
Propositional Logic Syntax Acquisition
Using Induction and Self-Organisation

Josefina Sierra-Santibáñez
Universidad Politécnica de Cataluña, Spain

E-mail: jsierra@lsi.upc.edu

Abstract

This paper addresses the problem of the acquisition of the
syntax of propositional logic. An approach based on gen-
eral purpose cognitive capacities such as invention, adop-
tion, parsing, generation and induction is proposed. Self-
organisation principles are used to show how a shared set of
preferred lexical entries and grammatical constructions, i.e.,
a language, can emerge in a population of autonomous agents
which do not have any initial linguistic knowledge.
Experiments in which a population of autonomous agents
constructs a grammar that allows communicating the formu-
las of a propositional language are presented. This grammar
although simple has interesting properties found in natural
languages, such as compositionality and recursion. These ex-
periments extend previous work by considering a larger pop-
ulation and a search space of grammar rules much larger.
In particular the agents are allowed to order the expressions
associated with the constituents of a logical formula in arbi-
trary order. Previous work assumed that the expressions as-
sociated with the connectives should be placed in first place
in the sentence. The branching factor of the search space
of grammar rules considered by each agent is extended thus
from one to two in the case of formulas constructed using
negation, and from two to six in the case of formulas con-
structed using binary connectives.

INTRODUCTION
Recent work in linguistics and artificial intelligence (Steels
1998; 2000; 2004a; Steels & Wellens 2006; Hurford 2000;
Batali 2002; Kirby 2002; Vogt 2005) has suggested that
some of the complex structure of language may be the re-
sult of a quite different process from biological evolution.
Interesting experiments showing the emergence of compo-
sitional and recursive syntax in populations of agents with-
out initial linguistic knowledge have been presented as ev-
idence in support of alternative explanations. This paper
combines general purpose cognitive capacities (e.g., inven-
tion, adoption, parsing, generation and induction) and self-
organisation principles proposed as effective mechanisms
for syntax acquisition in these experiments in order to ad-
dress the problem of the acquisition of the syntax of propo-
sitional logic.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The important role of logic in knowledge representation
and reasoning (McCarthy 1990) is well known in artificial
intelligence. Much of the knowledge used by artificial in-
telligent agents today is represented in logic, and linguists
use it as well for representing the meanings of words and
sentences. This paper differs from previous approaches in
using the syntax of logic as the subject of learning. Some
could argue that it is not necessary to learn such a syntax,
because it is built in the internal knowledge representation
formalism used by the agents. We’d argue on the contrary
that logical connectives and logical constructions are a fun-
damental part of natural language, and that it is necessary to
understand how an agent can both conceptualise and com-
municate them to other agents.

The research presented in this paper assumes previous
work on the conceptualisation of logical connectives (Sierra-
Santibáñez 2001a; 2002). In (Sierra-Santibáñez 2001b) a
grounded approach to the acquisition of logical categories
(connectives) based on the discrimination of a ”subset of ob-
jects” from the rest of the objects in a given context is de-
scribed. The ”subset of objects” is characterized by a logical
formula constructed from perceptually grounded categories.
This formula is satisfied by the objects in the subset and not
satisfied by the rest of the objects in the context. In this paper
we only focus on the problem of the acquisition of the syn-
tax of propositional logic, because it is a necessary step to
solve the complete problem of the acquisition of a grounded
logical language (encompassing the acquisition of both the
syntax and the semantics of propositional logic).

The rest of the paper is organised as follows. First we
present the formalism used for representing the grammars
constructed by the agents. Then we describe in some detail
the language games played by the agents, focusing on the
main cognitive processes they use for constructing a shared
lexicon and grammar: invention, adoption, induction and
self-organisation. Next we report the results of some ex-
periments in which a population of autonomous agents con-
structs a shared language that allows communicating the for-
mulas of a propositional language. Finally we summarize
some related work and the main contributions of the paper.

GRAMMATICAL FORMALISM
We use a restricted form of definite-clause grammar in
which non-terminals have three arguments attached to them.



The first argument conveys semantic information. The sec-
ond is a score in the interval [0, 1] that estimates the use-
fulness of that association in previous communication. The
third argument is a counter that records the number of times
the association has been used in previous language games.

Many grammars can be used to express the same meaning.
The following holistic grammar can be used to express the
propositional formula right ∧ light1.

s([and, right, light]), 0.01)→ andrightlight (1)

This grammar consists of a single rule which states that
’andrightlight’ is valid sentence meaning right ∧ light.

The same formula can be expressed as well using the fol-
lowing compositional, recursive grammar: s is the start sym-
bol, c1 and c2 are the names of two syntactic categories asso-
ciated with unary and binary connectives, respectively. Like
in Prolog, variables start with a capital letter and constants
with a lower case letter.

s(light, 0.70) → light (2)

s(right, 0.25) → right (3)

s(up, 0.60) → up (4)

c1(not, 0.80) → not (5)

s([P, Q], S) → c1(P, S1), s(Q, S2), {S is S1∗S2∗0.10} (6)

c2(or, 0.30) → or (7)

c2(and, 0.50) → and (8)

c2(if, 0.90) → if (9)

c2(iff, 0.60) → iff (10)

s([P, Q, R], S) → c2(P, S1), s(Q, S2), s(R, S3),

{S is S1 ∗ S2 ∗ S3 ∗ 0.01} (11)

This grammar breaks down the sentence ’andrightlight’
into subparts with independent meanings. The whole sen-
tence is constructed concatenating these subparts. The
meaning of the sentence is composed combining the mean-
ings of the subparts using the variables P, Q and R.

The score of a lexical rule is the value of the second ar-
gument of the left hand side of the rule (e.g., the score of
rule 8 is 0.50). The score of a grammatical rule is the last
number of the arithmetic expression that appears on the right
hand side of the rule2 (e.g., the score of rule 11 is 0.01). The
score of a sentence generated using a grammatical rule is
computed using the arithmetic expression on the right hand
side of that rule (e.g., the score of sentence andrightlight is
0.50*0.25*0.70*0.01=0.00875).

LANGUAGE GAMES
Syntax acquisition is seen as a collective process by which a
population of autonomous agents constructs a grammar that
allows them to communicate some set of meanings. In or-
der to reach such an agreement the agents interact with each

1Notice that we use Prolog grammar rules for describing the
grammars. The semantic argument of non-terminals uses Lisp
like (prefix) notation for representing propositional formulas (e.g.,
the Prolog list [and, [not, right], light] is equivalent to ¬right ∧
light). The third argument (the use counter) of non-terminals is
not shown in the examples.

2The Prolog operator ”is” allows evaluating the arithmetic ex-
pression at its right hand side.

other playing language games. In the experiments described
in this paper a particular type of language game called the
guessing game (Steels 1999; Steels et al. 2002) is played by
two agents, a speaker and a hearer:

1. The speaker chooses a formula from a given propositional
language, generates a sentence that expresses this formula
and communicates that sentence to the hearer.

2. The hearer tries to interpret the sentence generated by the
speaker. If it can parse the sentence using its lexicon and
grammar, it extracts a meaning which can be logically
equivalent or not to the formula intended by the speaker.

3. The speaker communicates the meaning it had in mind to
the hearer and both agents adjust their grammars in order
to become successful in future language games.

In a typical experiment hundreds of language games are
played by pairs of agents randomly chosen from a popula-
tion. The goal of the experiment is to observe the evolution
of: (1) the communicative success3; (2) the internal gram-
mars constructed by the individual agents; and (3) the exter-
nal language used by the population.

Invention

In the first step of a language game the speaker tries to gen-
erate a sentence that expresses a propositional formula.

The agents in the population start with an empty lexicon
and grammar. It is not surprising thus that they cannot gen-
erate sentences for some meanings at the early stages of a
simulation run. In order to allow language to get off the
ground, the agents are allowed to invent new words for those
meanings they cannot express using their lexicons and gram-
mars4.

The invention algorithm is a recursive procedure that in-
vents a sentence E for a meaning M. If M is atomic (not a
list), it generates a new word E. If M is a list of elements
(i.e., a unary or binary connective followed by one or two
formulas, respectively), it tries to generate an expression for
each of the elements in M using the agent’s grammar. If it
cannot generate an expression for an element of M using the
agent’s grammar, it invents an expression for that element
calling itself recursively on that element. Once it has gen-
erated an expression for each element in M, it concatenates
these expressions randomly in order to construct a sentence
E for the whole meaning M.

For example, if an agent tries to generate a sentence for
the formula [and, light, right], it has an entry in its lexicon
that associates the atomic formula light with the sequence
of letters ’a’, but it does not have entries for and and right,
then two sequences of letters such as ’en’ and ’rec’ could be

3The communicative success is the average of successful lan-
guage games in the last ten language games played by the agents.
A language game is considered successful if the hearer can parse
the sentence generated by the speaker, and the meaning interpreted
by hearer is logically equivalent to the meaning intended by the
speaker.

4New words are sequences of one, two or three letters randomly
chosen from the alphabet.



invented for expressing the meanings and and right, respec-
tively. These sequences could be concatenated randomly
generating any of the following sentences for the meaning
[and, light, right]: ’enreca’, ’enarec’, ’aenrec’, ’recena’,
’arecen’, ’recaen’.

As the agents play language games they learn associations
between expressions and meanings, and induce linguistic
knowledge from such associations in the form of grammati-
cal rules and lexical entries. Once the agents can generate
sentences for expressing a particular meaning using their
own grammars, they select the sentence with the highest
score out of the set of sentences they can generate for ex-
pressing that meaning, and communicate that sentence to
the hearer. The algorithm used for computing the score of
a sentence from the scores of the grammatical rules applied
in its generation is explained in detail later.

Adoption
The hearer tries to interpret the sentence generated by the
speaker. If it can parse the sentence using its lexicon and
grammar, it extracts a meaning which can be logically equiv-
alent or not to the formula intended by the speaker.

As we have explained earlier the agents start with no lin-
guistic knowledge at all. Therefore they cannot parse the
sentences generated by the speakers at the early stages of a
simulation run. When this happens the speaker communi-
cates the formula it had in mind to the hearer, and the hearer
adopts an association between that formula and the sentence
used by the speaker.

It is also possible that the grammars and lexicons of
speaker and hearer are not consistent, because each agent
constructs its own grammar from the linguistic interactions
in which it participates, and it is very unlikely that speaker
and hearer share the same history of linguistic interactions
unless the population consists only of these two agents.
When this happens the hearer may be able to parse the sen-
tence generated by the speaker, but its interpretation of that
sentence may be different from the meaning the speaker had
in mind. In this case the strategy used to coordinate the
grammars of speaker and hearer is to decrement the score
of the rules used by speaker and hearer in the processes of
generation and parsing, respectively, and allow the hearer to
adopt an association between the sentence and the meaning
used by the speaker.

The adoption algorithm used in this paper is very sim-
ple. Given a sentence E and a meaning M, the agent checks
whether it can parse E and interpret it as meaning M (or MH,
where MH is a formula logically equivalent to M). This may
happen when the hearer can parse the sentence used by the
speaker, but it obtains a different meaning from the one in-
tended by the speaker. In a language game the hearer always
chooses the interpretation with the highest score out of the
set of all the interpretations it that can obtain for a given sen-
tence. So it is possible that the hearer knows the grammati-
cal rules used by the speaker, but the scores of these rules are
not higher than the scores of the rules it used for interpreta-
tion. If the hearer can interpret sentence E as meaning M,
the hearer does not take any action. Otherwise it adopts the
association used by the speaker adding a new holistic rule of

the form s(M, 0.01) → E to its grammar5. The induction
algorithm, used to generalise and simplify the agents’ gram-
mars, compares this rule with other rules already present in
the grammar and replaces it with more general rules when-
ever it is possible.

Induction
In addition to invent and adopt associations between sen-
tences and meanings, the agents use some induction mecha-
nisms to extract generalizations from the grammar rules they
have learnt so far (Steels 2004b). The induction rules used in
this paper are based on the rules for chunking and simplifi-
cation in (Kirby 2002), although we extend them so that they
can be applied to grammar rules which have scores attached
to them. We use the approach proposed in (Vogt 2005) for
computing the scores of sentences and meanings from the
scores of the rules used in their generation.

The induction rules are applied whenever the agents in-
vent or adopt a new association, to avoid redundancy and
increase generality in their grammars.

Simplification Let r1 and r2 be a pair of grammar rules
such that the left hand side semantics of r1 contains a sub-
term m1, r2 is of the form n(m1, S) → e1, and e1 is a
substring of the terminals of r1. Then simplification can be
applied to r1 replacing it with a new rule that is identical to
r1 except that m1 is replaced with a new variable X in the
left hand side semantics, and e1 is replaced with n(X, S)
on the right hand side. The second argument of the left hand
side of r1 is replaced with a new variable SR. If the score
of r1 was a constant value c1, an expression of the form
{SR is S ∗0.01} is added to the right hand side of r1. If the
score of r1 was a variable, then the arithmetic expression
{SR is S1∗ c1} in the right hand side of r1 is replaced with
{SR is S ∗ S1 ∗ 0.01}.

Suppose an agent’s grammar contains rules 2, 3 and
4, which it has invented or adopted in previous language
games. It plays a language game with another agent, and
invents or adopts the following rule.

s([and, light, right], 0.01)→ andlightright. (12)

It could apply simplification to rule 12 (using rule 3) and
replace it with rule 13.

s([and, light, R], S) → andlight, s(R, SR),

{S is SR ∗ 0.01} (13)

Rule 13 could be simplified again, replacing it with 14.

s([and, Q, R], S) → and, s(Q, SQ), s(R, SR),

{S is SQ ∗ SR ∗ 0.01} (14)

Suppose the agent plays another language game in which
it invents or adopts a holistic rule for expressing the formula
[or, up, light] and applies simplification in a similar way.
Then the agent’s grammar would contain the following rules

5Observe that the score of the rule is initialized to 0.01. The
same initial score value is used for all the rules generated using
invention, adoption or induction.



that are compositional and recursive, but which do not use
syntactic categories for unary or binary connectives.

s([and, Q, R], S) → and, s(Q, SQ), s(R, SR),

{S is SQ ∗ SR ∗ 0.01} (15)

s([or, Q, R], S) → or, s(Q, SQ), s(R, SR),

{S is SQ ∗ SR ∗ 0.01} (16)

Chunk I Let r1 and r2 be a pair of grammar rules with
the same left hand side category symbol. If the left hand side
semantics of the two rules differ in only one subterm, and
there exist two strings of terminals that, if removed, would
make the right hand sides of the two rules the same, then
chunking can be applied.

Let m1 and m2 be the differences in the left hand side
semantics of the two rules, and e1 and e2 the strings of ter-
minals that, if removed, would make the right hand sides of
the rules the same. A new category n is created and the
following two new rules are added to the grammar.

n(m1, 0.01) → e1 n(m2, 0.01) → e2

Rules r1 and r2 are replaced by a new rule that is iden-
tical to r1 (or r2) except that e1 (or e2) is replaced with
n(X, S) on the right hand side, and m1 (or m2) is replaced
with a new variable X in the left hand side semantics. The
second argument of the left hand side of r1 is replaced with
a new variable SR. If the score of r1 was a constant value
c1, an expression of the form {SR is S ∗ 0.01} is added to
the right hand side of r1. If the score of r1 was a variable,
then the arithmetic expression {SR is S1 ∗ c1} in the right
hand side of r1 is replaced with {SR is S ∗ S1 ∗ 0.01}.

For example the agent of previous examples, which has
rules 15 and 16 for conjunctive and disjunctive formulas in
its grammar, could apply chunking to these rules and create
a new syntactic category for binary connectives as follows.

s([P, Q, R], S) → c2(P, S1), s(Q, S2), s(R, S3),

{S is S1 ∗ S2 ∗ S3 ∗ 0.01} (17)

c2(and, 0.01) → and (18)

c2(or, 0.01) → or (19)

Rules 15 and 16 would be replaced with 17, which gen-
eralises them because it can be applied to arbitrary formu-
las constructed using binary connectives, and rules 18 and
19, which state that and and or belong to c2 (the syntac-
tic category of binary connectives6), would be added to the
grammar.

Chunk II If the left hand side semantics of two grammar
rules r1 and r2 can be unified applying substitution X/m1
to r1 and there exists a string of terminals e1 in r2 that
corresponds to a nonterminal c(X, S) in r1, then chunk-
ing can be applied to r2 as follows. Rule r2 is deleted

6The syntactic category c2 is in fact more specific, as we will
see in section 4. It corresponds to binary connectives that are
placed at the beginning of the sentence followed in first place by
the expression associated with their first argument and in second
place by the expression associated with their second argument.

from the grammar and a new rule of the following form
c(m1, 0.01) → e1 is added to it.

Suppose the agent of previous examples adopts or invents
the following rule.

s([iff, up, right], 0.01)→ iffupright. (20)

Simplification of rule 20 with rules 4 and 3 leads to re-
place rule 20 with 21.

s([iff, Q, R], S) → iff, s(Q, SQ), s(R, SR),

{S is SQ ∗ SR ∗ 0.01} (21)

Then chunking could be applied to rules 21 and 17, re-
placing rule 21 with 22.

c2(iff, 0.01) → iff (22)

Self-Organisation
The agent in the previous examples has been very lucky,
but things are not always that easy. Different agents can in-
vent different words for referring to the same propositional
constants or connectives. The invention process uses a ran-
dom order to concatenate the expressions associated with
the components of a given meaning. Thus an agent that has
invented or adopted rules 2, 3 and 8 may invent any of the
following holistic sentences for communicating the meaning
[and,light,right]: lightandright, rightandlight, andrightlight,
andlightright, lightrightand, rightlightand.

This has important consequences, because the simplifi-
cation rule takes into account the order in which the ex-
pressions associated with the meaning components appear
in the terminals of a rule. Imagine the agent invented or
adopted the following holistic rules for expressing the mean-
ings [and,light,right] and [if,light,right].

s([and, light, right], 0.01)→ andlightright

s([if, light, right], 0.01)→ ifrightlight

The result of simplifying these rules using rules 2 and 3
would be the following pair of rules which cannot be used
for constructing a syntactic category for binary connectives,
because they do not satisfy the preconditions of chunking.
There do not exist two strings of terminals that, if removed,
would make the right hand sides of the rules the same.

S([and, X, Y ], SC) → and, s(X, SX), s(Y, SY ),

{SC is SX ∗ SY ∗ 0.56}

S([if, X, Y ], SC) → if, s(Y, SY ), s(X, SX),

{SC is SX ∗ SY ∗ 0.56}

The agents must therefore reach agreements on how to
name propositional constants and connectives, and on how
to order the expressions associated with the different com-
ponents of non-atomic meanings. Self-organisation princi-
ples help to coordinate the agents’ grammars in such a way
that they prefer to use the rules that are used more often
by other agents (Steels 1997; Batali 2002; Steels 2004a).
The set of rules preferred by most agents for naming atomic
meanings, assigning them syntactic categories and for order-
ing the expressions associated with the components of non-
atomic meanings constitutes the external language spread
over the population.



The goal of the self-organisation process is that the agents
in the population be able to construct a shared external lan-
guage and that they prefer using the rules in that language
over the rest of the rules in their individual grammars.

Coordination takes place at the third stage of a language
game, when the speaker communicates the meaning it had
in mind to the hearer. Depending on the outcome of the
language game speaker and hearer take different actions. We
have talked about some of them already, such as invention or
adoption, but they can also adjust the scores of the rules in
their grammars to become more successful in future games.

First we consider the case in which the speaker can gener-
ate a sentence for the meaning using the rules in its grammar.
If the speaker can generate several sentences for expressing
that meaning, it chooses the sentence with the highest score,
the rest are called competing sentences.

The score of a sentence (or a meaning) is computed at
generation (parsing) multiplying the scores of the rules in-
volved (Vogt 2005). Consider the generation of a sentence
for expressing the meaning [and, right, light] using the fol-
lowing rules.

s(light, 0.70) → light (23)

s(right, 0.25) → right (24)

c2(and, 0.50) → and (25)

s([P, Q, R], S) → c2(P, S1), s(Q, S2), s(R, S3),

{S is S1·S2·S3·0.01} (26)

The score S of the sentence andrightligth, generated by
rule 26, is computed multiplying the score of that rule (0.01)
by the scores of the rules 25, 24 and 23 which generate the
substrings of that sentence. The score of a lexical rule is the
value of the second argument of the left hand side of the rule
(e.g., the score of rule 25 is 0.50). The score of a grammat-
ical rule is the last number of the arithmetic expression that
appears on the right hand side of the rule (e.g., the score of
rule 26 is 0.01). The score of a sentence generated using a
grammatical rule is computed using the arithmetic expres-
sion on the right hand side of that rule. For example, using
the rules above, the score of the sentence andrightlight is
0.50*0.25*0.70*0.01=0.00875.

Suppose the hearer can interpret the sentence communi-
cated by the speaker. If the hearer can obtain several inter-
pretations (meanings) for that sentence, the meaning with
the highest score is selected, the rest are called competing
meanings.

If the meaning interpreted by the hearer is logically equiv-
alent to the meaning the speaker had in mind, the game suc-
ceeds and both agents adjust the scores of the rules in their
grammars. The speaker increases the scores of the rules it
used for generating the sentence communicated to the hearer
and decreases the scores of the rules it used for generating
competing sentences. The hearer increases the scores of the
rules it used for obtaining the meaning the speaker had in
mind and decreases the scores of the rules it used for ob-
taining competing meanings. This way the rules that have
been used successfully get reinforced. The rules that have
been used for generating competing sentences or competing
meanings are inhibited to avoid ambiguity in future games.

The rules used for updating the scores of grammar rules
are the same as those proposed in (Steels 1999). The rule’s
original score S is replaced with the result of evaluating ex-
pression 27 if the score is increased, and with the result of
evaluating expression 28 if the score is decreased. The con-
stant µ is a leaning parameter which is set to 0.1.

maximum(1, S + µ) (27)

minimum(0, S − µ) (28)
If the meaning interpreted by the hearer it is not logically

equivalent to the meaning the speaker had in mind, the game
fails. Speaker and hearer decrease the scores of the rules
they used for generating and interpreting the sentence, re-
spectively. This way the rules that have been used without
success are inhibited.

If the speaker can generate a sentence for the meaning it
has in mind, but the hearer cannot interpret that sentence,
the hearer adopts a holistic rule associating the meaning and
the sentence used by the speaker. This holistic rule can be
simplified and chunked later using the rest of the rules in the
hearer’s grammar.

In order to simplify the agents’s grammars and avoid pos-
sible sources of ambiguity a mechanism for purging rules
that have not been useful in past language games is intro-
duced. Every ten language games the rules which have been
used more than thirty times and have scores lower than 0.01
are removed from the agents’ grammars.

EXPERIMENTS
We present the results of some experiments in which five
agents construct a shared language that allows communicat-
ing the infinite set of formulas of a propositional language
L = {a, b, c, l, r, u}with six propositional constants.

First the agents play 10010 language games in which they
try to communicate propositional constants. Then they play
15010 language games in which they try to communicate
logical formulas constructed using unary and binary con-
nectives. At the end of a typical simulation run all the
agents prefer the same expressions (i.e., words) for refer-
ring to the propositional constants of the language L =
{a, b, c, l, r, u}. Table 1 describes the individual grammars
built by the agents at the end of a particular simulation run.
The grammars built by the agents, although different, are
compatible enough to allow total communicative success.
That is, the agents always generate sentences that are cor-
rectly understood by the other agents.

The grammars of all the agents have recursive rules for ex-
pressing formulas constructed using unary and binary con-
nectives (see table 1). Agents a2 and a5 have invented a
syntactic category for unary connectives. The other agents
have specific rules for formulas constructed using negation,
which use the same word ’f’ preferred by the former agents
for expressing negation. The grammar rules used for ex-
pressing negation place the word associated with the con-
nective in the second position of the sentence. This is indi-
cated by the number that appears in first place on the right
hand side of a grammar rule.

Thus the number 1 indicates that the connective is located
in the first place in the sentence (it is a prefix), the num-



Grammar a1
s([not, Y], R) → 2, f, s(Y,Q), {R is Q*1}
s([and, Y, Z], T) → 3, dyp, s(Z,Q), s(Y,R), {T is Q*R*1}
s([X, Y, Z], T) → 3, c3(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}

c3(or, X) → yi, {X is 1}
c3(iff, X) → iaj, {X is 1}

s([X, Y, Z], T) → 1, c1(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c1(if, X) → bqi, {X is 1}

Grammar a2
s([X,Y],R) → 2, c1(X,P), s(Y,Q), {R is P*Q*1}

c1(not, X) → f, {X is 1}
s([X, Y, Z], T) → 3, c2(X, P), s(Z,Q), s(Y,R), {T is P*Q*R*1}

c2(and, X) → dyp, {X is 1}
c2(or, X) → yi, {X is 1}
c2(iff, X) → iaj, {X is 1}

s([X, Y, Z], T) → 1, c3(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c3(if, X) → bqi, {X is 1}

Grammar a3
s([not, Y], R) → 2, f, s(Y,Q), {R is Q*1}
s([X, Y, Z], T) → 3, c1(X, P), s(Y,Q), s(Z,R), {T is P*Q*R*1}

c1(and, X) → dyp, {X is 1}
c1(or, X) → yi, {X is 1}
c1(iff, X) → iaj, {X is 1}

s([X, Y, Z], T) → 1, c2(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c2(if, X) → bqi, {X is 1}

Grammar a4
s([not, Y], R) → 2, f, s(Y,Q), {R is Q*1}
s([X, Y, Z], T) → 3, c4(X, P), s(Y,Q), s(Z,R), {T is P*Q*R*1}

c4(and, X) → dyp, {X is 1}
s([X, Y, Z], T) → 3, c7(X, P), s(Z,R), s(Y,Q), {T is P*R*Q*1}

c7(or, X) → yi, {X is 1}
c7(iff, X) → iaj, {X is 1}

s([if, Y, Z], T) → 1, bqi, s(Y,Q), s(Z,R), {T is Q*R*1}
Grammar a5
s([X,Y],R) → 2, c1(X,P), s(Y,Q), {R is P*Q*1}

c1(not, X) → f, {X is 1}
s([X, Y, Z], T) → 3, c4(X, P), s(Z,Q), s(Y,R), {T is P*Q*R*1}

c4(and, X) → dyp, {X is 1}
c4(or, X) → yi, {X is 1}

s([X, Y, Z], T) → 3, c2(X, P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c2(iff, X) → iaj, {X is 1}

s([if, Y, Z], T) → 1, bqi, s(Y,Q), s(Z,R), {T is Q*R*1}

Table 1: Grammars constructed by the agents at the end of a
particular simulation run.

ber 2 that the connective is located in the second place (in-
fix) and the number 3 that the connective is located in the
third place (suffix). Prolog does not allow the use of left
recursive grammar rules. We use this convention thus in or-
der to be able to represent two different types of grammar
rules for unary connectives (which place the connective in
the first and the second position respectively) and six differ-
ent types of grammar rules for binary connectives7. But the
position of a binary connective in a sentence does not deter-
mine uniquely the form of the sentence. It is necessary to
specify as well the positions of the expressions associated
with the arguments of the connective.

Consider the grammar rules used by agent a4 for express-
ing conjunctions (second rule), and disjunctions and equiv-

7The induction rules (simplification and chunk) have been ex-
tended appropriately to deal with this convention.

alences (fourth rule). Both grammar rules place the connec-
tive in the third position of the sentence, but differ in the po-
sitions in which they place the expressions associated with
the arguments of the connective. The first rule places the ex-
pression associated with the first argument of the connective
(variable Y) in the first position, the expression associated
with the second argument of the connective (variable Z) in
the second position, and the expression associated with the
connective in the third position. The second rule places the
expression associated with the first argument of the connec-
tive (variable Y) in the second position (observe the order in
which s(Y,Q) and s(Z,R) appear on the right hand sides of
both rules), the expression associated with the second argu-
ment of the connective (variable Z) in the first position, and
the expression associated with the connective in the third
position of the sentence.

It is important to distinguish between commutative and
non-commutative binary connectives. In order to analyze
the grammar rules built by the agents to express formulas
constructed using commutative connectives, we only have
to make sure that they use the same words for expressing
the connectives and that they place the expressions associ-
ated with the connectives in the same position in the sen-
tence. Because the order of their arguments is irrelevant for
language understanding. We can observe in table 1 that all
agents place in the third position the connectives ’and’, ’or’
and ’iff’, and that they all use the same words (’dyp’, ’yi’
and ’iaj’, respectively) for expressing these connectives.

The positions in which the expressions associated with the
arguments of non-commutative connectives are placed in a
sentence determines however the meaning of the sentence.
We can observe in table 1 that all agents use the word ’bqi’
for expressing the connective ’if’, that they all place it in
the first position of the sentence, and that all of them place
the expressions associated with the antecedent and the con-
sequent of an implication in the same positions.

All agents have created syntactic categories for commuta-
tive connectives, although the extent of such categories dif-
fers depending on the positions in which the expressions as-
sociated with the arguments of the connectives ’and’, ’or’
and ’iff’ are placed in the sentence. Agents a1, a2 and a3
have invented syntactic categories for non-commutative con-
nectives, whereas a4 and a5 have specific grammar rules for
expressing implications.

Figure 1 shows some preliminary results about the evolu-
tion of the communicative success, averaged over ten sim-
ulation runs with different initial random seeds, for a popu-
lation of five agents. The communicative success is the av-
erage of successful language games in the last ten language
games played by the agents.

The agents reach a communicative success of 100% in
10800 language games. That is, after each agent has played
on average 2002 language games about propositional con-
stants and 2160 language games about formulas constructed
using logical connectives.

RELATED WORK
(Batali 2002) studies the emergence of recursive commu-
nication systems as the result of a process of negotiation



0

0,2

0,4

0,6

0,8

1

1,2

1 58 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970 1027 1084 1141 1198 1255 1312 1369 1426 1483

Figure 1: Evolution of the communicative success in exper-
iments involving 5 agents and 15010 language games about
formulas of L = {a, b, c, r, l, u} constructed using unary
and binary connectives (i.e., ¬,∧,∨,→ and ↔).

among the members of a population. The alternative ex-
plored in this research is that learners simply store all of
their analyzed observations as exemplars. No rules or prin-
ciples are induced from them. Instead exemplars are used
directly to convey meanings and to interpret signals.

The agents acquire their exemplars by recording obser-
vations of other agents expressing meanings. A learner
finds the cheapest phrase with the observed string and mean-
ing that can be created by combining or modifying phrases
from its existing set of exemplars, creating new tokens and
phrases if necessary.

As an agent continues to record learning observations, its
exemplar set accumulates redundant and contradictory ele-
ments. In order to choose which of a set of alternative ex-
emplars, or modified analyses based on them, will be used
in a particular episode the cost of different solution phrases
are compared, and a competition process among exemplars
based on reinforcement and discouragement is established.
An exemplar is reinforced when it is used in the phrase an
agent constructs to record a learning observation, and it is
discouraged when it is found to be inconsistent with a learn-
ing observation. Reinforcement and discouragement imple-
ment therefore a competition among groups of exemplars.

In the computational simulations described in (Batali
2002) ten agents negotiate communication systems that en-
able them to accurately convey meanings consisting of sets
of 2 to 7 atomic formulas (constructed from 22 unary and
10 binary predicates) which involve at most 3 different vari-
ables, after each agent has made fewer than 10000 learning
observations. Each agent acquires several hundred exem-
plars, of which a few dozen are singleton tokens identical to
those of other agents in the population.

The agents express meanings by combining their single-
ton tokens into complex phrases using the order of phrases,
as well as the presence and position of empty tokens, to in-
dicate configurations of predicate arguments. Empty tokens
are also used to signal the boundaries of constituents, the
presence of specific argument maps, and details of the struc-

ture of the phrases containing them.
The research presented in (Batali 2002) addresses the

problem of the emergence of recursive communication sys-
tems in populations of autonomous agents, as we do. It dif-
fers from the work described in the present paper by focus-
ing on learning exemplars rather than grammar rules. These
exemplars have costs, as our grammar rules do, and their
costs are reinforced and discouraged using self-organization
principles as well. The main challenge for the agents in
the experiments described in (Batali 2002) is to construct
a communication system that is capable of naming atomic
formulas and, more importantly, marking the identity rela-
tions among the arguments of the different atomic formulas
that constitute the meaning of a given string of characters.
This task is quite different from the learning task proposed
in this paper which focusses on categorizing propositional
sentences and connectives, and marking the scope of each
connective using the order of the constituents of a string of
characters.

(Kirby 2002) studies the emergence of basic structural
properties of language such as compositionality and recur-
sion as a result of the influence of learning on the complex
dynamical process of language transmission over genera-
tions. This paper describes computational simulations of
language transmission over generations consisting of only
two agents: an adult speaker and a new learner. Each gen-
eration in a simulation goes through the following steps: 1.-
The speaker is given a set of meanings, and produces a set
of utterances for expressing them either using its knowledge
of language or by some random process of invention. 2.-
The learner takes this set of the utterance-meaning pairs and
uses it as input for its induction learning algorithm. 3.- Fi-
nally a new generation is created where the old speaker is
discarded, the learner becomes the new speaker, and a new
individual is added to become a new learner. At the start of
a simulation run neither the speaker nor the learner have any
grammar at all.

The induction algorithm thus proceeds by taking an utter-
ance, incorporating the simplest possible rule that generates
that utterance directly, searching then through all pairs of
rules in the grammar for possible subsumptions until no fur-
ther generalisations can be found, and deleting finally any
duplicate rules that are left over. The inducer uses merg-
ing and chunking to discover new rules that subsume pairs
of rules that have been learnt through simple incorporation,
and simplification for generalising some rules using other
rules that are already in the grammar.

The meaning space of the second experiment described in
(Kirby 2002) consists of formulas constructed using 5 binary
predicates, 5 objects and 5 embedding binary predicates.
Reflexive expressions are not allowed (i.e., the arguments of
each predicate must be different). Each speaker tries to pro-
duce 50 degree-0 meanings, then 50 degree-1 meanings, and
finally 50 degree-2 meanings. The grammar of generation
115 in one of the simulation runs has syntactic categories for
nouns, verbs, and verbs that have a subordinating function.
It also has a grammar rule that allows expressing degree-0
sentences using VOS (verb, object, subject) order, and an-
other recursive rule that allows expressing meanings of de-



gree greater than 0. In the ten simulation runs performed
the proportion of meanings of degrees 0, 1 and 2 expressed
without invention in generation 1000 is 100%.

The most important difference between our work and that
presented in (Kirby 2002) is that the latter one focusses on
language transmission over generations. Rather than study-
ing the emergence of recursive communication systems in
a single population of agents, as we do, it shows that the
bottleneck established by language transmission over sev-
eral generations favors the propagation of compositional and
recursive rules because of their compactness and generality.
In the experiments described in (Kirby 2002) the popula-
tion consists of a single agent of a generation that acts as a
teacher and another agent of the following generation that
acts as a learner. There is no negotiation process involved,
because the learned never has the opportunity to act as a
speaker in a single iteration. We consider however popula-
tions of five agents which can act both as speakers and hear-
ers during the simulations. Having more than two agents
ensures that the interaction histories of the agents are differ-
ent from each other, in such a way that they have to negotiate
in order to reach agreements on how to name and order the
constituents of a sentence.

The induction mechanisms used in the present paper are
based on the rules for chunking and simplification in (Kirby
2002), although we extend them so that they can be applied
to grammar rules which have scores attached to them. Fi-
nally the meaning space used in (Kirby 2002) (a restricted
form of atomic formulas of second order logic) is different
from the meaning space considered in the present paper (ar-
bitrary formulas from a propositional logic language), al-
though both of them require the use of recursion.

CONCLUSIONS

This paper has addressed the problem of the acquisition
of the syntax of propositional logic. An approach based
on general purpose cognitive capacities such as invention,
adoption, parsing, generation and induction has been pro-
posed. Self-organisation principles have been used to show
how a shared set of preferred lexical entries and grammatical
constructions, i.e., a language, can emerge in a population of
autonomous agents which do not have any initial linguistic
knowledge.

Experiments in which a population of five autonomous
agents comes up with a grammar that allows communicat-
ing propositional logic formulas introducing syntactic cat-
egories for propositional sentences and connectives, and
marking the scope of each connective using the order of the
constituents of a string of characters have been presented.
This grammar although simple has interesting properties
found in natural languages, such as compositionality, partial
word order dependence and recursion.

Acknowledgments

This work is partially funded by the DGICYT TIN2005-
08832-C03-03 project (MOISES-BAR).

References
Batali, J. 2002. The negotiation and acquisition of re-
cursive grammars as a result of competition among exem-
plars. In Linguistic Evolution through Language Acquisi-
tion: Formal and Computational Models, 111–172. Cam-
bridge U.P.
Hurford, J. 2000. Social transmission favors linguistic gen-
eralization. In The Evolutionary Emergence of Language:
Social Function and the Origins of Linguistic Form, 324–
352. Cambridge University Press.
Kirby, S. 2002. Learning, bottlenecks and the evolu-
tion of recursive syntax. In Linguistic Evolution through
Language Acquisition: Formal and Computational Mod-
els, 96–109. Cambridge University Press.
McCarthy, J. 1990. Formalizing Common Sense. Papers by
John McCarthy. Ablex. Edited by Vladimir Lifschitz.
Sierra-Santibáñez, J. 2001a. Grounded models as a ba-
sis for intuitive reasoning. In Proceedings of the Seven-
teenth International Joint Conference on Artificial Intelli-
gence, 401–406.
Sierra-Santibáñez, J. 2001b. Grounded models as a ba-
sis for intuitive reasoning: the origins of logical categories.
In Papers from AAAI–2001 Fall Symposium on Anchoring
Symbols to Sensor Data in Single and Multiple Robot Sys-
tems. Technical Report FS-01-01, AAAI Press, 101–108.
Sierra-Santibáñez, J. 2002. Grounded models as a basis for
intuitive and deductive reasoning: The acquisition of logi-
cal categories. In Proceedings of the European Conference
on Artificial Intelligence, 93–97.
Steels, L., and Wellens, P. 2006. How grammar emerges to
dampen combinatorial search in parsing. In Proc. of Third
International Symposium on the Emergence and Evolution
of Linguistic Communication.
Steels, L.; Kaplan, F.; McIntyre, A.; and V Looveren, J.
2002. Crucial factors in the origins of word-meaning. In
The Transition to Language, 252–271. Oxford Univ Press.
Steels, L. 1997. The synthetic modeling of language ori-
gins. Evolution of Communication 1(1):1–35.
Steels, L. 1998. The origins of syntax in visually grounded
robotic agents. Artificial Intelligence 103(1-2):133–156.
Steels, L. 1999. The Talking Heads Experiment. Volume 1.
Words and Meanings. Antwerpen: Special Pre-edition for
LABORATORIUM.
Steels, L. 2000. The emergence of grammar in commu-
nicating autonomous robotic agents. In Proceedings of the
European Conference on Artificial Intelligence. IOS Pub-
lishing, Amsterdam.
Steels, L. 2004a. Constructivist development of grounded
construction grammars. In Proc. Annual Meeting of Asso-
ciation for Computational Linguistics, 9–16.
Steels, L. 2004b. Macro-operators for the emergence of
construction grammars. SONY CSL.
Vogt, P. 2005. The emergence of compositional structures
in perceptually grounded language games. Artificial Intel-
ligence 167(1-2):206–242.


