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Abstract. This paper presents a computational model, using a Parallel Distributed Processing architecture, of
the role of memory retrieval and analogical reasoning in creativity. The memory model stores information as the
tensor product of up to three vectors representing, for example, context, cue, and target. The model can retrieve
information in the form in which it was stored, or it can use two cues to generate an item that has been separately
stored with each of them, but has never been associated with both cues jointly. This means that the intersection of
two sets can be computed, without having been stored, thereby providing for the generation of novelty. For
analogical reasoning, predicate-argument-bindings are represented as the tensor product of vectors representing
relations and their arguments. The model can simulate the transfer of relations from one domain to another, as

occurs in the creative use of analogy.

Two properties appear to be essential to creativity. The
first is novelty, which must include an element of surprise,
predictable variation being insufficient. The second is
effectiveness, which may include practical utility, but also
means that a coherent set of relations is formed between
formerly unrelated, or differently related, elements. In this
paper we want to examine two psychological processes
that are capable of producing creativity in this sense. The
first of these is the retrieval from memory of ideas, or
items of information, that relate formerly unrelated things.
The second is the transfer of relations from one domain to
an unrelated domain, a process which is normally identified
with analogy. We will examine computational models of
these processes based on parallel distributed processing
(PDP) architectures.

The retrieval of an idea that relates formerly unrelated
things can be illustrated using one of the practice items
from the Remote Associates Test for creativity (Mednick,
1962). What word relates "rat", "blue” and "cottage"?
(cheese). These words are not normally seen as related, but
all have a common association with cheese. Another
example is supplied by Rubin & Wallace, (1989) as
analysed Humphreys, Wiles & Bain (1993): Name a
mythical being that rhymes with post (ghost). Here the
target element, ghost, is weakly associated with either the
cue "mythical being” or the cue "rhymes with post”, but is
quite strongly retrievable to the two cues. These examples
may not meet the effectiveness criterion, because the set of
relations created by the retrieval of cheese, or ghost, is not
particularly coherent. Nevertheless the memory processes
entailed in these tasks probably have much in common
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with those used by a painter producing new juxtapositions
of colors and forms, a poet composing images, or a
scientist seeing a connection between apparently unrelated
ideas.

Creativity in the sense of transferring a relation from
one domain to another is illustrated by the Rutherford
analogy between the structure of the hydrogen atom and the
structure of the solar system, as analysed by Gentner
(1983). Here the essential insight was recognizing that the
structure of the atom entailed the principles of orbital
motion, as exemplified in the solar system. This entails
transferring the system of relations between solar and
planetary bodies to the nucleus and electron. This example
illustrates the role of analogy in creativity.

In this paper we will examine how the processes of
memory retrieval and analogical reasoning can produce an
output which is creative according to the definition above.
Although there are numerous theories of both memory
retrieval and analogy, we will focus on models in each
domain which use the same cognitive architecture, based
on parallel distributed representations.

Creativity and Memory Retrieval

The model of Humphreys, Bain and Pike (1989), integrates
a number of previous memory models, and has been
applied to creativity (Wiles, Halford, Stewart, Humphreys,
Bain & Wilson, 1992). In this model, an item is
represented as a vector, and bindings between items (e.g.
context, cue, target) are represented as the tensor product of
vectors. A memory is formed from the linear sum (or
superposition) of tensors representing the bindings.



One type of memory retrieval uses the three-way
" association between items (e.g.cue, target, and context).
For example, in the question "what did you have for
breakfast on Sunday?", "what did you have for breakfast?"
is the cue, "Sunday" is the context, and (say) "bacon and
eggs” is the target. The binding of context, cue and target
is achieved by computing the tensor (outer) product of the
cue, context, and target vectors, as shown in Figure 1. The
tensor product of two cues is computed and the inner
product between this rank 2 tensor and the rank 3 tensor
memory is computed. This process retrieves memories in
exactly the form in which they were stored.

cue 1 cue 2
- | T —_ | T
J \ r J r
target bundle target bundle
{dragon spectre, {coast,host,
unicorn,ghost} toast,ghost}

. Ej\ l

target bundle
{ghost}

Fig. 1. Computation of intersection of sets retrieved

using two cues.

A second type of retrieval also uses two cues, but in
this case the target item has been associated with each cue
separately, not in the joint manner that is represented by
the use of a rank 3 tensor. It is exemplified by the
problem above, namely "Name a mythical being that
rhymes with post". There are two retrieval cues in this
case, "mythical being" and "post” (rthymes are assumed to
function as associations in the model), so two tensor
memories are shown. Because the association is context
independent, a fixed vector is used in place of the context
vector. This effectively reduces the representation to two
rank 2 tensors, one storing the association between
"mythical being" and "ghost", and one storing the
association between "post” and "ghost". There is no rank 3
tensor storing the 3-way association between "mythical
being", "post” and "ghost".

Retrieval occurs by using the vector representing one

" cue (e.g. "mythical being") as input to the appropriate
memory. The output is a vector representing possible
targets (a "target bundle"), as shown in Figure 1. The
second cue is also used in the same manner. "Mythical
being" elicits {dragon, spectre, unicorn, ghost}, while
"post” elicits {coast, host, toast, ghost}. These possible
targets for each cue are superimposed, so the output to each
cue is the linear sum of vectors representing the possible
solutions.

"Ghost" is a weak associate of both cues, and so is
weakly represented in both sets of targets. Its effective
retrieval depends on accessing the intersection of the target
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sets. The computation of the intersection in the model is
shown in Figure 1. It entails a second tensor memory A,
that only stores item information. That is, A is an auto-

associative memory, A = Y, q@ 4® a, where g

includes{dragon, spectre, unicomn, ghost, post, coast, toast,
host}. The input to A is the two target bundles comprising
the possible solutions from the first stage. The output is
the intersection of the bundles, "ghost".

It is assumed that the association between ghost and
post, and between ghost and mythical being, have been
learned in separate episodes, and the three-way association
between post, mythical being, and ghost has not been
stored. This means that the intersection cannot be directly
retrieved, but has to be computed. Its computation
amounts to generating a new representation. It has an
element of novelty, and provides some degree of
relationship between the formerly unrelated ideas "post”
and "mythical being". In this sense it is creative.

Our next step is to see how the other major
component of creativity, transfer of relations between
domains, can be modelled by the same type of mechanism.
Given that we want to integrate the analogy model with
the memory model, we require a parallel distributed
processing (PDP) model of analogy.

Creativity and Analogy

Gentner's (1983) analysis of analogy as a structure-
preserving map from a base to a target has provided a basis
for successful theories in the context of human cognition.
In the Rutherford analogy, the solar system constitutes the
base and the atom the target. The analogy consists of
mapping base into target in such a way that correspondence
is achieved between the respective structures.

Several computational models of human analogical
reasoning have emerged in recent years. These include -
COPYCAT (Mitchell & Hofstadter, 1990) which solves
problems of the form abc:abd::ijk:? (ijl). It is based on a
slipnet which enables representations to be modified as
structure mapping progresses. In a problem such as
abc:abd::xyz:? the representation might be changed from
"change last element to its successor" to "change first
element to its predecessor”. This yields "wyz" as the
solution.

In the Structure Mapping Engine (SME,
Falkenhainer, Forbus & Gentner, 1989) source and target
are represented as predicate-argument bindings, coded in
predicate calculus. It is a serial model in which match
hypotheses are created, based on similarity of predicates
and/or arguments in base and target. These are collected
into global matches, selected according to overall
consistency criteria.

In the Analogical Constraint Mapping Engine
(ACME, Holyoak & Thagard, 1989), a parallel constraint
satisfaction algorithm finds the mapping which maximizes
the correspondence between base and target. This is
achieved by inhibitory connections between rival mappings
(tending to ensure uniqueness of mapping) and excitatory
connections which tend to ensure that if a predicate is
mapped, its arguments are mapped, and vice versa, thereby
creating structural correspondence.



These models use local rather than distributed
representations. However the Structured Tensor Analogical
Reasoning model (STAR, Halford, Wilson, Guo, Gayler,
Wiles & Stewart, in press) uses distributed representations,
with predicates and arguments represented as vectors, It was
motivated by the desire for a PDP model of analogical
reasoning which would also offer a solution to the problem
of defining processing capacity limitations in cognition
and cognitive development (Halford, in press). However it
also uses an architecture which is consistent with the
memory retrieval model discussed in the previous section.

In the STAR model predicate-argument bindings are
represented as tensor products, as shown in Figure 2. The
proposition MOTHER-OF(woman,baby) is represented as
a rank 3 tensor product. The three vectors represent the
predicate MOTHER-OF and its arguments, "woman" and
"baby". As with the memory model of Humphreys et al.
(1989), representations are superimposed. Therefore the
bindings MOTHER-OF(mare,foal), MOTHER-
OF(cat kitten), as well as LOVES(mother,baby), . . ,
LARGER-THAN(mare,foal) are all superimposed on the
same tensor product.

woman
—_—

N predicate bundle

baby { MOTHER_OF(_, ) }

P S ——

\ predicate bundle
{ MOTHER_OF(_, ) }
argument bundle

{foal}

Fig. 2. Solution of simple proportional analogy

Simple proportional analogies, such as
mother:baby::mare:? can be solved by entering the base
arguments, "mother" and "baby" into the representation,
and the output is a predicate bundle representing
"MOTHER-OF", "FEEDS", "LARGER-THAN" etc. That
is, it is a vector equivalent to the linear sum of vectors
representing each of these outputs. In the next step this
predicate bundle is the input, together with the first
argument of the target, "mare”, as shown in Figure 2. The
output is an argument bundle which includes "foal".
Possible solutions can be recognized by one or more
cleanup processes, the simplest of which entails
computing the inner product of vectors representing
candidate solutions with this output.

This model can solve all the major classes of
analogies (Halford et al., in press). Because of its relevance
to creativity, we will consider how the model would solve
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a simplified and idealized version of the Rutherford
analogy.

We will assume that the structure of the base, the
solar system, is known completely, but that the structure
of the atom is incompletely known. We will further
assume that the atom was known to comprise two major
components, a nucleus and an electron, that there was a
mutual attraction relation between them, and a size
difference (the nucleus was known to be of larger mass).
Most important of all, we assume that the correspondence
between the atom and the solar system had not been
previously recognized. This recognition was at the core of
the creative contribution. The simulation of the analogy in
the STAR model begins with this information coded in a
tensor product.

The discrepancies between this hypothetical situation
and the actual state of Rutherford's knowledge at the time
are less relevant than the idea of starting with an
incomplete representation of a target domain, finding a
base domain to which it is analogous, transferring relations
from the base to the target, then making candidate
inferences about the target. It is this creative use of
analogy that want to simulate, the Rutherford analogy
being a convenient and well-known example.

Recognition of the solar system as a potential base
is a memory retrieval process in the model. The predicates
ATTRACTS and DIFFERENT-SIZE in the representation
of the target serve as retrieval cues. If these are used as
input to the representation of the task, the output is a
tensor product of vectors representing all sets of arguments
of these predicates. For example, when ATTRACTS is
used as input, the output will include the tensor product of
vectors representing "sun" and "planet”, plus other pairs of
arguments of ATTRACTS.

Both ATTRACTS and DIFFERENT-SIZE are likely
to be weak retrieval cues for "sun" and "planet”. Many
things are associated with ATTRACTS; e.g. lovers attract
each other, lights attract moths, etc. Similarly,
DIFFERENT-SIZE has many associates besides "sun" and
"planet”. In these circumstances, effective retrieval depends
on computation of the intersection of the outputs from the
two cues, in the same manner as the retrieval of ghost
from "mythical being" and "post" described earlier.
ATTRACTS would retrieve a target bundle, that is a vector
equivalent to the linear sum of vectors representing sun-
planet, lover-lover, light-moth etc. Similarly,
DIFFERENT-SIZE would retrieve another target bundle
representing sun-planet, elephant-horse, adult-child, etc.
These target bundles would be used as inputs to the auto-
associative memory, as shown in Figure 1. The output
would represent sun-planet more strongly than the output
to either cue alone. If further processing were required, this
could include finding the intersection of this output with
the output of another cue, such as "relevant to mechanics”.

When arguments of a potential base are recognized,
they can be used as input. If the input is "sun" and "planet”
the output will include ATTRACTS, LESS-MASSIVE-
THAN, ORBITS-AROUND, etc. These predicates become
candidate inferences for the target, leading to the hypothesis
that electron orbits around the nucleus.



This has been a highly simplified account of how
analogical reasoning is simulated in the STAR model. It
has been designed to illustrate the main argument of this
section, that a computational process can produce an
output which is inherently creative. In this case a
computational model has been constructed which can
retrieve a base, the solar system, which is a potential
analog of the target. Relations in the base are transferred to
the target, and become candidate inferences for the target.

Creativity, Memory Retrieval, and
Analogy

Memory and analogy can be creative, and can be modelled
by computational processes. The analogical reasoning
model discussed here shares a lot of common architecture
with a model that has been shown to capture many
properties of human memory. However this architecture
also has some of the power and flexibility that is
characteristic of human reasoning. In part this derives from
the fact that the outcome of a retrieval operation can
consist of a set of items, or even a set of bindings, rather
than a specific item. This set can then be used in a new
retrieval operation, with additional cues where appropriate.
The ability to query memory with different cues, including
sets, provides flexibility that is important in higher
cognitive processes. Equally important is the fact that
memory can be queried in different ways. Notice that, in
the tensor product representations in Figures 1 and 2, there
is no fixed input or output. That is, a particular vector can
be an input at one time, and an output at another time, in
contrast to standard three-layered nets, in which one vector
is always input and another is output. This is another
property that provides some of the flexibility and power
that is important in higher cognition. Nevertheless, all this
occurs in an architecture that models basic memory
operations, including creative retrieval of information
linking formerly unrelated items. Perhaps therefore a
beginning has been made in producing an integrated model
of human creativity.

The creativity displayed by the computational
processes outlined here is undoubtedly of a restricted kind,
and it will take considerably more research before we know
the limits of these processes. The important point however
is that these computational processes have been shown to
be creative in principle. In human beings, creativity
depends heavily on memory retrieval and analogy, both of
which are now the subject of intensive efforts at
computational modelling. Memory is not merely
reproductive, but has long been known to be generative,
and memory retrieval clearly includes a construction
process. When the construction forms a new relationship
between formerly unrelated items of information, it can be
said to be creative.
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