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Abstract

Artificial cognitive systems sometimes neglect the impact
on action selection of natural durative-state mechanisms like
emotions and drives. These chemically-regulated motivation
systems assist natural action selection through temporarily
focusing an agent’s behavioural attention on particular prob-
lems. This can improve efficiency by avoiding dithering, but
taken to extremes can be inefficient in ways that seem cog-
nitively improbable for mammal-level intelligence. This ar-
ticle demonstrates a flexible latching method that provides
appraisal-based sensitivity to interruption, allowing reassess-
ment of the current focus of attention. This drastically im-
proves efficiency in handling multiple competing goals at the
cost of a surprisingly small amount of extra cognitive com-
plexity.

Introduction

The term “action selection” might imply cognition, but this
is merely due to anthropomorphic labelling. If we take cog-
nition to be a process requiring time (probably a form of
search), and action selection to be any mechanism for de-
termining the present course of action, then much of action
selection is really non-cognitive. Our action choices are lim-
ited both by evolution and individual experience; many of
them may be essentially reflexive. Such limiting is neces-
sary if action selection is to be achieved in a timely manner
(Simon 1972; Chapman 1987; Gigerenzer & Todd 1999).
However, there is no question that humans and other species
do engage in cognition in some contexts. This paper pro-
poses and examines one such context: the arbitration be-
tween different goals.

In the simulation of animal behaviour, artificial agents are
usually designed to interact with their surroundings, includ-
ing other agents, and to carry out some set of tasks. In par-
ticular, it is often the case that agents are required to ensure
their survival. Besides more dramatic aspects, e.g. fending
off predators, this requires agents to locate, approach and
consume sources of energy. Furthermore, there are often
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additional tasks that need to be carried out, such as main-
taining a social network through grooming group-mates. All
these behaviours require both time and energy, and it follows
that agents possessing more efficient behaviour management
should, in general, fare better than other agents with less ef-
ficient behaviour selection.

In the work presented here, our agents must not only en-
sure that consummatory behaviours (i.e. feeding) have a
positive energy intake (that is, the energy spent carrying out
a particular action must be less than the energy acquired)
but they must also have the ability to store excess energy
in order to pursue auxiliary behaviours. These auxiliary
behaviours include social behaviours, which are also mo-
tivated by survival-oriented drives similar to those for feed-
ing, as socialising promotes long-term survival by facilitat-
ing group living (Dunbar 1993; Korstjens, Verhoeckx, &
Dunbar 2006).

The context of our cognitive task is a comparative study
of three different mechanisms for allowing agents to satisfy
their needs. We focus in particular on a potential inefficiency
that may occur when an agent attempts to acquire excess sat-
isfaction. We propose that if an agent is interrupted at any
stage during this period, a choice needs to be made whether
or not to continue with the current activity or whether to
attend to other, possibly more relevant behaviours. Persis-
tence avoids the inefficiency of dithering between two goals,
while some degree of flexibility avoids the inefficiency of
pursuing a goal excessively. We assume biological motiva-
tion systems have evolved to manage this trade-off. Here
we do not attempt a perfect model of such a system. In-
stead we present and evaluate a simple control mechanism
that achieves this at a minimal cognitive cost. We use a ba-
sic latching system augmented with the ability to detect po-
tentially relevant interruptions. This triggers a reevaluation
of priorities already present in the agents’ action-selection
system. Although quite simple, this system is related to at
least one theory of conscious attention (Norman & Shallice
1986). We return to this last point in the discussion.

Method

In this section we first describe the agent architecture we
use to test our system. The results are general, but the archi-
tecture is described for clarity. We then describe the latching
mechanisms we have implemented and the testing scenarios.



Following sections present our results and discussion.

Basic Action Selection

The agents are specified using the behaviour-oriented design
(BOD) methodology (Bryson & Stein 2001), a system that
produces layered or hybrid agents consisting of (a) mod-
ules that specify details of their behaviour and (b) dynamic
plans that specify agent-wide, cross-modular prioritisation.
Action selection is carried out using parallel-rooted, or-
dered slip-stack hierarchical (POSH) dynamic plans (Bryson
2003).

We chose BOD as a fairly simple example of an ar-
chitectural consensus achieved in the late 1990s for real-
time situated systems: that AI is best constructed using a
combination of modularity, for providing intelligent primi-
tives, and structured hierarchical plans, for encoding priori-
ties (Hexmoor, Horswill, & Kortenkamp 1997; Kortenkamp,
Bonasso, & Murphy 1998; Bryson 2000). Even mainstream
cognitive architectures such as Soar and ACT-R can be de-
scribed in this way (Laird & Rosenbloom 1996). Although
somewhat neglected in academia in the last decade due to an
emphasis on learned action selection, similar architectural
threads can be seen in contemporary games AI programming
with the adoption of behaviour trees to extend the expressiv-
ity of finite state machines. The details of the structured
action selection system are unimportant to the mechanism
presented in this paper. All that is assumed is:

1. some mechanism for storing temporary values of long-
term state (e.g. learning),

2. some mechanism of expressing a variety of goals and their
associated actions, and

3. the notion of a trigger or precondition as part of the mech-
anism for choosing between goals and actions.

A single POSH plan was used to specify the priorities of
all agents tested here. The plan, shown in Figure , assumes
four basic behaviours: B1 to B4. The top level of the plan
hierarchy (the drive collection) is checked at every time step,
and the first element whose trigger is true is executed. All
but behaviour B4 further contain a sub-plan (called a com-
petence) also containing elements each with their own trig-
ger. Competences maintain decision memory and control
behaviour until they either terminate, pass control to another
child competence, or the main drive collection takes control
back for a higher-priority problem.

The first two behaviours, which are of the highest priority,
fulfill consummatory needs, such as eating or drinking, the
neglect of which would cause the agent to die. Behaviours
B3 and B4 are of lower priority and are only considered
for potential execution if B1 and B2 are not triggered. Be-
haviour B3 represents grooming (but could equally well be
mating) which requires two agents to interact with one an-
other. A final behaviour (B4) serves as a default behaviour
and should always be triggerable (exploring in this case).

The primary focus of this investigation is on behaviours
B3 and B4. Lower priority behaviours may only be executed
if all higher priority behaviours are managed efficiently and
although these behaviours are non-essential to the survival

of the agent as an individual, they may significantly impact
the survival of the species as a whole: consummatory be-
haviours are of highest priority as they ensure the survival of
the agent. Behaviours such as breeding, on the other hand,
are necessarily of lower priority, despite their significance to
the group of agents as a whole. It is therefore paramount
that these higher-level behaviours are managed efficiently
enough to allow agents to pursue other behaviours as well.

Each behaviour is composed of numerous elements, some
of which may be classified as secondary actions. In the
case of feeding, the secondary actions would be ‘locating
food source’ and ‘move towards food source’. The primary
action would correspond to ‘eat’ and it is that action that
should be executed most frequently to ensure an efficient
execution of the behaviour. Dithering, the rapid switching
between goals, for example, results in helper actions being
performed excessively. Each behaviour Bi has one such pri-
mary action which will be denoted as Bα

i . In summary, it
is not only desirable to be able to follow all behaviours, but,
at the same time, the execution of primary actions should be
maximised, and that of helper actions minimised. The fre-
quency at which primary actions are executed is thus at the
centre of our investigation.

Agents and State

Each behaviour Bi is associated with a module, which in-
cludes a single-valued internal state Ei. Here, for the sake
of clarity and without loss of generality, we use the con-
cept of energy to denote the internal state of the agent: each
behaviour Bi has a current level of energy Ei. The agents
live in a toroidal, discrete-time world with dimensions of
600 × 600 pixels. At every time-step, all energy states Ei

are decreased by e−i and, given a behaviour is vital to the
agent’s survival, death is imminent once Ei ≤ 0. For each
behaviour, we define a threshold δi such that Bi is triggered
once Ei < δi. Once Bi is triggered, the agent executes the
actions associated with that particular behaviour. The be-
haviours B1 and B2, for example, correspond to consumma-
tory activities (eating or drinking): the agent first locates an
energy source, moves towards the energy source (at a speed
of 2 pixels/time step) and consumes the source once in close
proximity. This consumption raises the agent’s internal state
by e+

i . Clearly we must ensure that e+
i � e−i , ∀i as other-

wise an agent would never be able to satisfy a need (and in
the case of essential behaviours, the agent would eventually
die). We have chosen the same values for all behaviours:
e+ = 1.1 and e− = 0.1 and hence drop the subscript from
here on. This gives a net energy gain of e± = 1.

All lower-priority behaviours (i.e. B3 and B4) may only
be executed if B1 and B2 are satisfied. What it means for
a behaviour to be “satisfied” depends upon the implementa-
tion of the agents’ action selection — the basis of this paper,
described next.

Conditions

We use three different action selection mechanisms and eval-
uate their impact on the energy management of the agent:
unlatched, strict latch and flexible latch.



(
(SDC life (goal (s_one_step (s_succeed 0)))
(drives
((dead (trigger((s_is_dead 0))) a_stay_dead))
((drink (trigger((s_wants_drink))) c-drink) (eat (trigger((s_wants_food))) c-eat))
((groom (trigger((s_wants_to_groom))) c-groom))
((explore (trigger((s_succeed))) a_explore))))

(C c-groom (goal ((s_succeed 0)))
(elements
((has-no-target (trigger((s_has_groom_target 0))) a_pick_groom_target))
((not-near-target (trigger((s_is_near_groom_target 0))) a_move_to_groom_target))
((default-groom (trigger((s_succeed))) a_groom_with_target))))

(C c-eat (goal ((s_succeed 0)))
(elements
((has-no-food (trigger((s_has_food 0))) a_pick_food))
((not-near-target (trigger((s_is_near_food_target 0))) a_move_to_food))
((default-feeding (trigger((s_succeed))) a_eat))))

(C c-drink (goal ((s_succeed 0)))
(elements
((has-no-drink (trigger((s_has_drink 0))) a_pick_drink))
((not-near-target (trigger((s_is_near_drink_target 0))) a_move_to_drink))
((default-feeding (trigger((s_is_near_drink_target))) a_drink))))
)
Figure 1: The POSH plan that determines priorities for the agents: the drive collection (SDC) is called at every time step and
its elements checked in order: {B1=eat, B2=drink}, {B3=groom}, {B4=explore}. The first element whose trigger is true is
executed. Equal priority elements (i.e. B1 and B4) are checked in random order. Primitive actions start with ‘a ’, primitive
senses with ‘s ’, subplans start with ‘c-’.

Unlatched As mentioned in the previous section, a be-
haviour Bi is triggered if Ei < δi. In this basic, unlatched,
model, the drive terminates as soon as Ei ≥ δi and the time
spent at the energy source is expected to be relatively short
(although this is not necessarily true in the case of multiple
equal-priority behaviours). Furthermore, no excess energy is
stored and the behaviour is triggered again very shortly af-
ter it is satisfied1. When there are multiple such behaviours,
the agent will continue to oscillate between them (dither-
ing). Even if there is only a single top-priority behaviour,
the agent will spend its entire time in close proximity to the
energy source as the acquired energy is always insufficient
to pursue anything else.
Strict latch In the latched models, the agent only termi-
nates the drive once Ei ≥ φi where φi ≥ δi. Now, the agent
has an energy reserve of (φi − δi)/e− time steps before the
behaviour is triggered again. If all high-priority drives are
latched in this way and the latch is sufficiently large (see next
section), the agent is able to eventually follow lower-priority
drives. This form of latching is very inefficient, however, if
the agent inhabits a world where unexpected interruptions
may occur: if an agent is almost finished with one activity
but gets interrupted, the agent will continue to pursue this
activity independent of other, lower priority needs. For ex-
ample, an agent that is grooming and whose partner has left,
might pursue another partner for five minutes when only an-

1The theoretical maximum possible excess energy in this case
given the values of e+ and e− is 0.9 which will last for 9 time steps.

other five seconds of grooming would satiate it. This is true
even if Ei = φi − ε where ε � φi − δi and hence this form
of latching is referred to as strict.

Flexible latch If the agent is able to detect interruptions,
the interruption could trigger a decision that determines it
subsequent activities. This decision could be conscious,
but here we simply relax the latching by using yet another
threshold, ψi, that is situated in-between the previously two
established ones, δi ≤ ψi ≤ φi. This gives rise to three
different scenarios: the interruption occurs when

• Ei < δi, the drive remains ‘unsatisfied’

• δi < Ei < ψi, the drive still remains ‘unsatisfied’

• ψi < Ei < φi, the drive is, at least temporarily, ‘satisfied’

Here we consider two types of interrupts. The first type oc-
curs when the source of satisfaction is depleted or otherwise
removed (e.g., an agent looses his current grooming part-
ner). The second type of interrupt is caused by higher prior-
ity drives that are triggered.

Threshold Selection

The previous section has discussed numerous different
thresholds that require initialisation and the choice of pa-
rameters is crucial to the outcome of the simulation. First, it
should be noted that the flexible latch is simply a generali-
sation of the strict latch, which in turn is a generalisation of
the unlatched technique:

Flexible latch δ ≤ ψ ≤ φ



Strict latch δ ≤ ψ = φ

Unlatched δ = ψ = φ

In this investigation,, we have two primary points of inter-
est, which are closely related: survival and efficiency. The
survival of the agent crucially depends on the choice of δ.
Efficiency, on the other hand, refers to the agent’s ability to
pursue all its behaviours, not just high-priority ones, and de-
pends on the choice of φ. In order for an agent to survive,
any vital behaviour must be triggered such that the agent has
enough energy to approach the energy source (locating an
energy source can be done in a single time-step and is sub-
sequently excluded from the following discussion):

δi ≥ E
r
i (1)

where E
r
i is the energy required to reach the source:

(dmax/dmov) × e−, where dmov is the distance an agent
can move in a single time step and dmax is the maximum
possible distance an agent can travel2. If there are n equally
vital behaviours, δi has to be adjusted accordingly:

δi ≥
n−1∑

j=1

(
E

r
j + E

c
j

)
+ E

r
j (2)

where E
c
i is the energy required to raise the energy level to

the appropriate level:

E
c
i =

ψi − Ei

e±
(3)

The value of φ, on the other hand, has to be set such that
enough energy is stored to pursue all vital needs:

φi ≥ δi +
n∑

j=1

(
E

r
j + E

r
j

)
(4)

Any excess energy is subsequently devoted to the other,
lower-priority behaviours. This choice of φi necessarily af-
fects Ec as now more time is spent at the energy source (a
difference of φi − δi). Interruptions drastically alter Ec and
the energy required to satisfy a latched behaviour given m
interruptions is simply:

E
c
i =

m∑

j=1

(
E

r
ij + E

c
ij

)
(5)

At each interruption, the agent should, in theory, decide
whether it is worth pursuing the currently executed be-
haviour (i.e. if there is a positive or negative energy ratio).
Usually there is insufficient knowledge available to make an
informed decision due of the complexity or indeterminacy
of the environment. Nature selects for agents with appro-
priate or at least adequate thresholds; here, in our particular
simulations, we test a range of values for ψ.

2The theoretical maximum in this case is simplyp
width2 × height2 ≈ 424 and it would take the agent a

maximum of 424/2=212 time steps to reach the target, consuming
212 × 0.1 = 21.2 units of energy.

Experiment and Simulation Details

Our experiments are organised into two sets. The first set
uses sim1, a very well defined setup that allows a great de-
gree of control over all aspects investigated, particularly fre-
quency of interruption (see Figure 2a). The second set use
sim2 (Figure2b), a more realistic simulator where interrup-
tions are caused by the dynamics of the environment itself.

In both simulations, there are 5 identical agents. Further-
more, sim1 positions the energy sources such that they are
maximum distance from one another3. In this simulation,
we exactly control the number of interruptions an agent is
exposed to throughout the execution of a single behaviour.
Once an agent is interrupted, it is forced to consider an al-
ternative energy source (it is not allowed to remain at the
current one).

The second simulation is more realistic and is used to ver-
ify the results obtained from the first set of experiments.
In sim2, energy sources are scattered randomly across the
world. Each energy source has a certain load that depletes
as an agent consumes it. Once depleted, the energy source
vanishes, but, at the same time, a new energy source appears
elsewhere in the world. The load of any energy source has a
maximum of 50 units and depletes by 2 units if consumed.
All energy sources gain 1 units per time step.

The experiments are executed over 15 distinct trials. Each
trial executes the simulation for 5000 time steps. All internal
states are initialised such that Ei = δi, thus all behaviours
are triggered immediately once the simulation begins. At
each time step, the agent may execute a single action. The
results are simply the number of times each primary action
has been executed, averaged over all agents and trials. In all
cases, a two-tailed t-test is used to test for significance with
a confidence of 99.995%. We chose the same threshold set-
tings across all behaviours and again, we drop the subscripts
from here on. Furthermore, we set δ = 200 in all experi-
ments, giving an agent sufficient energy for 200/e− = 2000
time steps before the behaviour is triggered again.

Results

In this section, we will first present the results from the con-
trolled environments, sim 1, followed by a comparison to the
results obtained in the more realistic settings, sim 2.

Controlled Environment: Sim1
The first experiment compares the unlatched version with
the strictly latched one. The results are shown in Table 1.
The data confirms that in the unlatched case, dithering pre-
vents the agent from pursuing any of the lower priority be-
haviours. The latch effectively solves this problem, although
only if the latch is sufficiently large. A latch of size 10 does
increase the activity of behaviours B1 and B2 but does not
allow for the lower-priority behaviours B3 and B4 to be ex-
ecuted. Once the latch increases in size, so does the activity
of the lower-priority behaviours. This result is not surprising
and the data indicates that larger latches are indeed prefer-
ential.

3The simulation is toroidal and agents are able to move, for
example, from the far left to the far right in one move.



Figure 2: The two simulation environments used to test the overall efficiency of the agents: a completely controlled scenario (a)
where energy sources are maximum distance apart, all agents are initially grouped at the centre and interruptions are externally
induced, and a more realistic scenario (b) where agents and energy sources are placed randomly.

unlatched latched significance
action φ = δ 10 50 100 0-10 10-50 50-100
Bα

1 443 452 478 494 * * *
Bα

2 443 452 479 498 * * *
Bα

3 0 0 454 468 *
Bα

4 0 0 1414 2037 * *
total 886 903 2824 3498

Table 1: Comparing latched and unlatched behaviours: a latch, φ − δ ∈ {10, 50, 100}, if sufficiently large, allows the agent to
pursue the lower-priority behaviours B3 and B4.

10 50 100 significance
action 1 3 5 1 3 5 1 3 5 0-1 0-3 0-5 1-3 3-5
Bα

1 458 442 420 478 481 462 519 504 508 * * *
Bα

2 454 441 429 474 481 455 521 512 519 * *
Bα

3 0 0 0 277 1 0 468 421 1 * * * *
Bα

4 0 0 0 95 0 0 1119 57 0 * * * * *
total 912 882 850 1324 962 917 2627 1493 1028

Table 2: The performance of the agents given φ− δ ∈ {10, 50, 100} and interruptions of frequency 1, 3 or 5. This is compared
to the case without interruptions (0) as shown in table 1.

The next experiment investigates the apparent inefficiency
of strict latching once an agent is confronted with interrup-
tions. The data for this experiment is summarised in Table
2. Even in the case of a single interruption, the frequency
of consummatory actions executed drops significantly. The
right-most column in the table compares the performance of
a latch of size 100 with 0, 1, 3 and 5 interruptions and the
differences for the lower-priority actions are almost always
significant.

The final experiment using sim1 determines the perfor-
mance of the flexible latch using the same settings as in the
experiment before. Here, different values for the intermedi-
ate threshold ψ are tested. The value of ψ is denoted as the
percentage of the latch itself. If, for example, δ = 100 and

φ = 120, a value of 25% would indicate ψ = 105. The re-
sults are shown in Table and a setting of ψ = δ seems most
successful. However, as shown in Table 3, the differences
are usually not significant. Nevertheless, such a setting is
preferential as it allows to simply the flexible latch by effec-
tively eliminating ψ altogether. Comparing the flexible latch
to the strict latch shows a significant improvement in at least
one action for any number of interruptions tested (compare
Table 2 with Table ; significance is indicated in the rightmost
column of Table 3).

Figure 3 shows graphically how the ability to detect inter-
ruptions improves the agent’s overall efficiency. The graph
plots the number of time steps spent executing the actions of
interest given different frequencies of interruption. Further-



1 3 5
action 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
Bα

1 499 491 489 501 490 491 496 496 482 487 482 495
Bα

2 492 490 496 503 483 487 491 496 488 485 493 497
Bα

3 481 476 479 481 475 479 469 455 474 470 462 437
Bα

4 1723 1689 1528 1312 1458 1342 1059 651 1222 1150 880 495
total 3195 3146 2991 2797 2906 2799 2516 2098 2666 2592 2318 1923

1 3 5 significance
0-25 25-50 50-75 0-25 25-50 50-75 0-25 25-50 50-75 1-1 3-3 5-5

Bα
1 * *

Bα
2 * * *

Bα
3 * *

Bα
4 * * * * * * * *

Table 3: The performance of the agents using ψ = δ + p(φ − δ) where p ∈ {0, 0.25, 0.5, 0.75}, δ = 200, φ = 300 and
frequency of interruptions equal to 1, 3 and 5. The right-most column compares the strictly and flexibly latched implementation
for the different frequencies of interruptions. The statistical significances for this table is shown also.

Figure 3: A graphical comparison of strict and flexible latch-
ing (

∑4
i=1 Bα

i ). The top and bottom lines refer to the latched
but uninterrupted and unlatched cases and are shown as ref-
erence values.

more, as a reference value, the unlatched and uninterrupted
latched cases are also shown. As is evident, the performance
of the strict latch degrades very quickly while the flexible
latch degrades linearly.

Random Environment: Sim2
The previous results showed that in sim1, latching is neces-
sary to allow an agent to execute lower-priority behaviours,
and that it is best to abort a latched behaviour immediately
upon interruption. We now examine these results in a sys-
tem with a more “natural” setup using sim2, where the tim-
ing and frequency of interruption depends on the dynamics
of the environment itself.

Table 4 compares all three implementation on sim2. The
overall results are similar to before although there are some
striking differences. Now, a latch of size 10 is sufficient to
generate at least some frequency of execution for behaviours

B3 and B4 and there is no difference whether the agent
is able to detect interruptions. Once the size of the latch
increases, flexibility creates a significant difference for be-
haviour B4 but not B3.

Discussion and Conclusion

The results for sim1 show the utility of latching in the con-
dition where there is a significant cost of switching be-
tween goals, and of flexible latching when there are large
latches and frequent interruptions. The results for sim2 show
that when goal opportunities are more randomly and fre-
quently available, there is little selective pressure for addi-
tional mechanisms.

We have presented a relatively simple way to introduce
flexible latching into an autonomous system and presented
an initial analysis of how to set appropriate thresholds.
The completely unlatched condition may seem unrealistic,
but several well-known “reactive” architectures have added
latching only as an afterthought, and then to be handled with
rather inelegant exception mechanisms (Rosenblatt & Pay-
ton 1989; Connell 1990). Others assume latching can be
handled by intelligent planning (Bonasso et al. 1997), which
is a rather high cognitive load. In general, reasoning about
time and distant rewards is difficult for strictly symbolic sys-
tems (Ainslie 2005). We therefore support and elaborate
the theory that evolved latch parameters create effectively
an implicit time budget, as has been proposed by Dunbar
(Dunbar 1993; Korstjens, Verhoeckx, & Dunbar 2006).

There have been surprisingly few recent attempts to pro-
pose general-purpose architecture features for homeostatic
control, those that do tend to represent hormone levels in
detail (Vargas et al. 2005). Gadanho (1999) has a simi-
lar perspective to our work4, using emotions to control the

4and indeed shared a graduate supervisor, John Hallam, with
our second author.



unlatched strict latched flexible latched significance
action 0 10 50 100 10 50 100 10-10 50-50 100-100
Bα

1 451 454 470 500 454 466 468 *
Bα

2 452 454 475 490 455 466 469 * *
Bα

3 0 178 365 452 154 423 471
Bα

4 0 71 264 689 22 704 1289 * *
total 903 1156 1574 2131 1084 2058 2697
dead 0 0 0 0 0 0 0

Table 4: Comparing the unlatched, strictly and flexibly latched implementations in sim2 using latch sizes of φ − δ ∈
{10, 50, 100} and ψ = φ.

temporal expression of behaviour. However, she focuses on
modelling specific emotions and their impact on reinforce-
ment learning systems, rather than a clear study of control.
The mechanism demonstrated here is simple to implement
and incorporate into standard module-based agent architec-
tures. Also, she uses rising levels of emotions as the source
of interrupt, rather than dealing with inefficiencies due to
interruptions generated by the world.

Interestingly, at least two established models of con-
sciousness are similar to our new model of flexibly-latched
drives. Norman & Shallice (1986) describe consciousness
as a higher-cost attentional system which is brought on
line whenever the more basic, reliable, low-cost action-
sequencing mechanism is unable to proceed. More recently,
Shanahan (2005) proposes a model of mutually-inhibiting
motives in a global workspace. We do not agree with Shana-
han that such models can account for all of action selection
(see e.g. the Tyrrell 1994 critique of Maes 1991). However,
his model is similar to what we propose here for arbitration
between certain types of high-level tasks.

This draws attention to an important limit of our work.
Although we have shown massive efficiency improvements,
time still increases linearly with the number of interrup-
tions. Further, some forms of interruptions themselves will
increase with the number of potential behaviours, particu-
larly those that are generated by the action-selection mech-
anism itself as higher priorities trigger. What this implies
is that agents should have a limited number of high-level
motivations which are contested this way. In other work, we
have suggested that the psychological entities called ‘drives’
or ‘emotions’ may be seen as each correlating to and regu-
lating one such high-level need (Bryson 2008).

Of course, a simple system of eliciting drive levels and
(possibly) weighing them against expected costs does not
explain all the phenomena ordinarily associated with the
term consciousness. That term is a repository of aggregated
folk-psychological theories for aspects of behaviour rang-
ing from perceptual experience through self-concept and
on to the soul (Hobson, Pace-Schott, & Stickgold 2000;
Dennett 2001). What we do note here is a control-level util-
ity to adding a minimally cognitive mechanism to an other-
wise reactive action-selection system.
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