Propositional Logic Syntax Acquisition
Using Induction and Self-Organisation

Josefina Sierra-Santibáñe
Universidad Politécnica de Cataluña, Spain
E-mail: jsierra@lsi.upc.edu

Abstract
This paper addresses the problem of the acquisition of the syntax of propositional logic. An approach based on general purpose cognitive capacities such as invention, adoption, parsing, generation and induction is proposed. Self-organisation principles are used to show how a shared set of preferred lexical entries and grammatical constructions, i.e., a language, can emerge in a population of autonomous agents which do not have any initial linguistic knowledge.

Experiments in which a population of autonomous agents constructs a grammar that allows communicating the formulas of a propositional language are presented. This grammar although simple has interesting properties found in natural languages, such as compositionality and recursion. These experiments extend previous work by considering a larger population and a search space of grammar rules much larger.

In particular the agents are allowed to order the expressions associated with the constituents of a logical formula in arbitrary order. Previous work assumed that the expressions associated with the connectives should be placed in first place in the sentence. The branching factor of the search space of grammar rules considered by each agent is extended thus from one to two in the case of formulas constructed using negation, and from two to six in the case of formulas constructed using binary connectives.

INTRODUCTION
Recent work in linguistics and artificial intelligence (Steels 1998; 2000; 2004a; Steels & Wellens 2006; Hurford 2000; Batali 2002; Kirby 2002; Vogt 2005) has suggested that some of the complex structure of language may be the result of a quite different process from biological evolution. Interesting experiments showing the emergence of compositional and recursive syntax in populations of agents without initial linguistic knowledge have been presented as evidence in support of alternative explanations. This paper combines general purpose cognitive capacities (e.g., invention, adoption, parsing, generation and induction) and self-organisation principles proposed as effective mechanisms for syntax acquisition in these experiments in order to address the problem of the acquisition of the syntax of propositional logic.

The important role of logic in knowledge representation and reasoning (McCarthy 1990) is well known in artificial intelligence. Much of the knowledge used by artificial intelligent agents today is represented in logic, and linguists use it as well for representing the meanings of words and sentences. This paper differs from previous approaches in using the syntax of logic as the subject of learning. Some could argue that it is not necessary to learn such a syntax, because it is built in the internal knowledge representation formalism used by the agents. We’d argue on the contrary that logical connectives and logical constructions are a fundamental part of natural language, and that it is necessary to understand how an agent can both conceptualise and communicate them to other agents.

The research presented in this paper assumes previous work on the conceptualisation of logical connectives (Sierra-Santibáñe 2001a; 2002). In (Sierra-Santibáñe 2001b) a grounded approach to the acquisition of logical categories (connectives) based on the discrimination of a “subset of objects” from the rest of the objects in a given context is described. The “subset of objects” is characterized by a logical formula constructed from perceptually grounded categories. This formula is satisfied by the objects in the subset and not satisfied by the rest of the objects in the context. In this paper we only focus on the problem of the acquisition of the syntax of propositional logic, because it is a necessary step to solve the complete problem of the acquisition of a grounded logical language (encompassing the acquisition of both the syntax and the semantics of propositional logic).

The rest of the paper is organised as follows. First we present the formalism used for representing the grammars constructed by the agents. Then we describe in some detail the language games played by the agents, focusing on the main cognitive processes they use for constructing a shared lexicon and grammar: invention, adoption, induction and self-organisation. Next we report the results of some experiments in which a population of autonomous agents constructs a shared language that allows communicating the formulas of a propositional language. Finally we summarize some related work and the main contributions of the paper.

GRAMMATICAL FORMALISM
We use a restricted form of definite-clause grammar in which non-terminals have three arguments attached to them.
The first argument conveys semantic information. The second is a score in the interval [0, 1] that estimates the usefulness of that association in previous communication. The third argument is a counter that records the number of times the association has been used in previous language games.

Many grammars can be used to express the same meaning. The following holistic grammar can be used to express the propositional formula \(\text{right} \land \text{light} \).

\[
s([\text{and}, \text{right}, \text{light}]), 0.01) \rightarrow \text{andrightlight} \quad (1)
\]

This grammar consists of a single rule which states that 'andrightlight' is valid sentence meaning \(\text{right} \land \text{light} \).

The same formula can be expressed as well using the following compositional, recursive grammar: \(s \) is the start symbol, \(c1 \) and \(c2 \) are the names of two syntactic categories associated with unary and binary connectives, respectively. Like in Prolog, variables start with a capital letter and constants with a lower case letter.

\[
s(\text{light}, 0.70) \rightarrow \text{light} \quad (2)
\]
\[
s(\text{right}, 0.25) \rightarrow \text{right} \quad (3)
\]
\[
s(\text{up}, 0.60) \rightarrow \text{up} \quad (4)
\]
\[
c1(\text{not}, 0.80) \rightarrow \text{not} \quad (5)
\]
\[
s([P, Q], S) \rightarrow c1(P, S1), s(Q, S2), \{ S \text{ is } S1 \land S2 + 0.10 \} \quad (6)
\]
\[
c2(\text{or}, 0.30) \rightarrow \text{or} \quad (7)
\]
\[
c2(\text{and}, 0.50) \rightarrow \text{and} \quad (8)
\]
\[
c2(\text{iff}, 0.90) \rightarrow \text{iff} \quad (9)
\]
\[
s([P, Q, R], S) \rightarrow c2(P, S1), s(Q, S2), s(R, S3), \{ S \text{ is } S1 \land S2 \land S3 + 0.01 \} \quad (11)
\]

This grammar breaks down the sentence 'andrightlight' into subparts with independent meanings. The whole sentence is constructed concatenating these subparts. The meaning of the sentence is composed combining the meanings of the subparts using the variables \(P, Q \) and \(R \).

The score of a lexical rule is the value of the second argument of the left hand side of the rule (e.g., the score of rule 8 is 0.50). The score of a grammatical rule is the last number of the arithmetic expression that appears on the right hand side of the rule\(^2\) (e.g., the score of rule 11 is 0.01). The score of a sentence generated using a grammatical rule is computed using the arithmetic expression on the right hand side of that rule (e.g., the score of sentence andrightlight is 0.50*0.25*0.70*0.01=0.00875).

LANGUAGE GAMES

Syntax acquisition is seen as a collective process by which a population of autonomous agents constructs a grammar that allows them to communicate some set of meanings. In order to reach such an agreement the agents interact with each other playing language games. In the experiments described in this paper a particular type of language game called the guessing game (Steels 1999; Steels et al. 2002) is played by two agents, a speaker and a hearer:

1. The speaker chooses a formula from a given propositional language, generates a sentence that expresses this formula and communicates that sentence to the hearer.
2. The hearer tries to interpret the sentence generated by the speaker. If it can parse the sentence using its lexicon and grammar, it extracts a meaning which can be logically equivalent or not to the formula intended by the speaker.
3. The speaker communicates the meaning it had in mind to the hearer and both agents adjust their grammars in order to become successful in future language games.

In a typical experiment hundreds of language games are played by pairs of agents randomly chosen from a population. The goal of the experiment is to observe the evolution of: (1) the communicative success\(^3\); (2) the internal grammars constructed by the individual agents; and (3) the external language used by the population.

Invention

In the first step of a language game the speaker tries to generate a sentence that expresses a propositional formula.

The agents in the population start with an empty lexicon and grammar. It is not surprising thus that they cannot generate sentences for some meanings at the early stages of a simulation run. In order to allow language to get off the ground, the agents are allowed to invent new words for those meanings they cannot express using their lexicons and grammars\(^4\).

The invention algorithm is a recursive procedure that invents a sentence \(E \) for a meaning \(M \). If \(M \) is atomic (not a list), it generates a new word \(E \). If \(M \) is a list of elements (i.e., a unary or binary connective followed by one or two formulas, respectively), it tries to generate an expression for each of the elements in \(M \) using the agent’s grammar. If it cannot generate an expression for an element of \(M \) using the agent’s grammar, it invents an expression for that element calling itself recursively on that element. Once it has generated an expression for each element in \(M \), it concatenates these expressions randomly in order to construct a sentence \(E \) for the whole meaning \(M \).

For example, if an agent tries to generate a sentence for the formula \([\text{and}, \text{light}, \text{right}]\), it has an entry in its lexicon that associates the atomic formula \text{light} with the sequence of letters ‘a’, but it does not have entries for \text{and} and \text{right}, then two sequences of letters such as ‘en’ and ‘rec’ could be

\(^1\) Notice that we use Prolog grammar rules for describing the grammars. The semantic argument of non-terminals uses Lisp like (prefix) notation for representing propositional formulas (e.g., the Prolog list \([\text{and}, [\text{not}, \text{right}], \text{light}]\) is equivalent to \~right \land \text{light} \). The third argument (the use counter) of non-terminals is not shown in the examples.

\(^2\) The Prolog operator "is" allows evaluating the arithmetic expression at its right hand side.

\(^3\) The communicative success is the average of successful language games in the last ten language games played by the agents. A language game is considered successful if the hearer can parse the sentence generated by the speaker, and the meaning interpreted by hearer is logically equivalent to the meaning intended by the speaker.

\(^4\) New words are sequences of one, two or three letters randomly chosen from the alphabet.
invented for expressing the meanings and and right, respectively. These sequences could be concatenated randomly generating any of the following sentences for the meaning \{and, light, right\}: 'enreca', 'enarec', 'aenrec', 'recena', 'arecen', 'recen'.

As the agents play language games they learn associations between expressions and meanings, and induce linguistic knowledge from such associations in the form of grammatical rules and lexical entries. Once the agents can generate sentences for expressing a particular meaning using their own grammars, they select the sentence with the highest score out of the set of sentences they can generate for expressing that meaning, and communicate that sentence to the hearer. The algorithm used for computing the score of a sentence from the scores of the grammatical rules applied in its generation is explained in detail later.

Adoption

The hearer tries to interpret the sentence generated by the speaker. If it can parse the sentence using its lexicon and grammar, it extracts a meaning which can be logically equivalent or not to the formula intended by the speaker.

As we have explained earlier the agents start with no linguistic knowledge at all. Therefore they cannot parse the sentences generated by the speakers at the early stages of a simulation run. When this happens the speaker communicates the formula it had in mind to the hearer, and the hearer adopts an association between that formula and the sentence used by the speaker.

It is also possible that the grammars and lexicons of speaker and hearer are not consistent, because each agent constructs its own grammar from the linguistic interactions in which it participates, and it is very unlikely that speaker and hearer share the same history of linguistic interactions unless the population consists only of these two agents. When this happens the hearer may be able to parse the sentence generated by the speaker, but its interpretation of that sentence may be different from the meaning the speaker had in mind. In this case the strategy used to coordinate the grammars of speaker and hearer is to decrement the score of the rules used by speaker and hearer in the processes of generation and parsing, respectively, and allow the hearer to adopt an association between the sentence and the meaning used by the speaker.

The adoption algorithm used in this paper is very simple. Given a sentence E and a meaning M, the agent checks whether it can parse E and interpret it as meaning M (or MH, where MH is a formula logically equivalent to M). This may happen when the hearer can parse the sentence used by the speaker, but it obtains a different meaning from the one intended by the speaker. In a language game the hearer always chooses the interpretation with the highest score out of the set of all the interpretations it that can obtain for a given sentence. So it is possible that the hearer knows the grammatical rules used by the speaker, but the scores of these rules are not higher than the scores of the rules it used for interpretation. If the hearer can interpret sentence E as meaning M, the hearer does not take any action. Otherwise it adopts the association used by the speaker adding a new holistic rule of the form \(s(M, 0.01) \rightarrow E\) to its grammar.\(^5\) The induction algorithm, used to generalise and simplify the agents’ grammars, compares this rule with other rules already present in the grammar and replaces it with more general rules whenever it is possible.

Induction

In addition to invent and adopt associations between sentences and meanings, the agents use some induction mechanisms to extract generalizations from the grammar rules they have learnt so far (Steels 2004b). The induction rules used in this paper are based on the rules for chunking and simplification in (Kirby 2002), although we extend them so that they can be applied to grammar rules which have scores attached to them. We use the approach proposed in (Vogt 2005) for computing the scores of sentences and meanings from the scores of the rules used in their generation.

The induction rules are applied whenever the agents invent or adopt a new association, to avoid redundancy and increase generality in their grammars.

Simplification Let \(r_1\) and \(r_2\) be a pair of grammar rules such that the left hand side semantics of \(r_1\) contains a sub-term \(n1, r_2\) is of the form \(n(m1, S) \rightarrow e1\), and \(e1\) is a substring of the terminals of \(r_1\). Then simplification can be applied to \(r_1\) replacing it with a new rule that is identical to \(r_1\) except that \(n1\) is replaced with a new variable \(X\) in the left hand side semantics, and \(e1\) is replaced with \(n(X, S)\) on the right hand side. The second argument of the left hand side of \(r_1\) is replaced with a new variable \(SR\). If the score of \(r_1\) was a constant value \(c1\), an expression of the form \(\{SR = S \ast 0.01\}\) is added to the right hand side of \(r_1\). If the score of \(r_1\) was a variable, then the arithmetic expression \(\{SR = S1 \ast c1\}\) in the right hand side of \(r_1\) is replaced with \(\{SR = S \ast S1 \ast 0.01\}\).

Suppose an agent’s grammar contains rules 2, 3 and 4, which it has invented or adopted in previous language games. It plays a language game with another agent, and invents or adopts the following rule.

\[
s(\{\text{and, light, right}\}, 0.01) \rightarrow \text{andlightright}. \quad (12)
\]

It could apply simplification to rule 12 (using rule 3) and replace it with rule 13.

\[
s(\{\text{and, light, } R\}, S) \rightarrow \text{andlight}, s(R, SR), \quad \{S \ast SR \ast 0.01\} \quad (13)
\]

Rule 13 could be simplified again, replacing it with 14.

\[
s(\{\text{and, } Q, R\}, S) \rightarrow \text{and}, s(Q, SQ), s(R, SR), \quad \{S \ast SQ \ast SR \ast 0.01\} \quad (14)
\]

Suppose the agent plays another language game in which it invents or adopts a holistic rule for expressing the formula \{or, up, light\} and applies simplification in a similar way. Then the agent’s grammar would contain the following rules.

\(^5\)Observe that the score of the rule is initialized to 0.01. The same initial score value is used for all the rules generated using invention, adoption or induction.
that are compositional and recursive, but which do not use syntactic categories for unary or binary connectives.

\[
s([\text{and}, Q, R], S) \rightarrow \text{and}, s(Q, SQ), s(R, SR),
\{ S \text{ is } SQ \ast SR \ast 0.01 \} \quad (15)
\]

\[
s([\text{or}, Q, R], S) \rightarrow \text{or}, s(Q, SQ), s(R, SR),
\{ S \text{ is } SQ \ast SR \ast 0.01 \} \quad (16)
\]

Chunk I Let \(r_1 \) and \(r_2 \) be a pair of grammar rules with the same left hand side category symbol. If the left hand side semantics of the two rules differ in only one subterm, and there exist two strings of terminals that, if removed, would make the right hand sides of the two rules the same, then chunking can be applied.

Let \(n_1 \) and \(n_2 \) be the differences in the left hand side semantics of the two rules, and \(e_1 \) and \(e_2 \) the strings of terminals that, if removed, would make the right hand sides of the rules the same. A new category \(n \) is created and the following two new rules are added to the grammar.

\[
n(m_1, 0.01) \rightarrow e_1 \quad n(m_2, 0.01) \rightarrow e_2
\]

Rules \(r_1 \) and \(r_2 \) are replaced by a new rule that is identical to \(r_1 \) (or \(r_2 \)) except that \(e_1 \) (or \(e_2 \)) is replaced with \(n(X, S) \) on the right hand side, and \(n_1 \) (or \(n_2 \)) is replaced with a new variable \(X \) in the left hand side semantics. The second argument of the left hand side of \(r_1 \) is replaced with a new variable \(SR \). If the score of \(r_1 \) was a constant value \(c_1 \), an expression of the form \(\{ SR = S \ast 0.01 \} \) is added to the right hand side of \(r_1 \). If the score of \(r_1 \) was a variable, then the arithmetic expression \(\{ SR = S1 \ast c1 \} \) in the right hand side of \(r_1 \) is replaced with \(\{ SR = S \ast S1 \ast 0.01 \} \).

For example the agent of previous examples, which has rules 15 and 16 for conjunctive and disjunctive formulas in its grammar, could apply chunking to these rules and create a new syntactic category for binary connectives as follows.

\[
s([P, Q, R], S) \rightarrow c2(P, S1), s(Q, S2), s(R, S3),
\{ S \text{ is } S1 \ast S2 \ast S3 \ast 0.01 \} \quad (17)
\]

\[
c2(\text{and}, 0.01) \rightarrow \text{and} \quad (18)
\]

\[
c2(\text{or}, 0.01) \rightarrow \text{or} \quad (19)
\]

Rules 15 and 16 would be replaced with 17, which generalises them because it can be applied to arbitrary formulas constructed using binary connectives, and rules 18 and 19, which state that \(\text{and} \) and \(\text{or} \) belong to \(c2 \) (the syntactic category of binary connectives\(^6\)), would be added to the grammar.

Chunk II If the left hand side semantics of two grammar rules \(r_1 \) and \(r_2 \) can be unified applying substitution \(X/m_1 \) to \(r_1 \) and there exists a string of terminals \(e_1 \) in \(r_2 \) that corresponds to a nonterminal \(c(X, S) \) in \(r_1 \), then chunking can be applied to \(r_2 \) as follows. Rule \(r_2 \) is deleted from the grammar and a new rule of the following form

\[
c(m_1, 0.01) \rightarrow e_1 \text{ is added to it.}
\]

Suppose the agent of previous examples adopts or invents the following rule.

\[
s([\text{iff}, \text{up}, \text{right}], 0.01) \rightarrow \text{iffupright}. \quad (20)
\]

Simplification of rule 20 with rules 4 and 3 leads to replace rule 20 with 21.

\[
s([\text{iff}, Q, R], S) \rightarrow \text{iff}, s(Q, SQ), s(R, SR),
\{ S \text{ is } SQ \ast SR \ast 0.01 \} \quad (21)
\]

Then chunking could be applied to rules 21 and 17, replacing rule 21 with 22.

\[
c2(\text{iff}, 0.01) \rightarrow \text{iff} \quad (22)
\]

Self-Organisation

The agent in the previous examples has been very lucky, but things are not always that easy. Different agents can invent different words for referring to the same propositional constants or connectives. The invention process uses a random order to concatenate the expressions associated with the components of a given meaning. Thus an agent that has invented or adopted rules 2, 3 and 5 may invent any of the following holistic sentences for communicating the meaning \(\text{[and, light, right]} \): \text{lightandright}, \text{rightandlight}, \text{andrightlight}, \text{andlightright}, \text{lightrightand}, \text{rightlightand}.

This has important consequences, because the simplification rule takes into account the order in which the expressions associated with the meaning components appear in the terminals of a rule. Imagine the agent invented or adopted the following holistic rules for expressing the meanings \(\text{[and, light, right]} \) and \(\text{[if, light, right]} \).

\[
s([\text{and}, \text{light}, \text{right}], 0.01) \rightarrow \text{andlightright}
\]

\[
s([\text{if}, \text{light}, \text{right}], 0.01) \rightarrow \text{ifrightlight}
\]

The result of simplifying these rules using rules 2 and 3 would be the following pair of rules which cannot be used for constructing a syntactic category for binary connectives, because they do not satisfy the preconditions of chunking. There do not exist two strings of terminals that, if removed, would make the right hand sides of the rules the same.

\[
S([[\text{and}, X, Y], SC]) \rightarrow \text{and}, s(X, SX), s(Y, SY),
\{ SC \text{ is } SX \ast SY \ast 0.56 \}
\]

\[
S([[\text{if}, X, Y], SC]) \rightarrow \text{if}, s(Y, SY), s(X, SX),
\{ SC \text{ is } SX \ast SY \ast 0.56 \}
\]

The agents must therefore reach agreements on how to name propositional constants and connectives, and on how to order the expressions associated with the different components of non-atomic meanings. Self-organisation principles help to coordinate the agents’ grammars in such a way that they prefer to use the rules that are used more often by other agents (Steele 1997; Batali 2002; Steele 2004a). The set of rules preferred by most agents for naming atomic meanings, assigning them syntactic categories and for ordering the expressions associated with the components of non-atomic meanings constitutes the external language spread over the population.

\(^6\)The syntactic category \(c2 \) is in fact more specific, as we will see in section 4. It corresponds to binary connectives that are placed at the beginning of the sentence followed in first place by the expression associated with their first argument and in second place by the expression associated with their second argument.
The goal of the self-organisation process is that the agents in the population be able to construct a shared external language and that they prefer using the rules in that language over the rest of the rules in their individual grammars.

Coordination takes place at the third stage of a language game, when the speaker communicates the meaning it had in mind to the hearer. Depending on the outcome of the language game speaker and hearer take different actions. We have talked about some of them already, such as invention or adoption, but they can also adjust the scores of the rules in their grammars to become more successful in future games.

First we consider the case in which the speaker can generate a sentence for the meaning using the rules in its grammar. If the speaker can generate several sentences for expressing that meaning, it chooses the sentence with the highest score, the rest are called competing sentences.

The score of a sentence (or a meaning) is computed at generation (parsing) multiplying the scores of the rules involved (Vogt 2005). Consider the generation of a sentence for expressing the meaning [and, right, light] using the following rules.

\[
s(\text{light}, 0.70) \rightarrow \text{light} \quad (23)
\]

\[
s(\text{right}, 0.25) \rightarrow \text{right} \quad (24)
\]

\[
c(\text{and}, 0.50) \rightarrow \text{and} \quad (25)
\]

\[
s([P, Q, R], S) \rightarrow c2(P, S1), s(Q, S2), s(R, S3), \{S \text{ is } S1\cdot S2\cdot S3-0.01\} \quad (26)
\]

The score \(S\) of the sentence andrightlight, generated by rule 26, is computed multiplying the score of that rule (0.01) by the scores of the rules 25, 24 and 23 which generate the substrings of that sentence. The score of a lexical rule is the value of the second argument of the left hand side of the rule (e.g., the score of rule 25 is 0.50). The score of a grammatical rule is the last number of the arithmetic expression that appears on the right hand side of the rule (e.g., the score of rule 26 is 0.01). The score of a sentence generated using a grammatical rule is computed using the arithmetic expression on the right hand side of that rule. For example, using the rules above, the score of the sentence andrightlight is 0.50*0.25*0.70*0.01=0.00875.

Suppose the hearer can interpret the sentence communicated by the speaker. If the hearer can obtain several interpretations (meanings) for that sentence, the meaning with the highest score is selected, the rest are called competing meanings.

If the meaning interpreted by the hearer is logically equivalent to the meaning the speaker had in mind, the game succeeds and both agents adjust the scores of the rules in their grammars. The speaker increases the scores of the rules it used for generating the sentence communicated to the hearer and decreases the scores of the rules it used for generating competing sentences. The hearer increases the scores of the rules it used for obtaining the meaning the speaker had in mind and decreases the scores of the rules it used for obtaining competing meanings. This way the rules that have been used successfully get reinforced. The rules that have been used for generating competing sentences or competing meanings are inhibited to avoid ambiguity in future games.

The rules used for updating the scores of grammar rules are the same as those proposed in (Steels 1999). The rule’s original score \(S\) is replaced with the result of evaluating expression 27 if the score is increased, and with the result of evaluating expression 28 if the score is decreased. The constant \(\mu\) is a leaning parameter which is set to 0.1.

\[
\text{maximum}(1, S + \mu) \quad (27)
\]

\[
\text{minimum}(0, S - \mu) \quad (28)
\]

If the meaning interpreted by the hearer is not logically equivalent to the meaning the speaker had in mind, the game fails. Speaker and hearer decrease the scores of the rules they used for generating and interpreting the sentence, respectively. This way the rules that have been used without success are inhibited.

If the speaker can generate a sentence for the meaning it has in mind, but the hearer cannot interpret that sentence, the hearer adopts a holistic rule associating the meaning and the sentence used by the speaker. This holistic rule can be simplified and chunked later using the rest of the rules in the hearer’s grammar.

In order to simplify the agents’ grammars and avoid possible sources of ambiguity a mechanism for purging rules that have not been useful in past language games is introduced. Every ten language games the rules which have been used more than thirty times and have scores lower than 0.01 are removed from the agents’ grammars.

EXPERIMENTS

We present the results of some experiments in which five agents construct a shared language that allows communicating the infinite set of formulas of a propositional language \(L = \{a, b, c, l, r, u\}\) with six propositional constants.

First the agents play 10010 language games in which they try to communicate propositional constants. Then they play 15010 language games in which they try to communicate logical formulas constructed using unary and binary connectives. At the end of a typical simulation run all the agents prefer the same expressions (i.e., words) for referring to the propositional constants of the language \(L = \{a, b, c, l, r, u\}\). Table 1 describes the individual grammars built by the agents at the end of a particular simulation run.

The grammars built by the agents, although different, are compatible enough to allow total communicative success. That is, the agents always generate sentences that are correctly understood by the other agents.

The grammars of all the agents have recursive rules for expressing formulas constructed using unary and binary connectives (see table 1). Agents a2 and a5 have invented a syntactic category for unary connectives. The other agents have specific rules for formulas constructed using negation, which use the same word ‘\(^{\prime}\) preferred by the former agents for expressing negation. The grammar rules used for expressing negation place the word associated with the connective in the second position of the sentence. This is indicated by the number that appears in first place on the right hand side of a grammar rule.

Thus the number 1 indicates that the connective is located in the first place in the sentence (it is a prefix), the num-
Grammar a1
\[s([\text{not}, Y], R) \rightarrow 2, f, s(Y, Q), \{ R \text{ is } Q^* 1 \} \]
\[s([\text{and}, Y, Z], T) \rightarrow 3, \text{dyp}, s(Z, Q), s(Y, R), \{ T \text{ is } Q^* R^* 1 \} \]
\[s([X, Y, Z], T) \rightarrow 3, c_3(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_3(\text{or}, X) \rightarrow y_i, \{ X \text{ is } 1 \} \]
\[c_3(\text{iff}, X) \rightarrow y_{aj}, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 1, \text{if}(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_3(\text{if}, X) \rightarrow \text{dyp}, \{ X \text{ is } 1 \} \]

Grammar a2
\[s([X, Y, Z], T) \rightarrow 2, c_1(X, P), s(Y, Q), \{ R \text{ is } P^* Q^* 1 \} \]
\[c_1(\text{not}, X) \rightarrow f, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 3, c_2(X, P), s(Z, Q), s(Y, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_2(\text{and}, X) \rightarrow \text{dyp}, \{ X \text{ is } 1 \} \]
\[c_2(\text{or}, X) \rightarrow y_i, \{ X \text{ is } 1 \} \]
\[c_2(\text{iff}, X) \rightarrow y_{aj}, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 1, c_3(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_3(\text{if}, X) \rightarrow \text{bqi}, \{ X \text{ is } 1 \} \]

Grammar a3
\[s([X, Y, Z], T) \rightarrow 2, c_1(X, P), s(Y, Q), \{ R \text{ is } Q^* 1 \} \]
\[c_1(\text{not}, X) \rightarrow f, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 3, c_1(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_1(\text{and}, X) \rightarrow \text{dyp}, \{ X \text{ is } 1 \} \]
\[c_1(\text{or}, X) \rightarrow y_i, \{ X \text{ is } 1 \} \]
\[c_1(\text{iff}, X) \rightarrow y_{aj}, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 1, c_2(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_2(\text{if}, X) \rightarrow \text{bqi}, \{ X \text{ is } 1 \} \]

Grammar a4
\[s([X, Y, Z], T) \rightarrow 2, c_1(X, P), s(Y, Q), \{ R \text{ is } Q^* 1 \} \]
\[c_1(\text{not}, X) \rightarrow f, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 3, c_4(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_4(\text{and}, X) \rightarrow \text{dyp}, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 3, c_7(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_7(\text{or}, X) \rightarrow y_i, \{ X \text{ is } 1 \} \]
\[c_7(\text{iff}, X) \rightarrow y_{aj}, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 1, c_8(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } Q^* R^* 1 \} \]

Grammar a5
\[s([X, Y, Z], T) \rightarrow 2, c_1(X, P), s(Y, Q), \{ R \text{ is } P^* Q^* 1 \} \]
\[c_1(\text{not}, X) \rightarrow f, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 3, c_4(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_4(\text{and}, X) \rightarrow \text{dyp}, \{ X \text{ is } 1 \} \]
\[c_4(\text{or}, X) \rightarrow y_i, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 3, c_7(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } P^* Q^* R^* 1 \} \]
\[c_7(\text{iff}, X) \rightarrow y_{aj}, \{ X \text{ is } 1 \} \]
\[s([X, Y, Z], T) \rightarrow 1, c_8(X, P), s(Y, Q), s(Z, R), \{ T \text{ is } Q^* R^* 1 \} \]

Table 1: Grammars constructed by the agents at the end of a particular simulation run.

…n (fourth rule). Both grammar rules place the connective in the third position of the sentence, but differ in the positions in which they place the expressions associated with the arguments of the connective. The first rule places the expression associated with the first argument of the connective (variable Y) in the first position, the expression associated with the second argument of the connective (variable Z) in the second position, and the expression associated with the connective in the third position. The second rule places the expression associated with the first argument of the connective (variable Y) in the second position (observe the order in which s(Y, Q) and s(Z, R) appear on the right hand sides of both rules), the expression associated with the second argument of the connective (variable Z) in the first position, and the expression associated with the connective in the third position of the sentence.

It is important to distinguish between commutative and non-commutative binary connectives. In order to analyze the grammar rules built by the agents to express formulas constructed using commutative connectives, we only have to make sure that they use the same words for expressing the connectives and that they place the expressions associated with the connectives in the same position in the sentence. Because the order of their arguments is irrelevant for language understanding. We can observe in table 1 that all agents place in the third position the connectives ‘and’, ‘or’ and ‘iff’, and that they all use the same words (‘dyp’, ‘yi’ and ‘ij’, respectively) for expressing these connectives.

The positions in which the expressions associated with the arguments of non-commutative connectives are placed in a sentence determines however the meaning of the sentence. We can observe in table 1 that all agents use the word ‘bqi’ for expressing the connective ‘if’, that they all place it in the first position of the sentence, and that all of them place the expressions associated with the antecedent and the consequent of an implication in the same positions.

All agents have created syntactic categories for commutative connectives, although the extent of such categories differs depending on the positions in which the expressions associated with the connectives ‘and’, ‘or’ and ‘iff’ are placed in the sentence. Agents a1, a2 and a3 have invented syntactic categories for non-commutative connectives, whereas a4 and a5 have specific grammar rules for expressing implications.

Figure 1 shows some preliminary results about the evolution of the communicative success, averaged over ten simulation runs with different initial random seeds, for a population of five agents. The communicative success is the average of successful language games in the last ten language games played by the agents.

The agents reach a communicative success of 100% in 10800 language games. That is, after each agent has played on average 2002 language games about propositional constants and 2160 language games about formulas constructed using logical connectives.

RELATED WORK
(Batali 2002) studies the emergence of recursive communication systems as the result of a process of negotiation.
among the members of a population. The alternative explored in this research is that learners simply store all of their analyzed observations as exemplars. No rules or principles are induced from them. Instead exemplars are used directly to convey meanings and to interpret signals.

The agents acquire their exemplars by recording observations of other agents expressing meanings. A learner finds the cheapest phrase with the observed string and meaning that can be created by combining or modifying phrases from its existing set of exemplars, creating new tokens and phrases if necessary.

As an agent continues to record learning observations, its exemplar set accumulates redundant and contradictory elements. In order to choose which of a set of alternative exemplars, or modified analyses based on them, will be used in a particular episode the cost of different solution phrases are compared, and a competition process among exemplars based on reinforcement and discouragement is established. An exemplar is reinforced when it is used in the phrase an agent constructs to record a learning observation, and it is discouraged when it is found to be inconsistent with a learning observation. Reinforcement and discouragement implement therefore a competition among groups of exemplars.

In the computational simulations described in (Batali 2002) ten agents negotiate communication systems that enable them to accurately convey meanings consisting of sets of 2 to 7 atomic formulas (constructed from 22 unary and 10 binary predicates) which involve at most 3 different variables, after each agent has made fewer than 10000 learning observations. Each agent acquires several hundred exemplars, of which a few dozen are singleton tokens identical to those of other agents in the population.

The agents express meanings by combining their singleton tokens into complex phrases using the order of phrases, as well as the presence and position of empty tokens, to indicate configurations of predicate arguments. Empty tokens are also used to signal the boundaries of constituents, the presence of specific argument maps, and details of the structure of the phrases containing them.

The research presented in (Batali 2002) addresses the problem of the emergence of recursive communication systems in populations of autonomous agents, as we do. It differs from the work described in the present paper by focusing on learning exemplars rather than grammar rules. These exemplars have costs, as our grammar rules do, and their costs are reinforced and discouraged using self-organization principles as well. The main challenge for the agents in the experiments described in (Batali 2002) is to construct a communication system that is capable of naming atomic formulas and, more importantly, marking the identity relations among the arguments of the different atomic formulas that constitute the meaning of a given string of characters. This task is quite different from the learning task proposed in this paper which focuses on categorizing propositional sentences and connectives, and marking the scope of each connective using the order of the constituents of a string of characters.

(Kirby 2002) studies the emergence of basic structural properties of language such as compositionality and recursion as a result of the influence of learning on the complex dynamical process of language transmission over generations. This paper describes computational simulations of language transmission over generations consisting of only two agents: an adult speaker and a new learner. Each generation in a simulation goes through the following steps: 1.- The speaker is given a set of meanings, and produces a set of utterances for expressing them either using its knowledge of language or by some random process of invention. 2.- The learner takes this set of the utterance-meaning pairs and uses it as input for its induction learning algorithm. 3.- Finally a new generation is created where the old speaker is discarded, the learner becomes the new speaker, and a new individual is added to become a new learner. At the start of a simulation run neither the speaker nor the learner have any grammar at all.

The induction algorithm thus proceeds by taking an utterance, incorporating the simplest possible rule that generates that utterance directly, searching then through all pairs of rules in the grammar for possible subsumptions until no further generalisations can be found, and deleting finally any duplicate rules that are left over. The inducer uses merging and chunking to discover new rules that subsume pairs of rules that have been learnt through simple incorporation, and simplification for generalising some rules using other rules that are already in the grammar.

The meaning space of the second experiment described in (Kirby 2002) consists of formulas constructed using 5 binary predicates, 5 objects and 5 embedding binary predicates. Reflexive expressions are not allowed (i.e., the arguments of each predicate must be different). Each speaker tries to produce 50 degree-0 meanings, then 50 degree-1 meanings, and finally 50 degree-2 meanings. The grammar of generation 115 in one of the simulation runs has syntactic categories for nouns, verbs, and verbs that have a subordinating function. It also has a grammar rule that allows expressing degree-0 sentences using VOS (verb, object, subject) order, and another recursive rule that allows expressing meanings of de-

Figure 1: Evolution of the communicative success in experiments involving 5 agents and 15010 language games about formulas of $L = \{a, b, c, r, l, u\}$ constructed using unary and binary connectives (i.e., $\neg, \land, \lor, \rightarrow$ and \leftrightarrow).
gree greater than 0. In the ten simulation runs performed the proportion of meanings of degrees 0, 1 and 2 expressed without invention in generation 1000 is 100%.

The most important difference between our work and that presented in (Kirby 2002) is that the latter one focusses on language transmission over generations. Rather than studying the emergence of recursive communication systems in a single population of agents, as we do, it shows that the bottleneck established by language transmission over several generations favors the propagation of compositional and recursive rules because of their compactness and generality. In the experiments described in (Kirby 2002) the population consists of a single agent of a generation that acts as a teacher and another agent of the following generation that acts as a learner. There is no negotiation process involved, because the learned never has the opportunity to act as a speaker in a single iteration. We consider however populations of five agents which can act both as speakers and hearers during the simulations. Having more than two agents ensures that the interaction histories of the agents are different from each other, in such a way that they have to negotiate in order to reach agreements on how to name and order the constituents of a sentence.

The induction mechanisms used in the present paper are based on the rules for chunking and simplification in (Kirby 2002), although we extend them so that they can be applied to grammar rules which have scores attached to them. Finally the meaning space used in (Kirby 2002) (a restricted form of atomic formulas of second order logic) is different from the meaning space considered in the present paper (arbitrary formulas from a propositional logic language), although both of them require the use of recursion.

CONCLUSIONS

This paper has addressed the problem of the acquisition of the syntax of propositional logic. An approach based on general purpose cognitive capacities such as invention, adaption, parsing, generation and induction has been proposed. Self-organisation principles have been used to show how a shared set of preferred lexical entries and grammatical constructions, i.e., a language, can emerge in a population of autonomous agents which do not have any initial linguistic knowledge.

Experiments in which a population of five autonomous agents comes up with a grammar that allows communicating propositional logic formulas introducing syntactic categories for propositional sentences and connectives, and marking the scope of each connective using the order of the constituents of a string of characters have been presented. This grammar although simple has interesting properties found in natural languages, such as compositionality, partial word order dependence and recursion.

Acknowledgments

This work is partially funded by the DGICYT TIN2005-08832-C03-03 project (MOISES-BAR).

References

Steels, L. 2004b. Macro-operators for the emergence of construction grammars. SONY CSL.