 
measure. As an alternative to graph edit distance, Bunke 
and his colleagues propose graph distance metrics based on 
the maximal common subgraph (Bunke and Shearer 1998) 
and minimum common supergraph (Bunke, Jiang, and 
Kandel 2000). These metrics can be thought of as 
measuring the amount of structural overlap between 
graphs. Bunke and colleagues show that both metrics can 
be related to graph edit distance by simple equations, under 
certain constraints on edit costs. 
 Attribute values may be compared using any number of 
similarity measures. Many similarity measures are data-
type dependent (e.g., Euclidean distance, string edit 
distance, cosine similarity). Other similarity measures are 
more general. For example, Lin presents an information-
theoretic definition of similarity and shows how it applies 
to strings, feature vectors, ordinal values, words, and 
concepts in a taxonomy (Lin 1998). Few of the pattern 
matching algorithms surveyed here appear to match based 
on attribute values. Exceptions include TMODS, LAW, 
and the work of Tsai and Fu and Shapiro and Haralick, as 
described in section 3.2. The literature describing TMODS 
and LAW does not specify the similarity measures used. 
 Poole and Campbell present a similarity measure for 
conceptual graphs based on the idea of shared information 
(Poole and Campbell 1995). They describe an algorithm 
for comparing two graphs, given an interest function. 
Interest is essentially a measure of how much information 
a graph contains. This approach is similar to Lin's 
information theoretic approach, but it is applied directly to 
graphs. Poole and Campbell do not consider specific 
interest measures. 
 Many of the approaches described in this survey take 
ontological distance between types into account when 
matching, although the specific ontological distance 
measures used are often not discussed. Many proposed 
ontological distance measures are based on the length of 
the path between concepts (i.e., types) in a hierarchy (Lin 



1998, Sowa 1984). Other measures take into account both 
the concept hierarchy and the way that concepts are 
actually used in the data. For example, by Lin's 
information-theoretic definition, similarity between 
concepts is measured as the ratio between the amount of 
information needed to state the commonality of the 
concepts and the amount of information needed to fully 
state each concept. Applying a standard definition of 
information content, Lin's similarity measure amounts to: 
(1) concepts A and B are more similar the less their nearest 
common ancestor occurs in the data and (2) A and B are 
more similar the more each of A and B occur in the data. 
 In addition to the specific similarity measures proposed 
in the literature, there has been some effort to formalize a 
theory behind similarity-based graph matching. Bunke 
offers a formal definition of error correcting graph 
matching and shows that an optimal edit-based matching 
does not depend directly on the costs assigned to individual 
edit operations, but only on ratios of these costs (Bunke 
1999). Berry et al. describe the derivation of graph 
similarity measures based on a theory of inexact pattern 
matching that views patterns as procedures for ranking 
potential matches (Berry et al. 2004). 

4. Evaluation 

As might be expected given the number of research 
communities involved in work on graph matching over the 
past several decades, it is difficult to evaluate the 
performance of the various techniques in relation to one 
another. Different algorithms have differing goals and 
researchers have evaluated their algorithms on data sets 
that vary tremendously in terms of size and graph 
characteristics. In addition, the complexity of the patterns 
evaluated is a huge potential source of variation among the 
results of various studies. Evaluations generally have not 
attempted to analyze or quantify the complexity of the 
patterns used for evaluation. 
 Evaluation of graph pattern matching systems to date 
has focused on runtime performance. Even for the inexact 
matching techniques surveyed here, there is no systematic 
evaluation of solution quality (e.g., precision and recall of 
matches). The most common evaluation metric is runtime 
vs. data set size. In the graph-transaction setting, size refers 
to the number of graphs in a data set. In the single-graph 
setting, size refers to the number of vertices (or edges) in a 
graph. Specific evaluation metrics include runtime vs. 
number of matches (i.e., pattern selectivity) (Ullmann 
1976), runtime vs. edge count (Berry et al. 2004), and 
runtime, computation steps, and tree size vs. vertex and 
edge count, number of graphs, and decision tree depth 
(Messmer and Bunke 1995). 
 The data sets used for evaluation by most systems 
mentioned in this survey are synthetically generated graphs 
with either random or regular linkage (e.g., mesh 
structure). These graphs also tend to be quite small. For 
example, Ullmann's graphs have between 12-14 vertices 
and ~20-30 edges, the graphs used by Messmer and Bunke 

have up to 29 vertices and up to 44 edges, and nauty uses 
graphs with between 10-1000 vertices. The graphs used to 
evaluate LAW are the largest, with between 12,000 and 
240,000 edges. GraphGrep was evaluated on National 
Cancer Institute data sets containing up to 16,000 
individual graphs representing molecules. These graphs 
contain an average of 20 vertices and a maximum of 270 
(Giugno and Shasha 2002). 
 In addition to the evaluations in individual studies, 
researchers have conducted benchmarking activities 
comparing several algorithms (Foggia, Sansone, and Vento 
2001; Kälviäinen and Oja 1990). These comparisons 
consider the runtime and (in Kälviäinen and Oja) matching 
performance of graph isomorphism algorithms. They do 
not test subgraph isomorphism performance directly. 
Foggia et al. use various random and regularly structured 
synthetic graphs of up to 1000 nodes. Kälviäinen and Oja 
use very small graphs (<10 nodes) derived from image 
data. Neither study finds a dominating algorithm. Both 
studies show that in general graph matching algorithms are 
sensitive to graph characteristics (e.g., link structure), so it 
is important to consider these characteristics when 
choosing or developing an algorithm. This also suggests 
that existing evaluations may not tell us much about the 
applicability of algorithms to large real-world data sets. 

5. Summary 

The problem of searching for patterns in graph-structured 
data has many applications in diverse areas. Accordingly, 
numerous techniques have been developed for matching 
patterns in graphs. Together, these techniques represent 
decades of work by researchers from a range of research 
communities. Despite variations in properties of graphs, 
data sets, and algorithms, common themes have emerged. 
Since subgraph isomorphism algorithms are 
computationally expensive, keeping isomorphism 
calculations to a minimum is crucial to algorithm 
performance. Candidate selection is an effective means by 
which to accomplish this and techniques for metadata 
construction and application (e.g., data summarization, 
compression, modeling, and indexing) are central to 
effective candidate selection. 
 While there has been recent work on pattern matching 
based on semantics as well as structure, there appear to be 
opportunities to further exploit graph semantics for 
indexing, candidate selection, and matching. Based on the 
work reviewed in this survey, I wish to highlight the 
following observations about pattern matching in semantic 
graphs: 
• Existing tree-search techniques (e.g., Ullmann's 

algorithm) can be readily extended to match and prune 
based on semantics as well as structure. 

• Existing candidate selection and indexing strategies 
focus on graph structure. Type and attribute information 
can potentially help filter out irrelevant data more 
quickly. However, more sophisticated graph statistics are 



required to capture the combination of attributes, type, 
and structure. 

• Existing graph similarity measures do not incorporate all 
of attributes, type, and structure. An important question 
for inexact matching in semantic graphs is how to 
combine these different kinds of similarity to produce 
matches that are consistent with graph semantics. For 
example, if G1 and G2 are structurally similar, but have 
different attribute values and G1 and G3 have similar 
attribute values, but differ structurally, which of G2 and 
G3 is a better match for G1? 

• Many existing matching algorithms focus on the graph-
transaction setting, where individual graphs tend to be 
very small. Therefore, many techniques are not directly 
applicable to large graphs (i.e., millions of vertices). 
Note that if candidate selection is effective in breaking 
large graphs into smaller graphs, techniques developed 
for the graph-transaction setting may applicable to these 
smaller graphs. 

• Existing evaluation focuses on relatively small graphs, 
often with connections that are either random or regular. 
Real-world semantic graphs (e.g., social networks and 
the World Wide Web) are large and exhibit scale-free 
network characteristics (e.g., power-law degree 
distribution, high clustering coefficient, and short 
characteristic path length) (Dorogovtsev and Mendes 
2003, Chapter 3.11). Therefore, existing evaluations tell 
us little about the applicability of algorithms to matching 
in semantic graphs. 

Based on these observations, the following appear to be 
promising research directions for pattern matching in 
semantic graphs: 
• Application of query optimization techniques from 

relational and XML databases to graph data sets. 
Specifically, the optimization of pattern queries based on 
selectivity estimates derived from probabilistic relational 
models. This may include learned models such as SRMs 
as well as statistical, mathematical, or probabilistic 
models that do not require learning, but are based on 
simple measures calculated from data graphs. 

• Techniques for indexing and candidate selection that 
utilize graph structure as well as type and attribute 
information. 

• Techniques for inexact matching that utilize both graph 
structure and semantics (i.e., distance measures that 
incorporate ontological distance between types as well as 
differences in attribute values and graph structure). 

• Evaluation of matching algorithms on large real-world 
semantic graph data sets. 

• Generation of synthetic data sets that reproduce 
characteristics of real-world data. 

• Evaluation techniques that take into account the 
complexity and selectivity of the patterns used for 
evaluation. 

• Evaluation of correctness or utility of inexact matching 
techniques. 
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