
Matching Structure and Semantics:

A Survey on Graph-Based Pattern Matching

Brian Gallagher

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Box 808, L-560
Livermore, CA 94551
bgallagher@llnl.gov

Abstract

The task of matching patterns in graph-structured data has
applications in such diverse areas as computer vision,
biology, electronics, computer aided design, social
networks, and intelligence analysis. Consequently, work on
graph-based pattern matching spans a wide range of
research communities. Due to variations in graph
characteristics and application requirements, graph
matching is not a single problem, but a set of related
problems. This paper presents a survey of existing work on
graph matching, describing variations among problems,
general and specific solution approaches, evaluation
techniques, and directions for further research. An emphasis
is given to techniques that apply to general graphs with
semantic characteristics.

1. Introduction

Work on pattern matching in graphs spans a diverse range
of research communities within and beyond computer
science. Relevant research and application areas include
databases, computer vision, mathematical graph theory,
artificial intelligence, information retrieval, biology,
electronics, computer aided design, and knowledge
discovery and data mining.
 Graph-based pattern matching is not a single problem,
but a set of related problems. These range from the NP-
complete subgraph isomorphism problem, in which
matches are based strictly on graph structure, to finding
inexact matches to complex patterns in semantic graphs
with millions of typed and attributed vertices and edges.
The focus of this survey is on techniques applicable to
general graphs that may have semantic characteristics. It
does not cover specialized matching approaches for
structural subclasses of graphs, such as trees or planar
graphs.
 In the remainder of this section I present a formal
description of the basic graph pattern matching problem
and discuss a number of common problem variations. In
section 2, I outline a general strategy that has been applied

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

by many graph matching approaches. In section 3, I
discuss a number of specific approaches in detail. Section 4
covers the evaluation of graph pattern matching
algorithms. Section 5 summarizes the findings of this
survey and discusses directions for future research.

1.1 The Graph Pattern Matching Problem
The basic graph pattern matching problem is to find
matches in a graph for a specified pattern. More formally,
we are given:
1. A data graph G = (V, E), composed of a set of vertices

V and a set of edges E. Each e∈E is a pair (vi,vj) where
vi,vj∈V. The vertices and/or edges of G may be typed
and/or attributed.

2. A pattern graph (or pattern query) P = (VP, EP),
which specifies the structural and semantic requirements
that a subgraph of G must satisfy in order to match the
pattern P.

 The task is to find the set M of subgraphs of G that
"match" the pattern P. A graph G' = (V', E') is a subgraph
of G if and only if V' ⊆ V and E' ⊆ E. Problem
formulations often require that P represent a single
connected graph and, therefore, that m∈M is connected as
well. A graph is connected if there exists some path
between every pair of its vertices.
 The precise definition of a match varies among
problems, but is generally based on a combination of (1)
isomorphism (i.e., structural matching) or near
isomorphism between P and m∈M and (2) equality or
similarity between the types and attribute values of the
vertices and edges in P and those in m∈M. Formally, a
match may be thought of as a pair of bijections, one from
VP to a subset of V and the other from EP to a subset of E.

1.2 Problem Variations
There are a number of variations on the basic graph pattern
matching problem. Variation generally occurs along the
following dimensions.
Graph properties. All graphs share the basic structural
elements, vertices and edges, but other structural and
semantic graph properties vary among applications.

 Most structural differences are due to restrictions on
edges. For example, graphs may allow or disallow directed
or undirected edges, weights on edges, multiple edges
between a pair of vertices (multigraphs), and edges that
connect a single vertex to itself (self-loops).
 In their simplest form, graphs are mathematical objects.
However, like many ideas from mathematics, graphs may
be used to model real-world phenomena. In particular,
vertices are often used to represent objects or entities (e.g.,
people, places, events, molecules) and edges are used to
represent relationships between entities. We can extend the
idea of a graph from a set of homogeneous vertices
connected by homogeneous edges to a collection of
individual entities, possibly of different types, each with
their own unique characteristics, and each involved in
relationships with one another. To support this expanded
notion, graphs may be typed. That is, each vertex and/or
edge in the graph may be assigned a type (or label) from
predefined sets. For example, if our domain of interest is
movies, vertex types may include movie, actor, and
producer and edge types may include (actor) appeared-in
(movie), (movie) sequel-to (movie), and (producer)
produced (movie). In addition, graphs may be attributed.
That is, vertices and edges may contain attributes. For
example, a movie vertex may have attributes such as title,
year, and genre and an actor vertex may have attributes
such as name and age.
 A semantic graph is a graph-structured data
representation in which vertices represent concepts (e.g.,
movie, actor) and edges represent relationships between
concepts (e.g., appeared-in). Both vertices and edges in a
semantic graph are typed and attributed. Furthermore, a
semantic graph has an associated ontology, which specifies
the possible concepts, the relationships allowed between
each pair of concepts, and the attributes associated with
each concept and relationship.
Structural vs. semantic matching. Many graph matching
approaches find matches based strictly on structural
similarity (McKay 1990; Messmer and Bunke 1995;
Ullmann 1976; Washio and Motoda 2003). However, since
graphs can serve as conceptual representations, it can be
useful to match graphs based not strictly on their similarity
as graphs, but on the similarity of their interpretations in
some domain of interest. Since the meaning of semantic
graphs is contained largely within the type and attribute
information stored on individual vertices and edges,
structural matching is often insufficient for finding
conceptually similar graphs. Semantic matching
approaches attempt to match graphs based on their
meaning by taking into account vertex and edge types and
attributes as well as graph structure (Aleman-Mesa et al.
2005; Coffman, Greenblatt, and Marcus 2004; Wolverton
et al. 2003).
Single-graph vs. graph-transaction setting. Graph data
may consist of a single large graph or a set of relatively
small graphs (often called transactions). These cases are
referred to as the single-graph setting and the graph-
transaction setting, respectively (Kuramochi and Karypis

2005). The single-graph setting is more general and
algorithms developed for this setting can be readily applied
to the graph-transaction setting, although the converse is
generally not true. Throughout this survey, I use the
generic term graph data set (or just data set) to refer to a
collection of related graph-structured data, whether it is
organized as a single large graph or many small graphs.
Exact vs. inexact matching. A graph matching algorithm
may return only results that match a specified pattern
exactly or it may return a ranked list of the most similar
matches (i.e., inexact matching). Inexact matching
algorithms are often referred to as error-correcting since
they enable matching in the presence of noise or errors in
data (Shapiro and Haralick 1981; Tsai and Fu 1979). In
addition, some systems allow patterns to be left only
partially specified (e.g., using "wildcards" or cardinality
operators) (Blau, Immerman, and Jensen 2002; Wolverton
et al. 2003). In such cases, while results may match the
pattern exactly, this is a form of inexact matching because
the pattern itself is imprecise (e.g., "find all movie vertices"
vs. "find all movie vertices linked to an actor vertex").
Optimal vs. approximate solutions. Distinct from
whether an algorithm performs exact or inexact matching,
algorithms vary in terms of solution quality guarantees.
Optimal algorithms are guaranteed to find a correct
solution (e.g., for exact matching, a set of exactly those
subgraphs that match the pattern; for inexact matching, the
closest match or a correctly ranked list of matches), but
have exponential worst-case complexity (Shasha, Wang,
and Giugno 2002). Approximate algorithms (Christmas,
Kittler, and Petrou 1995; Umeyama 1998) often have
polynomial complexity, but are not guaranteed to find a
correct solution (e.g., for exact matching, some, but not all
matches; for inexact matching, a close match, but not the
closest). Optimal algorithms are generally search-based
and approximate algorithms tend to be numerical (Kim,
Yun, and Lee 2004).
Graph matching vs. graph mining. There are a variety of
problems that build on graph matching. One such problem
is that of graph mining or structural motif finding. Whereas
the goal of graph matching is to find occurrences of a
specific pattern in a graph, the goal of graph mining is to
find a set of the most common or most "interesting"
patterns in a graph (Cook and Holder 1994; Goethals,
Hoekx, and Van den Bussche 2005; Kuramochi and
Karypis 2005; Washio and Motoda 2003; Wörlein et al.
2005). This survey discusses only the graph matching
aspects of graph mining systems. For a more thorough
treatment of graph mining, see the surveys by Washio and
Motoda and Wörlein et al. (Washio and Motoda 2003;
Wörlein et al. 2005). In addition, an earlier version of this
paper discusses several graph mining algorithms in more
detail (Gallagher 2006).

2. A General-Purpose Matching Approach

Subgraph isomorphism is the problem of determining
whether one graph P is isomorphic to a subgraph of

another graph G (i.e., whether the pattern P has a structural
match in G). Since subgraph isomorphism is NP-complete
(Washio and Motoda 2003), all known algorithms are
exponential in the size of the input graphs. Therefore, it is
impractical to solve subgraph isomorphism directly in
large graphs. This leaves two options for fast pattern
matching in large general graphs: (1) use an approximate
algorithm, which may yield non-optimal solutions or (2)
use an optimal algorithm, but apply it to only a subset of
the data. In general, this second approach is achieved by
performing some pre-processing to filter out unpromising
portions of a data set before any direct matching takes
place. This data filtering step is known as candidate
selection.
 The GraphGrep graph matching algorithm (Giugno and
Shasha 2002) consists of three basic components: index
construction, database filtering, and subgraph matching.
This framework can be generalized to describe the majority
of optimal graph matching algorithms. In general, these
algorithms have three phases: data analysis and metadata
construction, candidate selection, and matching.

Data analysis and metadata construction
Many algorithms perform some sort of pre-processing on a
data set to create summary information, which informs the
pattern matching process. Graph invariants are a common
example of such summary information. An invariant is a
quantity used to characterize a graph (Washio and Motoda
2003). If two graphs are identical, they will have identical
invariants, although the converse is not necessarily true.
Due to this property, a simple comparison of invariant
values between pattern and data graphs may be sufficient
to eliminate many non-matches. Graph invariants are most
commonly used in the graph-transaction setting and are
generally applied to exact matching. The nauty algorithm
(McKay 1990) computes graph invariants for each vertex
in a graph (e.g., degree). Several algorithms use a
canonical graph representation to derive invariants
(Washio and Motoda 2003). GraphGrep (Giugno and
Shasha 2002) creates a "fingerprint" for each graph in a
data set using path-based invariants.
 A complimentary approach to calculating invariants is to
create statistical summaries of an entire graph data set. For
example, Statistical Relational Models (SRMs) (Getoor
2001) model dependencies among attributes in relational
data by utilizing conditional independence properties
among attributes. SRMs can provide approximate answers
to counting queries (e.g., how many movies have actors
with the last name "Smith"?). These approximate counts
are helpful for determining an efficient ordering of filtering
criteria when multiple criteria exist for eliminating non-
matches (e.g., multiple graph invariants).
 In addition to the types of summary information already
mentioned, it is often useful to construct indices into a
graph data set. Indices for graph data can take many forms.
For example, we may index occurrences of common
structural patterns in a large graph so that we can locate
them quickly. The embedding lists used by graph mining

algorithms are an example of this (Wörlein et al. 2005). In
semantic graphs, it is common to retrieve all vertices or
edges of a particular type or with a particular attribute
value (e.g., 'find all movies' or 'find all actors with the last
name "Smith"'). These operations can be sped up using
indices on types and attributes.

Candidate selection
Once we have constructed appropriate metadata, we can
use it to direct our search for matching subgraphs. If graph
invariants differ between a subgraph S and a pattern P,
there is no need to perform direct matching between P and
S. If an SRM tells us that a match to our query is very
unlikely, we may not bother searching for an exact match.
Statistical models such as SRMS can also help us decide
which non-matches to filter out first by providing
selectivity estimates (i.e., determining which criteria in a
pattern are the most selective or occur least frequently in
the data set). The TRAKS (Aleman-Mesa et al. 2005) and
LAW (Wolverton et al. 2003) systems use simple
frequency statistics to perform this kind of selective
pruning on the space of potential matches.
 It is worth noting that effective candidate selection in
semantic graphs is possible without generating graph
invariants since semantic graphs already contain rich data
on which to filter potential matches (i.e., the types and
attributes of vertices and edges). For example, if a pattern
contains a vertex M of type movie, we don't need to
consider every vertex in a data graph as a potential match
to M, only those vertices of type movie. Even so, type and
attribute based indices can speed up this filtering process
and statistical summaries such as SRMs may prove useful
for creating an efficient ordering of candidate filters.
 Upon completing candidate selection, we have a list of
candidates on which to perform matching. Candidate
selection aims to produce as small a list of candidates as
possible without eliminating any true matches from the list.

Matching
In the matching phase, candidates identified during
candidate selection are checked against the specified
pattern. Researchers have proposed numerous matching
algorithms, which may be generally categorized as search-
based (optimal algorithms) or numerical (approximate
algorithms) (Kim, Yun, and Lee 2004). The focus of this
survey is on search-based solutions. The next section
provides details on several specific matching approaches.

3. Specific Matching Approaches

This section discusses specific approaches for exact and
inexact matching based on graph structure and semantics.
The set of approaches covered here is illustrative, but not
exhaustive. For additional matching approaches see the
survey by Shasha et al. (Shasha, Wang, and Giugno 2002).

3.1 Structural Matching Approaches
One of the earliest and most highly-cited approaches to
exact pattern matching is the subgraph isomorphism
algorithm proposed by Ullmann (Ullmann 1976). This
algorithm operates on single untyped graphs with directed
or undirected edges. Suppose we want to find matches to
the pattern graph P in the data graph G (Figure 1).

Figure 1: An example pattern graph P and data graph G

 Ullmann's basic approach is to enumerate all possible
mappings of vertices in P to those in G using a depth-first
tree-search algorithm. Each node at level i of the search-
tree maps vertex VPi in P to some vertex in G (Figure 2).

Figure 2: A partial search-tree for Ullmann's algorithm, mapping
vertices from pattern graph P to data graph G. The highlighted
path represents a match for P in G.

Each path from root to leaf in the search-tree represents a
complete mapping of the vertices in P to those in G. Any
such mapping that preserves adjacency in P and G (i.e.,
vertices that are neighbors in P map to vertices that are
neighbors in G) represents an isomorphism from P to a
subgraph of G. If no such mapping preserves adjacency,
then no isomorphism exists. Since the search-space
considered by this approach increases exponentially with
the size of the input graphs, Ullmann suggests a refinement
procedure to prune unpromising sub-trees, eliminating the
need to search them. This procedure eliminates vertex
mappings from consideration based on three criteria:
Vertex degree. If the degree of vertex VPi (i.e., the number
of edges adjacent to VPi) is greater than the degree of VGj
then VPi cannot map to VGj. For example, in Figure 1, VP1
cannot map to VG4 since degree(VP1)=2 and degree(VG4)=1.
One-to-one mapping of vertices. Once we decide to map
VPi to VGj, along a particular path through the tree, we

cannot map to VPi any other vertex in G and we cannot map
any other vertex in P to VGj.
Forward checking. As we work our way down the tree,
for any possible vertex mapping that remains, we can
eliminate the mapping if it cannot preserve adjacency
between P and G. For example, suppose that we have
mapped VP1 to VG1 and we are considering the possible
mapping from VP2 to VG3. Regardless of what we do further
down the tree, mapping VP2 to VG3 cannot possibly preserve
adjacency since VP1 and VP2 are neighbors in P, but VG1 and
VG3 are not neighbors in G. So, we can eliminate the
mapping from VP2 to VG3 from further consideration.
 As Ullmann's algorithm expands a particular path in the
search-tree, one of two things happens:
1. The algorithm eliminates all possible mappings for some

vertex in P. In this case, the path we are on cannot yield
a match. We can safely stop, without expanding
additional nodes along the current path, and backtrack.

2. The algorithm reaches a leaf in the tree, having mapped
each vertex in P to a vertex in G. In this case, the path
represents a match for P in G (Figure 2).

As noted by Messmer and Bunke, despite the refinement
procedure, Ullmann's algorithm has exponential worst-case
time-complexity (Messmer and Bunke 1995). They
propose an alternative method for exact subgraph
isomorphism that has only quadratic worst-case time
complexity. Their algorithm also operates on multiple
untyped graphs with directed or undirected edges. The
approach is to pre-process the graph data set to generate all
possible permutations of the graph adjacency matrices
offline and use them to build a decision tree. At run time
the decision tree is used to classify the adjacency matrix of
the pattern graph. The drawback to this approach is that the
size of the decision tree grows exponentially with respect
to the size of the data graph. To address this issue, the
authors present pruning techniques, which are effective in
reducing decision tree size. However, the pruned decision
trees can no longer guarantee polynomial run times.
 The nauty algorithm (McKay 1990) detects isomorphism
between untyped graphs that may be directed or
undirected. Nauty uses transformations to reduce graphs to
a canonical form that may be checked relatively quickly
for isomorphism (Washio and Motoda 2003). Specifically,
the algorithm computes invariants for each vertex in a
graph (e.g., degree and counts of adjacent vertices of
various degrees) that are used for candidate selection.
Nauty partitions a graph into non-overlapping sets of
vertices based on invariant values. Sets having the same
invariant values can then be compared between graphs. If
all sets are isomorphic between two graphs, then the two
graphs must be isomorphic. Alternatively, if two graphs
contain sets with differing invariants, there is no need to
test isomorphism between the sets directly.
 SUBDUE (Cook and Holder 1994) operates in a single-
graph setting with typed vertices and typed, directed edges.
SUBDUE is a graph mining system, but performs pattern
matching as a supporting step in the mining process. The
general approach is similar to Ullmann's. They construct a

VG1

VG2 VG3

VG4

G

VP2

VP1
VP3

P

vP1 vG1 vG2 vG3 vG4

vG2 vG3 vG4 vG1 vG3 vG4 vG1 vG2 vG4

vG3 vG4 vG2 vG4 vG2 vG3

vP2

vP3

. . .

. . .

search-tree, where the nodes at the ith level map the ith
vertex from P to some vertex in G. A path through the tree
represents a complete mapping of vertices. Since SUBDUE
performs inexact matching, each node in the search-tree
has an associated cost that captures how well P matches G.
If P and G are exactly isomorphic, there will be a mapping
between them with cost 0. The less similar P and G are, the
higher the cost will be. These costs are based on graph edit
distance (Meyers, Wilson, and Hancock 2000). The edit
distance between two graphs is the minimum cost of edit
operations required to transform one graph into another.
Edit operations include deletion, insertion, and substitution
of vertices and edges. For inexact matching, the goal state
is the final state (i.e., leaf) with the least cost of all final
states. Since the search-space is again exponentially large,
SUBDUE applies a branch-and-bound search to the tree.
Because branch-and-bound is guaranteed to find an
optimal solution, the search terminates once any complete
mapping is found. The algorithm also allows an upper limit
to be placed on the number of search nodes considered,
which can lead to a significant savings in search time at the
expense of solution quality.

3.2 Semantic Matching Approaches
So far, I have discussed techniques that match graphs
based solely on structure. Here, I present several
techniques that attempt to match graphs based on their
conceptual interpretations.
 Early approaches to inexact matching were proposed by
Tsai and Fu (Tsai and Fu 1979) and Shapiro and Haralick
(Shapiro and Haralick 1981). Both approaches are based
on the idea of measuring similarity between graphs as the
probability that one graph could result from a random
alteration of the other. Both approaches match based on
graph structure and on the attributes of individual graph
elements. Both approaches are implemented using search-
based algorithms with various pruning strategies. Tsai and
Fu require an exact structural match, but allow for attribute
value differences. They propose calculating empirical
probabilities of attribute deformations based on
observations from data. In addition, they propose the
weighted distance and weighted-square-error distance
measures for cases where such data is unavailable. Shapiro
and Haralick support inexact structural matching by
considering graphs to match only if the amount of non-
matching structure falls within some threshold. More
important structural elements are given more weight and
the presence or absence of these elements more heavily
influences the determination of a match. Likewise, graphs
only match if differences between attribute values of
corresponding graph elements fall within some threshold.
 As previously discussed, SUBDUE determines
similarity between graphs using graph edit distance. The
edit operations used and their associated costs may be
purely structural or they may be based on semantics as
well. For example, the cost of a vertex substitution could
vary based on the semantic similarity of the vertex types
involved (Djoko, Cook, and Holder 1997).

 GraphGrep (Giugno and Shasha 2002) operates in the
graph-transaction setting on undirected graphs with typed
vertices. The algorithm makes implicit use of vertex type
information to perform matching. Matching in GraphGrep
relies on the concept of a label path, which is a sequence
of type labels along a path in a graph (e.g., actor-movie-
director-movie-actor). During index construction, the
algorithm computes a "fingerprint" for each graph in the
data set. The fingerprint of a graph is a set of pairs
h(labelPath), count , one for each unique label path in the

graph. Here h is a hash function and count is the number of
instances of the specified label path in the graph. During
candidate selection, the data set is filtered based on the
fingerprint of the pattern graph P. Specifically, if a graph G
has a lower count value than P for any labelPath, then G
cannot contain an exact match for P and G is eliminated
from consideration. During the subgraph matching phase,
P is broken up into a set of overlapping label paths, which
are compared against the candidate graphs. Label paths of
the candidate graphs that match P's label paths may be
combined into matching subgraphs.
 A number of semantic matching approaches have grown
out of the conceptual graphs literature. The theory of
conceptual graphs is extensive and a full treatment is
beyond the scope of this paper. See Chein and Mugnier
(Chein and Mugnier 1992) and Sowa (Sowa 1984) for
more background on conceptual graphs. For our purposes,
conceptual graphs may be thought of simply as graphs with
typed vertices and edges. Here we describe OntoSeek as an
example of a conceptual graph matcher. In section 3.3, we
describe the work of Poole and Campbell, which makes
use of a more sophisticated similarity model for matching
conceptual graphs.
 OntoSeek (Guarino, Masolo, and Vetere 1999) is an
information retrieval system that matches documents to
queries by representing each as conceptual graphs and then
measuring the semantic similarity between graphs. The
matching of a query Q to a document R requires an exact
structural match between Q and a subgraph of R. However,
individual vertices (i.e., concepts) are considered to match
only if the type of a vertex in R is subsumed by the type of
the corresponding vertex in Q (i.e., if the query concept is a
generalization of the document concept). Matches are
found using search with a "first-fail" heuristic (i.e., the
least probable links are checked first, so that non-matches
are discovered more quickly).
 TMODS (Coffman, Greenblatt, and Marcus 2004;
Greenblatt, Marcus, and Darr. 2005) uses genetic
algorithms to find exact and inexact pattern matches in
directed, attributed graphs. Patterns may specify both
structural and attribute characteristics. TMODS searches
for patterns from the bottom-up, finding sub-patterns first
and then composing them into more complex higher-level
patterns. Coffman et al. do not describe the TMODS
pattern matching algorithm in further detail.
 TRAKS (Aleman-Mesa et al. 2005) performs inexact
pattern matching in typed, directed graphs. Matches are
ranked by similarity to the original pattern, taking into

account ontological distance between types. Entities in a
pattern are processed in ascending order of the frequency
of their type to eliminate non-matches more quickly. The
algorithm searches for matches in a depth-first fashion by
expanding partial matches by one vertex or edge at a time.
 LAW (Wolverton et al. 2003) performs inexact pattern
matching on typed, directed graphs. Patterns are
represented as graphs with typed vertices and edges. The
pattern language also supports the construction of more
sophisticated pattern queries through constraints between
vertices, hierarchy (i.e., sub-patterns), disjunction, and
cardinality (i.e., the number occurrences of a vertex or
edge). Like SUDBUE, LAW uses graph edit distance to
measure similarity between potential matches. LAW's
graph edit operations include deletion and replacement of
vertices and edges. LAW uses ontological distance to
measure differences between types. The LAW search
algorithm is based on A* and selects tree nodes for
expansion based on the minimum worst-case cost. This
cost is calculated as the true cost of the mappings so far
plus the cost of deleting all unexplored vertices and edges
in the pattern. Although the worst-case cost heuristic is not
admissible (in fact, it is an upper bound on the actual cost),
LAW does find the lowest-cost matches because, unlike
pure A*, LAW uses the heuristic only as a selection rule
and not as its termination condition (Wolverton 2006).
 Like TRAKS, LAW generates start states by selecting
the vertex in a pattern with the fewest legal mappings in
the data. Partial matches are expanded by selecting
unexplored vertex mappings and generating adjacent edge
mappings. LAW uses an "anytime" version of A* that may
be terminated at any point and will return the matches it
has found so far. The set of matches is guaranteed to
monotonically improve as the algorithm continues to run.
The LAW pattern matcher uses a "search plan" to
determine the order in which query elements are processed.
Search plans may be specified by the user or automatically
calculated based on a "statistical analysis of the data"
(Wolverton et al. 2006). The authors do not describe the
details of this statistical analysis or the search plan
calculation.
 Statistical Relational Models (SRMs) model the joint
distribution over tuples in relational data and capture the
frequencies with which the tuples join (Getoor 2001).
Although this work does not provide an explicit pattern
matching algorithm, it does demonstrate that SRMs exhibit
substantially lower relative error than previous methods for
estimating the size of a query's result set (i.e., methods that
assume attribute independence or join uniformity). This
suggests an approach for optimizing pattern queries for
semantic graphs using query optimization techniques, as
have been studied in the XML and database communities
(Gibbons and Garofalakis 2001; Ioannidis and Poosala
1995; Polyzotis and Garofalakis 2002; Wang et al. 2004).

3.3 Similarity-Based Matching Approaches
Inexact matching approaches, such as those employed by
SUBDUE, OntoSeek, TMODS, TRAKS, and LAW, as

well as the approaches of Tsai and Fu and Shapiro and
Haralick, match graphs based on their "similarity" to each
other. Such approaches depend upon similarity measures to
make this determination.
 Since graphs may contain type and attribute information
as well as structural information, a graph similarity
measure must potentially take all of these characteristics
into account. Structural similarity is often measured using
graph edit distance, as described in sections 3.1 and 3.2
above. Edit distance can also capture semantic similarity if
edit operations and costs reflect graph semantics. For
example, LAW determines vertex replacement costs based
on the ontological distance between the vertex types
involved (Wolverton et al. 2003). Graph edit operations
and costs can also take into account differences in attribute
values of vertices and edges.
 A drawback to edit-based distance measures (e.g., graph
edit distance) is that they require the specification of costs
for specific edit operations. It is generally not clear how to
optimally assign these costs and changes in cost
assignments can dramatically affect the resulting distance
measure. As an alternative to graph edit distance, Bunke
and his colleagues propose graph distance metrics based on
the maximal common subgraph (Bunke and Shearer 1998)
and minimum common supergraph (Bunke, Jiang, and
Kandel 2000). These metrics can be thought of as
measuring the amount of structural overlap between
graphs. Bunke and colleagues show that both metrics can
be related to graph edit distance by simple equations, under
certain constraints on edit costs.
 Attribute values may be compared using any number of
similarity measures. Many similarity measures are data-
type dependent (e.g., Euclidean distance, string edit
distance, cosine similarity). Other similarity measures are
more general. For example, Lin presents an information-
theoretic definition of similarity and shows how it applies
to strings, feature vectors, ordinal values, words, and
concepts in a taxonomy (Lin 1998). Few of the pattern
matching algorithms surveyed here appear to match based
on attribute values. Exceptions include TMODS, LAW,
and the work of Tsai and Fu and Shapiro and Haralick, as
described in section 3.2. The literature describing TMODS
and LAW does not specify the similarity measures used.
 Poole and Campbell present a similarity measure for
conceptual graphs based on the idea of shared information
(Poole and Campbell 1995). They describe an algorithm
for comparing two graphs, given an interest function.
Interest is essentially a measure of how much information
a graph contains. This approach is similar to Lin's
information theoretic approach, but it is applied directly to
graphs. Poole and Campbell do not consider specific
interest measures.
 Many of the approaches described in this survey take
ontological distance between types into account when
matching, although the specific ontological distance
measures used are often not discussed. Many proposed
ontological distance measures are based on the length of
the path between concepts (i.e., types) in a hierarchy (Lin

1998, Sowa 1984). Other measures take into account both
the concept hierarchy and the way that concepts are
actually used in the data. For example, by Lin's
information-theoretic definition, similarity between
concepts is measured as the ratio between the amount of
information needed to state the commonality of the
concepts and the amount of information needed to fully
state each concept. Applying a standard definition of
information content, Lin's similarity measure amounts to:
(1) concepts A and B are more similar the less their nearest
common ancestor occurs in the data and (2) A and B are
more similar the more each of A and B occur in the data.
 In addition to the specific similarity measures proposed
in the literature, there has been some effort to formalize a
theory behind similarity-based graph matching. Bunke
offers a formal definition of error correcting graph
matching and shows that an optimal edit-based matching
does not depend directly on the costs assigned to individual
edit operations, but only on ratios of these costs (Bunke
1999). Berry et al. describe the derivation of graph
similarity measures based on a theory of inexact pattern
matching that views patterns as procedures for ranking
potential matches (Berry et al. 2004).

4. Evaluation

As might be expected given the number of research
communities involved in work on graph matching over the
past several decades, it is difficult to evaluate the
performance of the various techniques in relation to one
another. Different algorithms have differing goals and
researchers have evaluated their algorithms on data sets
that vary tremendously in terms of size and graph
characteristics. In addition, the complexity of the patterns
evaluated is a huge potential source of variation among the
results of various studies. Evaluations generally have not
attempted to analyze or quantify the complexity of the
patterns used for evaluation.
 Evaluation of graph pattern matching systems to date
has focused on runtime performance. Even for the inexact
matching techniques surveyed here, there is no systematic
evaluation of solution quality (e.g., precision and recall of
matches). The most common evaluation metric is runtime
vs. data set size. In the graph-transaction setting, size refers
to the number of graphs in a data set. In the single-graph
setting, size refers to the number of vertices (or edges) in a
graph. Specific evaluation metrics include runtime vs.
number of matches (i.e., pattern selectivity) (Ullmann
1976), runtime vs. edge count (Berry et al. 2004), and
runtime, computation steps, and tree size vs. vertex and
edge count, number of graphs, and decision tree depth
(Messmer and Bunke 1995).
 The data sets used for evaluation by most systems
mentioned in this survey are synthetically generated graphs
with either random or regular linkage (e.g., mesh
structure). These graphs also tend to be quite small. For
example, Ullmann's graphs have between 12-14 vertices
and ~20-30 edges, the graphs used by Messmer and Bunke

have up to 29 vertices and up to 44 edges, and nauty uses
graphs with between 10-1000 vertices. The graphs used to
evaluate LAW are the largest, with between 12,000 and
240,000 edges. GraphGrep was evaluated on National
Cancer Institute data sets containing up to 16,000
individual graphs representing molecules. These graphs
contain an average of 20 vertices and a maximum of 270
(Giugno and Shasha 2002).
 In addition to the evaluations in individual studies,
researchers have conducted benchmarking activities
comparing several algorithms (Foggia, Sansone, and Vento
2001; Kälviäinen and Oja 1990). These comparisons
consider the runtime and (in Kälviäinen and Oja) matching
performance of graph isomorphism algorithms. They do
not test subgraph isomorphism performance directly.
Foggia et al. use various random and regularly structured
synthetic graphs of up to 1000 nodes. Kälviäinen and Oja
use very small graphs (<10 nodes) derived from image
data. Neither study finds a dominating algorithm. Both
studies show that in general graph matching algorithms are
sensitive to graph characteristics (e.g., link structure), so it
is important to consider these characteristics when
choosing or developing an algorithm. This also suggests
that existing evaluations may not tell us much about the
applicability of algorithms to large real-world data sets.

5. Summary

The problem of searching for patterns in graph-structured
data has many applications in diverse areas. Accordingly,
numerous techniques have been developed for matching
patterns in graphs. Together, these techniques represent
decades of work by researchers from a range of research
communities. Despite variations in properties of graphs,
data sets, and algorithms, common themes have emerged.
Since subgraph isomorphism algorithms are
computationally expensive, keeping isomorphism
calculations to a minimum is crucial to algorithm
performance. Candidate selection is an effective means by
which to accomplish this and techniques for metadata
construction and application (e.g., data summarization,
compression, modeling, and indexing) are central to
effective candidate selection.
 While there has been recent work on pattern matching
based on semantics as well as structure, there appear to be
opportunities to further exploit graph semantics for
indexing, candidate selection, and matching. Based on the
work reviewed in this survey, I wish to highlight the
following observations about pattern matching in semantic
graphs:
• Existing tree-search techniques (e.g., Ullmann's

algorithm) can be readily extended to match and prune
based on semantics as well as structure.

• Existing candidate selection and indexing strategies
focus on graph structure. Type and attribute information
can potentially help filter out irrelevant data more
quickly. However, more sophisticated graph statistics are

required to capture the combination of attributes, type,
and structure.

• Existing graph similarity measures do not incorporate all
of attributes, type, and structure. An important question
for inexact matching in semantic graphs is how to
combine these different kinds of similarity to produce
matches that are consistent with graph semantics. For
example, if G1 and G2 are structurally similar, but have
different attribute values and G1 and G3 have similar
attribute values, but differ structurally, which of G2 and
G3 is a better match for G1?

• Many existing matching algorithms focus on the graph-
transaction setting, where individual graphs tend to be
very small. Therefore, many techniques are not directly
applicable to large graphs (i.e., millions of vertices).
Note that if candidate selection is effective in breaking
large graphs into smaller graphs, techniques developed
for the graph-transaction setting may applicable to these
smaller graphs.

• Existing evaluation focuses on relatively small graphs,
often with connections that are either random or regular.
Real-world semantic graphs (e.g., social networks and
the World Wide Web) are large and exhibit scale-free
network characteristics (e.g., power-law degree
distribution, high clustering coefficient, and short
characteristic path length) (Dorogovtsev and Mendes
2003, Chapter 3.11). Therefore, existing evaluations tell
us little about the applicability of algorithms to matching
in semantic graphs.

Based on these observations, the following appear to be
promising research directions for pattern matching in
semantic graphs:
• Application of query optimization techniques from

relational and XML databases to graph data sets.
Specifically, the optimization of pattern queries based on
selectivity estimates derived from probabilistic relational
models. This may include learned models such as SRMs
as well as statistical, mathematical, or probabilistic
models that do not require learning, but are based on
simple measures calculated from data graphs.

• Techniques for indexing and candidate selection that
utilize graph structure as well as type and attribute
information.

• Techniques for inexact matching that utilize both graph
structure and semantics (i.e., distance measures that
incorporate ontological distance between types as well as
differences in attribute values and graph structure).

• Evaluation of matching algorithms on large real-world
semantic graph data sets.

• Generation of synthetic data sets that reproduce
characteristics of real-world data.

• Evaluation techniques that take into account the
complexity and selectivity of the patterns used for
evaluation.

• Evaluation of correctness or utility of inexact matching
techniques.

6. Acknowledgements

This work was performed under the auspices of the U.S.
Department of Energy by University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48. UCRL-CONF-220852. Many
thanks to Tina Eliassi-Rad for helpful comments on this
survey.

7. References

Aleman-Meza, B.; Halaschek-Wiener, C.; Sahoo, S.S.;
Sheth, A.; and Arpinar, I.B. 2005. Template Based
Semantic Similarity for Security Applications. Lecture
Notes in Computer Science 3495:621-622.

Berry, P.M.; Harrison, I.; Lowrance, J.D.; Rodriguez, A.C.;
Ruspini, E.H.; Thomere, J.M.; Wolverton, M.J. 2004. Link
Analysis Workbench. Tech Report AFRL-IF-RS-TR-2004-
247, Air Force Research Laboratory.

Blau, H.; Immerman, N.; and Jensen, D. 2002. A Visual
Language for Querying and Updating Graphs. Tech Report
2002-037, Dept. of Comp. Sci., Univ. of Mass. Amherst.

Bunke, H. 1999. Error Correcting Graph Matching: On the
Influence of the Underlying Cost Function. IEEE Trans.
Pattern Analysis and Machine Intelligence 21(9):917-922.

Bunke, H.; Jiang, X.; and Kandel, A. 2000. On the
Minimum Common Supergraph of Two Graphs.
Computing 65(1): 13-25.

Bunke, H. and Shearer, K. 1998. A Graph Distance Metric
Based on the Maximal Common Subgraph. Pattern
Recognition Letters 19(3-4): 255-259.

Chein, M. and Mugnier, M.-L. 1992. Conceptual Graphs:
Fundamental Notions. Revue d'Intelligence Artificielle
6(4): 365-406.

Christmas, W.J.; Kittler, J.; and Petrou, M. 1995. Structural
Matching in Computer Vision Using Probabilistic
Relaxation. IEEE Trans. on Pattern Analysis and Machine
Intelligence 17(8):749–764.

Coffman, T.; Greenblatt, S.; and Marcus, S. 2004. Graph-
Based Technologies for Intelligence Analysis.
Communications of the ACM, Special Issue on Emerging
Technologies for Homeland Security 47(3):45-47.

Cook, D.J. and Holder, L.B. 1994. Substructure Discovery
Using Minimum Description Length and Background
Knowledge. J. Artificial Intelligence Research 1:231-255.

Djoko, S.; Cook, D.J.; and Holder, L. B. 1997. An
Empirical Study of Domain Knowledge and its Benefits to
Substructure Discovery. IEEE Trans. on Knowledge and
Data Engineering 9(4):575-586.

Dorogovtsev, S.N. and Mendes, J.F.F. 2003. Evolution of
Networks: From Biological Nets to the Internet and WWW.
Oxford, UK.: Oxford University Press.

Foggia, P.; Sansone, C.; and Vento, M. 2001. A
Performance Comparison of Five Algorithms for Graph

Isomorphism. Int'l Workshop on Graph-based
Representations in Pattern Recognition, 188-199.

Gallagher, B. 2006. The State of the Art in Graph-Based
Pattern Matching. Tech Report UCRL-TR-220300,
Lawrence Livermore National Laboratory.

Getoor, L. 2001. Learning Statistical Models from
Relational Data," Ph.D. diss., Stanford University.

Gibbons, P.B. and Garofalakis, M. 2001. Approximate
Query Processing: Taming the Terabytes! Tutorial in Int'l
Conf. on Very Large Data Bases.

Giugno, R. and Shasha, D. 2002. Graphgrep: A Fast and
Universal Method for Querying Graphs. In Proc. IEEE
Int'l Conf. on Pattern Recognition, 112-115.

Goethals, B.; Hoekx, E.; and Van den Bussche, J. 2005.
Mining Tree Queries in a Graph. In Proc. ACM SIGKDD
Int'l Conf. on Knowledge Discovery and Data Mining, 61-
69.

Greenblatt, S.; Marcus, S.; and Darr, T. 2005. TMODS -
Integrated Fusion Dashboard - Applying Fusion of Fusion
Systems to Counter-Terrorism. Presented to Int'l Conf. on
Intelligence Analysis.

Guarino, N.; Masolo, C.; and Vetere, G. 1999. OntoSeek:
Content-Based Access to the Web. IEEE Intelligent
Systems 14(3):70-80.

Ioannidis, Y.E. and Poosala, V. 1995. Balancing
Histogram Optimality and Practicality for Query Result
Size Estimation. In Proc. ACM SIGMOD Int'l Conf. on the
Management of Data, 233-244.

Kälviäinen, H. and Oja, E. 1990. Comparisons of
Attributed Graph Matching Algorithms for Computer
Vision. In Proc. Finnish Artificial Intelligence Sypm.
(STeP), 354-368.

Kim, D.H.; Yun, I.D.; and Lee, S.U. 2004. A Comparative
Study on Attributed Relational Graph Matching
Algorithms for Perceptual 3-D Shape Descriptor in MPEG-
7. In Proc. ACM Int'l Conf. on Multimedia, 700-707.

Kuramochi, M. and Karypis, G. 2005. Finding Frequent
Patterns in a Large Sparse Graph. Data Mining and
Knowledge Discovery 11(3):243-271.

Lin, D. 1998. An Information-theoretic Definition of
Similarity. In Proc. Int'l Conf. on Machine Learning, 296-
304.

McKay, B.D. 1990. Nauty User's Guide (Version 1.5).
Tech Report TR-CS-9002, Dept. of Comp. Sci., Australian
National Univ., Canberra.

Messmer, B.T. and Bunke, H. 1995. Subgraph
Isomorphism in Polynomial Time. Tech Report TR-IAM-
95-003, Institute of Comp. Sci. and Applied Math, Univ. of
Bern.

Meyers, R.; Wilson, R.C.; and Hancock, E.R. 2000.
Bayesian Graph Edit Distance. IEEE Trans. on Pattern
Analysis and Machine Intelligence 22(6):628-635.

Polyzotis, N. and Garofalakis, M. 2002. Statistical
Synopses for Graph-structured XML Databases. In Proc.
ACM SIGMOD Int'l Conf. on the Management of Data,
358-369.

Poole, J. and Campbell, J.A. 1995. A Novel Algorithm for
Matching Conceptual and Related Graphs. In Proc. Int'l
Conf. on Conceptual Structures, 293-307.

Shapiro, L.G. and Haralick, R.M. 1981. Structural
Descriptions and Inexact Matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence 3: 504-519.

Shasha, D.; Wang, J.T.L.; and Giugno, R. 2002.
Algorithmics and Applications of Tree and Graph
Searching. In Proc. ACM Symposium on Principles of
Database Systems, 39-52.

Sowa, J. F. 1984. Conceptual Structures: Information
Processing in Mind and Machine. Reading, Mass.:
Addison-Wesley.

Tsai, W.-H. and Fu, K.-S. 1979. Error-Correcting
Isomorphisms of Attributed Relational Graphs for Pattern
Analysis. IEEE Transactions on Systems, Man and
Cybernetics 9:757-768.

Ullmann, J.R. 1976. An Algorithm for Subgraph
Isomorphism. J. ACM 23(1):31-42.

Umeyama, S. 1988. An Eigendecomposition Approach to
Weighted Graph Matching Problems. IEEE Trans. on
Pattern Analysis and Machine Intelligence 10(5):695-703.

Wang, W.; Jiang, H.; Lu, H.; and Yu, J.X. 2004. Bloom
Histogram: Path Selectivity Estimation for XML Data with
Updates. In Proc. Int'l Conf. on Very Large Data Bases,
240-251.

Washio T., and Motoda, H. 2003. State of the Art of
Graph-based Data Mining. ACM SIGKDD Explorations
Special Issue on Multi Relational Data Mining 5(1):59-68.

Wolverton, M. 2006. Personal communication with author.

Wolverton, M.; Berry, P.; Harrison, I.; Lowrance, J.;
Morley, D.; Rodriguez, A.; Ruspini, E.; and Thomere, J.
2003. LAW: A Workbench for Approximate Pattern
Matching in Relational Data. In Proc. Innovative
Applications of Artificial Intelligence Conf., 143-150.

Wolverton, M.; Harrison, I.; Lowrance, J.; Rodriguez, A.;
and Thomere, J. 2006. Software Supported Pattern
Development in Intelligence Analysis. Publication 1147,
Artificial Intelligence Center, SRI International.

Wörlein, M.; Meinl, T.; Fischer, I.; and Philippsen, M.
2005. A Quantitative Comparison of the Subgraph Miners
MoFa, gSpan, FFSM, and Gaston. Lecture Notes in
Computer Science 3721:392-403.

