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Abstract

A major challenge in evolutionary computation is to
find the right level of abstraction of biological devel-
opment to capture its essential properties without in-
troducing unnecessary inefficiencies. In this paper, a
novel abstraction of natural development, called Com-
positional Pattern Producing Networks (CPPNs), is pro-
posed. Unlike most computational abstractions of nat-
ural development, CPPNs do not include a develop-
mental phase, differentiating them from developmen-
tal encodings. Instead of development, CPPNs employ
compositions of functions derived from gradient pat-
terns present in developing natural organisms. In this
paper, a variant of the NeuroEvolution of Augment-
ing Topologies (NEAT) method, called CPPN-NEAT,
evolves increasingly complex CPPNs, producing pat-
terns with strikingly natural characteristics.

Introduction
The discovery of systems as complex as humans is only pos-
sible through extraordinarily efficient encoding. In general,
the more dimensions there are in the search space, the more
difficult the search. Searching through thousands of dimen-
sions is prohibitive; trillions, on the other hand, is likely in-
tractable. Yet there are trillions of connections in the hu-
man brain (Zigmond et al., 1999). The only way to discover
such high complexity may be through a mapping between
genotype and phenotype that translates few dimensions into
many, i.e. through an indirect encoding.

A most promising form of indirect encoding is develop-
mental encoding, which is motivated directly from biology
(Bentley & Kumar, 1999; Hornby & Pollack, 2002; Stanley
& Miikkulainen, 2003). In biological development, DNA
maps to the mature phenotype through a process of growth
that builds the phenotype over time. Development facilitates
the reuse of genes because the same gene can be activated at
any location and any time during the development process.
Thus a small set of genes can encode a much larger set of
structural components.

This observation has inspired an active field of research in
artificial developmental encodings (Bentley & Kumar, 1999;
Bongard, 2002; Dellaert & Beer, 1996; Federici, 2004;
Gruau, Whitley, & Pyeatt, 1996; Hornby & Pollack, 2002;
Miller, 2004). The aim is to find the right abstraction of
natural development for a computer running an evolutionary
algorithm, so that it can begin to discover complexity on a

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

natural scale. Abstractions range from low-level cell chem-
istry simulations to high-level grammatical rewrite systems
(see Stanley & Miikkulainen, 2003 for a review). Yet none
so far have come close to discovering the level of complexity
seen in nature.

This paper proposes a novel abstraction of natural devel-
opment that breaks a strong tradition in developmental en-
coding research: The proposed abstraction captures the es-
sential properties of natural developmental encoding without
implementing a process of development. The fundamental
insight behind this new encoding, called Compositional Pat-
tern Producing Networks (CPPNs), is that it is possible to
directly describe the structural relationships that result from
a process of development without simulating the process it-
self. Instead, the description is encoded through a composi-
tion of functions, each of which is based on observed gradi-
ent patterns in natural embryos.

Because CPPNs are structurally similar to artificial neu-
ral networks, they can right away take advantage of existing
effective methods for evolving neural networks. In particu-
lar, the Neuroevolution of Augmenting Topologies (NEAT)
method evolves increasingly complex neural networks over
generations (Stanley & Miikkulainen, 2002, 2004). In this
paper, with only slight adjustment, NEAT is modified to
create CPPN-NEAT, which evolves increasingly complex
CPPNs.

Experimental results obtained through an interactive evo-
lutionary process show striking examples of many of the
fundamental structural motifs and elaborations of nature be-
ing created by CPPN-NEAT. Symmetry, reuse, reuse with
variation, preservation of regularities, and elaboration of ex-
isting regularities all are demonstrated and capitalized on by
CPPN-NEAT, establishing it as a promising new abstraction
of natural developmental encoding, and one that is able to
evolve increasingly complex patterns.

The next section provides background on the role of de-
velopment in both natural evolution and artificial evolution-
ary algorithms. The CPPN approach is then explained, fol-
lowed by how CPPN-NEAT evolves increasingly complex
patterns. The final sections present and discuss experimen-
tal results.

Background

This section introduces important concepts in developmental
encoding and the special connection between evolution and
development.



Artificial Developmental Encodings
The apparent connection between development and com-
plexity in biology has inspired considerable research into
artificial developmental encoding in recent years (Astor &
Adami, 2000; Bentley & Kumar, 1999; Bongard, 2002;
Dellaert & Beer, 1996; Federici, 2004; Gruau, Whitley,
& Pyeatt, 1996; Hornby & Pollack, 2002; Komosinski
& Rotaru-Varga, 2001; Lindenmayer, 1968; Miller, 2004;
Sims, 1994; Turing, 1952). Just as a biological embryo starts
from a single cell and through a series of genetic instructions
achieves structures of astronomical complexity, artificial de-
velopmental encodings strive to map an artificial genome to
a comparatively more complex phenotype through a series
of growth steps.

Development makes such representational efficiency pos-
sible by allowing genes to be reused in the process of as-
sembling the phenotype. Artificial developmental encodings
attempt to exploit this capability in a similar way to nature.
However, because computers differ from the natural world
and because it is not necessary to simulate every facet of a
biological process in order to capture its essential properties,
finding the right level of abstraction remains an active re-
search area. Low-level abstractions often evolve genes that
produce simulated proteins that diffuse and react as the phe-
notype develops. The networks formed by genes that send
and receive signals through their protein products are called
genetic regulatory networks (GRNs; Bongard, 2002; Del-
laert & Beer, 1996). In contrast, higher-level abstractions
iteratively apply replacement rules to grow a final structure
from a single starting symbol (Hornby & Pollack, 2002).

Developmental approaches attempt to capture the essen-
tial properties of development at the right level of abstrac-
tion. However, no approach has achieved complexity close
to that seen in nature. Thus, the search for powerful de-
velopmental encodings continues (Stanley & Miikkulainen,
2003).

Complexification
Development and evolution are inextricably linked. The pro-
cess of development provides a framework within which
evolution can elaborate and increase the complexity of its
products by adding new refinements and divisions during
embryogenesis. The added instructions that execute these
elaborations are the products of new genes added over the
course of evolution (Martin, 1999; Watson et al., 1987).
This process of complexification allows evolution to dis-
cover more complex phenotypes than would be possible
through optimizing a fixed set of genes.

In any search process, the more dimensions there are in a
solution, the harder it is to discover. In other words, complex
solutions are more difficult to evolve than simple ones. Yet
natural evolution can nevertheless discover organisms with
tens of thousands of genes because it does not start search-
ing in a space of the same complexity as the final solution.
By occasionally adding genes, evolution can perform a com-
plexifying function over and above optimization. This pro-
cess of gradually adding new genes has been confirmed in
natural evolution (Martin, 1999; Watson et al., 1987) and
shown to improve adaptation (Altenberg, 1994).
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Figure 1: A Function Produces a Phenotype. The func-
tion f takes arguments x and y, which are coordinates in a two-
dimensional space. When all the coordinates are drawn with an
intensity corresponding to the output of f at that coordinate, the
result is a pattern, which can be viewed as a phenotype whose geno-
type is f . In this example, f produces a triangular phenotype.

Through complexification, major animal body plans can
be established early in evolution and then elaborated and re-
fined as new genes are added (Martin, 1999). General con-
ventions that are encapsulated in only a few genes, such as
bilateral symmetry, can be captured in early organisms and
later elaborated on with increasingly intricate limbs and seg-
ments. Thus, it is important that any encoding abstracted
from biology be able to complexify in addition to efficiently
encode regularities.

The next section presents an abstraction of development
with a novel twist.

Patterns Without Development
A strong assumption behind much recent work in develop-
mental encoding is that indeed development in a simulation
is an abstraction that captures the essential properties of de-
velopment in nature. Although this assumption is power-
fully intuitive, in fact development need not be part of such
an abstraction.

This section introduces a method for representing com-
plex systems that does not employ a developmental process
yet still captures its essential properties. The central insight
is that complex natural patterns can be generated by a pro-
cess more fundamental than development, capturing its es-
sential properties, yet skipping its process of growth.

Functions and Regularities
A phenotype can be described as a function of n dimensions,
where n is the number dimensions in the physical world.1

For each coordinate, the presence or absence of a point, or
a continuous value representing its level of expression, is an
output of the function that describes the phenotype. Figure
1 shows how a two-dimensional phenotype can be generated
by a function of two parameters. This view of the phenotype
is significant because it implies that its regularities and sym-
metries can be captured through a purely functional, non-
developmental description. A mathematical abstraction of
each stage of development then can be represented explic-
itly inside the function.

For example, a significant task at early stages of devel-
opment in natural embryogeny is to define a coordinate

1The phenotype need not be a physical morphology; physical
space in this section is a conceptual device for describing an ab-
stract configuration of any type.
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Figure 2: Gradients Define the Body Plan. A simplified insect
model with discrete body segments and bilateral symmetry is de-
picted. Gradients along the major axes define the the overall body
plan. The anterior-posterior gradient allows segments to situate in
the embryo along that axis, each one destined to grow its own asso-
ciated body parts such as wings or legs. The Gaussian gradient, a
function of the original left-right axis gradient, is distributed sym-
metrically about that axis, allowing bilateral symmetry to develop
from it.

frame, i.e. a set of virtual coordinate axes, upon which fu-
ture stages of development will be based (Meinhardt, 1982;
Raff, 1996). The simplest and most basic of these coordi-
nate frames are the main axes of the body, which are de-
fined at the very beginning of development, inside the egg
itself (Raff, 1996, p.188). These axes include the anterior-
posterior axis (i.e. head to feet), and the dorsal-ventral axis
(i.e. back and front). Just like the x and y axes in a sim-
ple Cartesian coordinate system, these two main axes are or-
thogonal and roughly linear. The initial axes are determined
through a cascade of gene interactions defined by a GRN,
that is, a signaling pattern that develops over time culmi-
nates in a chemical gradient along each initial axis.

Once the initial axes are defined, new coordinate frames
for subregions of the body can be appropriately spatially sit-
uated (Meinhardt, 1982). In this way, gradients that define
earlier coordinate frames are inputs to future cascades that
produce more localized coordinate frames. For example,
the body plan of the Drosophila fly includes a series of seg-
ments, each with its own internal coordinate axes. Each seg-
ment is the origin of a specific body part or region, such as
legs, wings, and the head. Importantly, the internal coordi-
nate frame of each segment must be determined by where
that segment lies along the anterior-posterior axis of the
complete body. That is, higher-level coordinate frames are
determined by lower-level frames. In fact, the genes that de-
termine the segmentation of the body by defining their coor-
dinate frames (called HOX genes) are activated from the ini-
tial axial gradients (Curtis, Apfeld, & Lehmann, 1995; Lall
& Patel, 2001). Figure 2 shows the anterior-posterior axis of
a simplified insect model, and segments along its axis.

Interestingly, although the coordinate frames in natural
development are defined through GRNs that unfold over
time, in principle the same axes can be described function-
ally instead, simply by composing the functions that de-
scribe them. Through function composition, biologically
plausible new coordinate frames can be derived from pre-
existing ones without a developmental process. Consider
the left-right axis, along which bilateral symmetry is present

in many organisms. Coordinates along this axis can be de-
fined simply as f(x) = x. However, in order to become
bilaterally symmetric along this axis, a developing embryo
must organize a gradient that peaks at the center and di-
minishes towards both the left and right sides. The orga-
nizing process to achieve such a gradient may be complex,
yet functionally it can be described simply as a Gaussian:

g(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

(figure 2).
Just as a symmetric function can yield bilateral symme-

try, segmentation can be represented through periodic func-
tions. The function j(y) = sin(y) effectively assigns a re-
peating coordinate frame (i.e. a set of segments) laid along
the anterior-posterior axis. In the case of sine, each coordi-
nate frame is itself symmetric about its peak value. Repeat-
ing asymmetric frames can be created analogously using the
modulus function, as in k(y) = y mod 1.

Coordinate frames created through a developmental pro-
cess interact with each other and organize in parallel to pro-
duce complex patterns with regularities. In the same way,
functionally-represented frames can be composed to create
complex regularities. For example, bilateral symmetry and
segmentation along the left-right axis can produce two sets
of segments with opposite polarities. This phenomenon is
achieved simply by feeding the output of a symmetric func-
tion into a periodic function. This simple composition cre-
ates a new set of coordinate frames that can now be used for
further refinement, all without a process of development.

Thus, the fundamental phenomena of development are in
fact analogous to a series of function compositions that each
in turn create a new, more refined coordinate frame. Even-
tually, these frames can combine to form patterns much like
those observed in nature. This analogy raises the intrigu-
ing possibility that function composition is the right level of
abstraction for development, even though function compo-
sition is not intrinsically a developmental process. The or-
der in which functions are composed is an abstraction for
the chronology of events over the course of development
through time.

The next section explains how compositions of functions
can be evolved in a way that maintains the analogy with de-
velopment: Major body-plan features can be established first
and then refined in future generations, just as happens over
the course of natural evolution.

Evolving Compositional Pattern Producing
Networks
A natural way to represent a composition of many functions
is as a connected graph (figure 3). The initial coordinate axes
(i.e. the most basic coordinate frame) can be provided as in-
puts to the graph. The next level of nodes are descriptions of
the first stages of development, such as establishing bilateral
symmetry. Higher level nodes then establish increasingly re-
fined coordinate frames. The final outputs are thus informed
by each transformation that takes place before them. In this
way, the entire graph is like a diagram of the sequence of
steps that happen over a developmental chronology.

Interestingly, a function composition graph of this type
is very similar to an artificial neural network with arbitrary
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Figure 3: Composition of Functions as a Graph. The graph
determines which functions connect to which. The connections are
weighted such that the output of a function is multiplied by the
weight of its outgoing connection. If multiple connections feed
into the same function then the downstream function takes the sum
of their weighted outputs. Note that the topology is unconstrained
and can represent any possible relationships (including recurrent).

topology, contrasting only in the set of activation functions.
The analogy between a function composition graph and an
artificial neural network (ANN) is so strong, in fact, that it is
tempting to equate the two. However, while they are clearly
related, using the term artificial neural network would be
misleading in the context of this research because artifi-
cial neural networks were so named in order to establish a
metaphor with a different biological phenomenon, i.e. the
brain. The terminology should avoid making the implica-
tion that biological, thinking brains are in effect the same
as developing embryos. Therefore, this paper uses the term
Compositional Pattern Producing Network (CPPN) to refer
to graph constructs that describe compositions of functions
intended to produce regular patterns.

It is fortuitous that CPPNs and ANNs are virtually the
same from a structural perspective because an effective
method already exists to evolve the topology and weights of
ANNs that is also designed to produce the process of com-
plexification discussed earlier: The NeuroEvolution of Aug-
menting Topologies method (NEAT; Stanley & Miikkulai-
nen, 2002, 2004) evolves increasingly complex ANNs over
generations, and addresses the challenges that come with
evolving a population of diverse complexifying topologies.

Although NEAT was originally designed to evolve ANNs,
it requires only trivial modification to evolve CPPNs, since
they are so similar. The next section reviews the NEAT
method, followed by a description of how NEAT is modi-
fied to produce CPPN-NEAT.

NeuroEvolution of Augmenting Topologies (NEAT)
This section briefly reviews the NEAT method. See also
Stanley & Miikkulainen (2002, 2004) for detailed descrip-
tions of original NEAT. The NEAT method was originally
developed to solve difficult control and sequential deci-
sion tasks. The neural networks control agents that se-
lect actions based on their sensory inputs. While previous
methods that evolved neural networks, i.e. neuroevolution
methods, evolved either fixed topology networks (Gomez &
Miikkulainen, 1999; Saravanan & Fogel, 1995), or arbitrary
random-topology networks (Angeline, Saunders, & Pollack,
1993; Gruau, Whitley, & Pyeatt, 1996; Yao, 1999), NEAT is
the first to begin evolution with a population of small, simple

networks and complexify the network topology over genera-
tions, leading to increasingly sophisticated behavior.

Before describing the CPPN extension, let us review the
three key ideas on which the basic NEAT method is based.
First, in order to allow network structures to increase in com-
plexity over generations, a method is needed to keep track
of which gene is which. Otherwise, it is not clear in later
generations which individual is compatible with which, or
how their genes should be combined to produce offspring.
NEAT solves this problem by assigning a unique historical
marking to every new piece of network structure that appears
through a structural mutation. The historical marking is a
number assigned to each gene corresponding to its order of
appearance over the course of evolution. The numbers are
inherited during crossover unchanged, and allow NEAT to
perform crossover without the need for expensive topologi-
cal analysis. That way, genomes of different organizations
and sizes stay compatible throughout evolution, solving the
previously open problem of matching different topologies
(Radcliffe, 1993) in an evolving population.

Second, NEAT speciates the population, so that individ-
uals compete primarily within their own niches instead of
with the population at large. This way, topological innova-
tions are protected and have time to optimize their structure
before competing with other niches in the population. NEAT
uses the historical markings on genes to determine to which
species different individuals belong.

Third, other systems that evolve network topologies and
weights begin evolution with a population of random topolo-
gies (Gruau, Whitley, & Pyeatt, 1996; Yao, 1999). In con-
trast, NEAT begins with a uniform population of simple net-
works with no hidden nodes, differing only in their initial
random weights. Speciation protects new innovations, al-
lowing diverse topologies to gradually accumulate over evo-
lution, and thus diverse and complex phenotype patterns to
be represented. Thus, NEAT can start minimally, and grow
the necessary structure over generations.

CPPN-NEAT
CPPN-NEAT is an extension of NEAT that allows it to
evolve CPPNs. While networks in original NEAT only in-
clude hidden nodes with sigmoid functions, node genes in
CPPN-NEAT include a field for specifying the activation
function. When a new node is created, it is assigned a ran-
dom activation function from a canonical set (e.g. including
Gaussian, sigmoid, and periodic functions). Furthermore,
the compatibility distance function that is utilized to deter-
mine whether two networks belong in the same species in-
cludes an additional argument that counts how many acti-
vation functions differ between the two individuals. This
allows speciation to take activation function differences into
account. Because CPPN-NEAT is an enhancement of an ef-
fective preexisting method, it provides a reliable platform
for studying the evolution of increasingly complex forms.
While other graph-structure evolution methods such as ge-
netic programming (Koza, 1992; Miller & Thomson, 2000)
do not explicitly implement complexification, NEAT can
evolve increasingly complex CPPNs, mapping to a succes-
sion of increasingly elaborate phenotypic body plans. The



next section explains why CPPNs can potentially save sig-
nificant computational resources compared to developmen-
tal encodings.

Computational Advantages of CPPNs
The CPPN abstraction affords several computational advan-
tages over traditional developmental encodings:

• CPPNs map to phenotypes without simulating a process
of development.
• CPPNs store patterns at infinite resolution since they are

mathematical structures.
• Users can bias the kinds of patterns produced by CPPNs

by inputting user-defined coordinate frames in addition to
x and y.
• Unlike other developmental encodings (Andersen et al.,

2005; Miller, 2004; Roggen & Federici, 2004), CPPNs
can always regenerate damaged structure perfectly be-
cause each coordinate is independently computed.

The next section demonstrates through several experi-
ments that CPPN-NEAT produces phenotypes that exhibit
strikingly natural characteristics.

Experiments
Developmental encodings are are traditionally evaluated for
their performance on benchmark tasks (Bentley & Kumar,
1999; Bongard, 2002; Federici, 2004; Gruau, Whitley, &
Pyeatt, 1996; Hornby & Pollack, 2002) such as evolving to a
target or comparing with direct encoding. For three reasons,
this paper takes a different experimental approach. First, the
primary aim is to demonstrate that CPPNs abstract the essen-
tial properties of natural development even though they do
not themselves employ a process of development. Develop-
mental encodings, on the other hand, explicitly implement a
process of development and therefore researchers generally
need not attempt to establish such a link.

Second, natural organisms do not appear to be able to take
on any arbitrary form. For example, no macroscopic organ-
ism has any appendage analogous to a wheel, even though
the wheel is a fundamental engineering structure. Therefore,
rather than focus on whether a CPPN can represent a certain
class of object, the following experiments focus on its ability
to establish and exploit regularities in general.

Third, natural evolution does not evolve to specified tar-
gets. Rather, it exploits established regularities in creative
ways. Thus, evaluating against a specific target or task does
not necessarily reveal CPPNs’ ability to similarly establish
and then exploit regularities. The major contribution of this
paper is thus to establish that a new kind of abstraction of
development is admissible.

CPPN-NEAT-based Interactive Pattern Evolution
In order to explore both the patterns that CPPNs produce and
the way evolution varies those patterns, an interactive evolu-
tionary approach was taken. In interactive evolution (Takagi,
2001), the user performs the selection step that determines
which individuals will be parents of the next generation. By
introducing this interactive role for the experimenter, it is

(a) DNGA (b) SNGA
Figure 4: Interactive Evolution Experimental Interfaces. The
two platforms shown above allow an experimenter to evolve CPPN-
generated patterns interactively. The set of patterns shown are the
current population, and the experimenter can select the parents of
the next generation (i.e. fitnesses are not assigned). Both plat-
forms were used in the experiments in this section. Random initial
generations are shown for each. (a) DelphiNEAT-based Genetic
Art (DNGA) is by Mattias Fagerlund, and uses his DelphiNEAT
platform to evolve CPPNs. (b) SharpNEAT-based Genetic Art
(SNGA), which uses Colin Green’s SharpNEAT platform, is by
Holger Ferstl. Both platforms are freely available, including source
code (see Acknowledgements). The interactive interface makes it
possible to explore the way evolution establishes and varies regu-
larities, as opposed to attempting to solve a particular benchmark.

possible to intentionally explore the space of generated pat-
terns in ways that would otherwise be impossible.

The interactive approach works by visually presenting the
experimenter with all the patterns in the current generation
(figure 4 introduces the two programs used in the experi-
ments). The experimenter then picks the parents of the next
generation by clicking on them. Thus, the selection step is
entirely determined by the human experimenter. The aim is
to intentionally search for certain types of patterns in order
to ascertain whether they can be elaborated and maintained
in the same ways as in natural evolution.

This approach resembles what are commonly called ge-
netic art programs, which are traditionally used to gener-
ate aesthetically pleasing abstract pictures (Sims, 1991; Tak-
agi, 2001). Genetic art programs closely follow the original
Blind Watchmaker idea from Dawkins (1986), in which sim-
ple genetically-encoded patterns are evolved through an in-
teractive interface. While the interactive genetic art concept
is often considered an entertainment application or artistic
tool, it is also a rich an underutilized experimental medium
for exploring the characteristics of various encodings.

In this paper, this procedure is used to analyze how CPPN-
NEAT encodes regularities. Note that the aim is not to sug-
gest that interactive evolution is a necessary component of
CPPN-NEAT, but rather to use interactivity to explore its
encoding properties experimentally. Both programs begin
with a population of randomly initialized networks with one
or two hidden nodes. The user picks one or two parents
of the next generation, which is then displayed. Gaussian
and sigmoid functions are the main primitives composed by
both programs to produce phenotypes in a two-dimensional
Cartesian space. Furthermore, special coordinate frames are
provided at the inputs in addition to x and y. DNGA (fig-
ure 4a) provides the CPPN with a distance from the center
coordinate (d), while SNGA (figure 4b) allows the experi-
menter to provide any arbitrary coordinates frames, includ-



ing sine waves of varying period. Thus, these programs al-
low the user to both explore and observe explicit examples
of how CPPNs compose functions and derive patterns from
provided coordinate frames.

Each new generation is created by mutating and mating
the chosen parents. CPPNs complexify, with mutations oc-
casionally adding more functions and connections in the
CPPN. In SNGA, the probability of adding a neuron to a
child genome is 0.5 and the probability of adding a connec-
tion is 0.4. In DNGA, the probabilities are 0.06 for both.
Extensive experimentation verified that both systems con-
sistently evolve complex regular phenotypes, indicating that
interactive CPPN-NEAT is robust to a wide range of these
parameters. In both systems, function outputs range between
[−1, 1]. However, ink level is darker the closer the output
is to zero. Therefore, an output of either -1 or 1 produces
white. This approach was found to produce the most inter-
esting patterns in early generations.

The following experiments evaluate evolved patterns
against the characteristics of natural biological patterns.

Elaboration of Regularity
During a period of evolution known as the Cambrian Explo-
sion, when numerous new animal body plans were arising,
the bilateria appeared. The simplest of the bilateria were a
kind of flatworm (Raff, 1996, pp. 38-41). This original body
plan has been elaborated for hundreds of millions of years,
all the while preserving its fundamental design. Can a CPPN
analogously capture a bilateral body plan and maintain and
elaborate on bilateral symmetry for generations?

To address this question, a spaceship morphology was in-
teractively evolved with DNGA. The first step was to de-
termine whether the CPPN can discover and establish bi-
lateral symmetry. As figure 4 shows, symmetry is by no
means ubiquitous in random initial populations. However,
in 20 separate runs, bilateral symmetry arises within the first
three generations 100% of the time. Evolution quickly finds
a CPPN structure that defines symmetry across a single axis,
thereby creating a framework for bilateral symmetry.

The first individual with a recognizable spaceship-like
pattern is shown in figure 5a. It has seventeen connections
and four hidden functions that together produce a tail, wings,
and a nose. These features persist throughout evolution. A
succession of descendants that elaborate on this initial theme
is shown in figure 5. What is striking about these elabora-
tions is how they genuinely preserve the underlying regu-
larities but also become more complex as their respective
CPPNs complexify.

Figure 5h shows a remarkable and surprising variation on
the tail in which evolution invents tail fins. The tail fins re-
spect the underlying symmetry and at the same time intro-
duce entirely new and elegant features. This kind of elabo-
ration suggests that the complexifying CPPNs in effect im-
plement the fundamental process of continual elaboration of
form. This level of meaningful elaboration is rarely seen in
artificial developmental encodings.

Developmental encoding is often cited for its potential to
discover and elaborate on useful modules (Bentley & Ku-
mar, 1999; De Jong & Thierens, 2004; Hornby & Pollack,

2002). The spaceships in figure 5 exhibit distinct modules
that respect a regular structure. For example, the wing con-
cept still conforms to the same general organization and
structure even as it undergoes significant changes: Between
figures 5h and 5i, the wing is varied significantly while pre-
serving the overall spaceship structure. A similarly signifi-
cant elaboration, in this case of the tail fin module, happens
between figures 5i and 5j. Thus, a composition of functions
can implicitly encode discrete modular structures, each with
its own ability to vary in meaningful ways.

Not only can the CPPN encoding maintain and elaborate
on existing regularities, but it can create new ones. Evolu-
tion creates a novel “cockpit” in figure 5j. Looking closely,
it can be seen that the cockpit is co-opted from line deco-
rations on the tail in figure 5i. Natural evolution also fre-
quently innovatives through exaptation, i.e. by co-opting an
existing trait for a new purpose (True & Carroll, 2002).

Whereas the initial spaceship CPPN contains four hidden
functions and 16 connections (figure 5a), the final, signif-
icantly more complex spaceship CPPN includes nine hid-
den functions and 38 connections (figure 5k). Thus, the
size of the genotype slightly more than doubled due to
CPPN-NEAT’s complexification. The added structure al-
lows CPPN-NEAT to lay new features on top of established
coordinate frames. It is also notable that only 38 connections
code for the complex pattern shown in figure 5k, indicating
that CPPNs have the potential to reuse information and rep-
resent patterns in a way that enhances representational effi-
ciency, just as developmental encodings do.

The succession of spaceship phenotypes exhibits several
of the fundamental characteristics of developmental encod-
ing in nature (Stanley, 2006). Symmetry is established early
and then elaborated. Regularity is preserved and expanded.
Mutations respect the underlying body plan as it elabo-
rates through complexification. The next section addresses
whether CPPNs can also create regularities that vary.

Repetition with Variation
Reuse through repetition with variation is crucial in natural
organisms. Fingers and toes share fundamental regularities
yet also differ in size and proportion. Cortical columns in
the brain also share structure yet are not identical (Zigmond
et al., 1999). If every slight variation on a theme required
an entirely different set of genes, the representational space
of many organisms would be prohibitively complex. Can a
CPPN capture this important kind of regularity?

To answer this question, instead of inputting the x,y, and
d coordinates into the CPPN in SNGA as normal, sin(10x),
sin(10y), and dwere input instead. By inputting sine waves,
the same coordinate frame repeats multiple times. However,
the d coordinate, i.e. distance from center, does not repeat.
Therefore, functions higher in the CPPN can utilize both the
repeating frame of reference and the absolute reference at
the same time.

Figure 6a shows a repeating pattern generated by the
CPPN with sine inputs. The period of the sine wave is ap-
parent in the image, but more remarkable is that the design
at the center of each repeated instance is slightly different
(figure 6b). This example demonstrates how a CPPN can



(a) 4 func., 17 conn. (b) 5 func., 24 conn. (c) 6 func., 25 conn. (d) 8 func., 28 conn.

(e) 8 func., 30 conn. (f) 8 func., 31 conn. (g) 8 func., 32 conn. (h) 8 func., 34 conn.

(i) 8 func., 36 conn. (j) 9 func., 36 conn. (k) 9 func., 38 conn.

Figure 5: Sequence of Descendant Spaceship Patterns. The chronological sequence (a)–(k) displays successive progeny evolved with
interactive CPPN-NEAT. The number of hidden functions and connections in the generating CPPN is shown below each pattern. The sequence
exhibits a remarkably natural continual elaboration of regular form.

(a) Complete Pattern (b) Zoomed In

Figure 6: Repetition with Variation. The pattern in (b) magni-
fies the upper-left portion of (a). Arrows in (b) point to significant
differences between motifs that are otherwise similar. By mixing
inputs from separate coordinate frames, one repeating and one not,
a CPPN can generate a large variety of patterns with this property.
This phenomenon is similar to the interaction of two chemical gra-
dients in a developing embryo, one periodic and one not.

generate repetition with variation, a phenomenon commonly
attributed to natural developmental encodings.

Discussion and Future Work
Even without development, CPPNs exhibit many of the the
essential properties of natural development, including sym-
metry, repetition, repetition with variation, elaboration of
existing regularities through complexification, and preser-
vation of regularities (Stanley, 2006). CPPNs complexify
in a way analogous to natural evolution. For these reasons,

CPPNs are admissible into the class of valid abstractions of
biological developmental encoding. Establishing this link is
the main contribution of this paper. In doing so, an entirely
new and promising research direction is revealed.

If CPPNs were only used to draw pictures, their utility
would be limited. However, the patterns in this paper have
a greater significance. An encoding that produces a pat-
tern in space can produce such patterns for any objective
in any substrate. If the substrate is neural, the CPPN can
describe the neural pathways, including all the symmetries,
repeating patterns, and elegant group-wise connectivity. If
the substrate is physical, the CPPN can encode the build-
ing blocks that compose the body, which can then be run in
simulation, and later manufactured in the real world. Pat-
terns underly almost all natural and artificial structures; thus
a general pattern-generating mechanism can represent any
of them and more. Future research will determine the best
way to translate a spatial pattern into a particular substrate.

Conclusion
Research in developmental encoding to this date can be char-
acterized as a search for the right abstraction. Computational
abstractions of natural development generally have included,
not surprisingly, a process of development over time. In
this paper, a novel abstraction was proposed that breaks this
tradition by counterintuitively not including development.
Nevertheless, this abstraction, called Compositional Pattern



Producing Networks (CPPNs), still captures the essential
properties of natural developmental encoding. A series of
interactive evolutionary experiments with CPPNs demon-
strated that they indeed produce patterns and sequences of
patterns with properties analogous to those seen in natural
evolution and development. Furthermore, an algorithm for
evolving increasingly complex CPPNs, called CPPN-NEAT,
was introduced. Future research will focus on converting
the patterns output by CPPNs into important substrates such
as large-scale neural networks, physical morphologies, and
building architectures.
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