From: AAAI Technical Report SS-93-04. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

Some Thoughts on NETL, 15 Years Later

Scott E. Fahlman
School of Computer Science
Carnegie Mellon University

1. Overview

NETL [Fahlman 79] is a knowledge-representation system combining two key ideas: first, the
use of a semantic network representation, with built-in capabilities for inheritance, inference, and
simple search; second, the use of massively parallel hardware to perform most of these built-in
operations in near-constant time, without the need for complex, hand-crafted indexes or
application-specific search procedures.

NETL was developed as my Ph.D. thesis project in the period from 1974 to 1977, and was
published in book form in 1979. In the years since then, the NETL ideas have been influential in
a number of ways, though NETL has never really become a part of the mainstream in AL In this
short paper I will present my own personal view of the evolution of NETL, its strengths and
weaknesses, and the lessons it might still hold for AL

2. The Development of NETL

Sometime around 1971, Marvin Minsky and Seymour Papert posed the following question as a
mind-expanding exercise for the new crop of grad students in the MIT Al lab: Is AT lacking ideas
or just technology? If money were no object and you could have all the hardware you want (it
must be clearly specified hardware -- no oracles or magic boxes), what would you ask for? And
how much of Al could you solve with this hypothetical pile of hardware?

I was one of those students. My answer was to imagine a large set of hardware pattern-
matching boxes. You would have one for each external object that you might want to recognize
from sensory inputs. Alternatively, you could have one for every object in a data base that you
might want to locate in response to an imprecise query. It seemed to me that what we would
now call "fuzzy match" is an important component of intelligence, and that what we would now
call "data parallelism" is a good way to implement fuzzy match. This idea generated some lively
discussion, and then we all went on to other topics.

In 1973, while trying to find a good topic for my Ph.D. thesis, I began to think about a
fundamental limitation of Al systems (then and now): while we can stuff lots of raw real-world
knowledge into an Al system, it is very hard to make all that knowledge effective in whatever
problem-solving process the system is engaged in. A fact just sits there, waiting for the
processor to look at it.

We can build very general systems for inference and search in our knowledge base, but these
scale up poorly as the size of the knowledge base increases. The more the system knows, the
slower it becomes. On the other hand, we can build clever application-specific data structures
and procedures to access the knowledge more efficiently. This is an important technique in

85



mainstream Al, but the resulting systems are narrow, brittle, and very difficult to build. It
seemed to me that there must be a way to build a very general inference system that would
operate quickly and scale up well to huge sizes. We humans seem to have such a facility in our
brain, and our broad, flexible intelligence depends on this.

NETL was born when I began to apply my old ideas for massive parallelism to this difficult
problem, mixing in some ideas about semantic networks and marker passing from M. Ross
Quillian [Quillian 68]. NETL is a semantic network memory, with nodes representing "things"
and classes and links representing relationships and statements. In NETL, each node and link is
represented by a simple processing element, capable of storing a few distinct single-bit markers
and passing them to their neighbors in the network. The physical network is wired up to match
the topology of the semantic network. The marker bits flow through the net in parallel, under
overall control of a central processing unit.

The parallel hardware scheme used in NETL fell into place very quickly, but it took me three
years to understand its properties and to develop a knowledge-representation language to go with
it.

A NETL-style parallel memory offers several advantages for Al:

e Certain kinds of inference and search, such as property inheritance and set
intersection, occur in constant time.

¢ Because simple inference is fast, the knowledge can be put into the system in raw
form, without any application-specific programming. Each item can be used in a
variety of ways, some of which were not anticipated when the item was added.

¢ NETL can make use of implicit knowledge almost as easily as explicit knowledge.
If the knowledge base knows that all elephants are gray and (by some chain of
reasoning) that Clyde is an elephant, there is no need to store the assertion that

Clyde is gray.
e In recognition, all the possible matches can be evaluated at once.

e Because one marker can gate the flow of another, it is possible to implement
exceptions and context-dependent statements in NETL.

¢ The abilities and weaknesses of NETL are in many ways (but not all) more like
those of a human than like those of an Al program on a serial computer.

Because of these features, NETL generated a good deal of interest when the book first
appeared. At that time, there was little interest in parallel processing among Al researchers. The
early flowering of "neural network" approaches in the 1960’s had stalled (temporarily, as it
turned out), and parallel machines were still costly and hard to program. NETL was one of the
elements that led Al people to take a new look at parallel approaches, or at least not to reject
them out of hand. This helped to pave the way for the resurgence of neural nets in the 1980’s.

3. What ever became of NETL?

NETL had some serious disadvantages as well. The most obvious was that, in the late 1970’s,
NETL was just a theoretical exercise using imaginary parallel hardware. The system was simple

86



enough that one could predict pretty reliably how a large NETL system of, say, a million
processing elements would behave, but it would have been extremely expensive to build such a
system. Even in those days, it was not unthinkable to create 109 simple processors, each capable
of storing 16 marker bits, but the reconfigurable network of inter-unit connections, all operating
in parallel, was another matter.

After receiving my doctorate and moving to Carnegie Mellon, I began exploring a number of
switching network designs, and I finally developed a plausible design for a million-element
NETL machine [Fahlman 80]. This machine was never built for two reasons: first, by this time,
my own interest was turning away from NETL and toward more fuzzy models of knowledge
representation and inference (see below); second, Danny Hillis and his colleagues at MIT,
inspired in part by the data-parallel style of NETL, had begun a large project to produce what
they called a "connection machine" [Hillis 85}, the precursor to the line of machines developed
by Thinking Machines Corporation (and their imitators). The Connection Machine architecture
incorporated many features that went beyond the specific needs of NETL, but it was clear that if
this machine succeeded it would be a good engine for studying NETL-style parallel Al And so
it is, though the existing Connection Machines are primarily used for tasks other than "thinking".

A second limitation of NETL was in the nature of marker-passing parallelism itself (see
[Fahlman 82]). It took me a couple of years during the thesis research to really understand this
issue. Basically, a NETL machine that passes single-bit markers can perform many useful
functions in parallel -- transitive closure, set intersection, and so on -- but it cannot do arbitrary
theorem proving or pattern-matching in parallel. A NETL machine can mark all dogs with
marker M1, all dog-owners with marker M2, and all dogs hated by some dog-owner with marker
M3. But NETL cannot, in parallel, mark every dog who is hated by his own owner. This would
require the "I own you" and "I hate you" markers to carry some sort of signature field, plus
machinery in each DOG node to see if these signatures match. Such matching requires much
more expensive hardware than the simple marker-passing of NETL, and it introduces the
possibility of contention and delay if too many of these complex messages are sent to the same
recipient. (Colliding marker bits, on the other hand, can simply be OR’ed together into a single

message.)

A number of researchers, including Eugene Charniak and Jim Hendler, have explored what can
be done with these more complex massively parallel message-passing systems, but this approach
has never held much interest for me. I personally believe that the additional operations provided
by message-passing parallelism are not worth the added cost and that these operations are not
really needed for human-like intelligence.

A third limitation of NETL is that the knowledge representation I developed for it was
informal and not rooted in any existing logic. This was a deliberate choice: I have always been
more interested in what a piece of knowledge does than what it means. In NETL I was more
concerned with links, marker flows, and queries than with how to express the equivalent
knowledge in some formal system of non-monotonic logic. However, this informal approach did
permit some paradoxlcal situations to arise when exceptions (and thus non-monotonic inference)
were present in the network [Fahlman 81]. My student, Dave Touretzky, explored the question
of how to formalize non-monotonic inheritance in his Ph.D. thesis [Touretzky 86], and this line
of inquiry lives on in subsequent work by Touretzky, Thomason, Horty, and others.

87



A final limitation of NETL, in my view, is that it is an implementation of standard, symbolic,
non-fuzzy Al in parallel hardware. In NETL, either Clyde is an elephant or he is not; NETL has
no good way of dealing with degrees of uncertainty, or with elephants that are very poor
specimens of their class. While this "crisp”, symbolic orientation is an attraction for some
researchers, my own interest has turned increasingly to the question of how we represent and
reason about the fuzzy, imprecise, uncertain knowledge that plays so large a role in the real
world. (I share Lotfi Zadeh’s belief that these issues are very important, though I have no
particular attachment to his particular brand of fuzzy logic.)

While the field of knowledge representation became increasingly formal and precise in the
1980°s, I began to experiment with Thistle, a fuzzy version of NETL that passed around
continuous values rather than single-bit markers [Fahlman 83]. I quickly realized that building
Thistle networks by hand was much more difficult than building crisp, clean NETL networks. It
became clear to me that automatic learning from examples was going to be extremely important
in these less-symbolic systems, but I didn’t know how such learning could be done. The
emergence of improved learning algorithms for artificial neural networks finally provided an
answer, and I have been working in that area ever since. I think that NETL, in its original form,
still has some good ideas worth pursuing, but I have put this on the back burner for now.

4. NETL Today and Tomorrow

Though it has been influential in a number of ways, as described above, NETL has never really
become a part of the Al mainstream. There are several reasons for this: First, NETL was perhaps
a decade ahead of its time in terms of hardware. Only recently, as massively parallel machines
have become more widely available and affordable, have mainstream Al researchers been able to
experiment with such systems. Second, the whole field of knowledge representation has gone
through a period in which everything must be formalized, even if this means throwing out useful
functionality (e.g. the ability to create exceptions to general rules). Third, I and some of the
other researchers who might have built large systems on top of NETL have turned instead to the
exciting new field of neural networks.

Despite all this, it seems puzzling to me that people who still want to work with symbolic Al
knowledge-representation systems have not paid more attention to the ideas in NETL. Hundreds
of people work in knowledge representation, developing formalisms and inference rules, but
very few of them have faced the question of how to scale their systems up to the size required for
human-like common sense. If they think hard about this issue of scaling, I think that they will
inevitably be led to something like NETL or some other massively parallel scheme.

For whatever reason, scaling issues seem not to be on the agenda. As Roger Schank once said
to me, "NETL is not really AI. It’s just a speedup hack -- an implementation technology. The
real Al question is what knowledge should go into the system and how that knowledge can be
used to solve problems." I disagree with this viewpoint, but perhaps it explains the limited role
that NETL has played in the field.

Lenat’s CYC project seems to be based on a view similar to Schank’s: put in the right
knowledge and don’t worry too much about how long it will take you to find a piece of
knowledge when you need it. In my view, the scaling issues are fundamental and should be dealt

88



with before we start stuffing in the knowledge. Perhaps the pendulum will swing back in the
near future. Perhaps researchers will look again at what we can do if given "all the hardware we
want", now that hardware is so cheap.

Acknowledgment

Preparation of this paper was supported by the National Science Foundation, Grant
IRI-9214873. The views expressed here are those of the author and do not necessarily reflect the
views of the National Science Foundation.

References

Fahlman, S. E. (1979) NETL: A System for Representing and Using Real-World Knowledge,
MIT Press, Cambridge MA.

Fahlman, S. E. (1980) "Design Sketch for a Million-Element NETL Machine", Proceedings of
AAAI-80 Conference, Morgan-Kaufmann, Los Altos CA.

Fahlman, S. E., D. S. Touretzky, and W. van Roggen (1981) "Cancellation in a Parallel
Semantic Network" Proceedings of IJCAI-81, Vancouver, British Columbia.

Fahlman, S. E. (1982) "Three Flavors of Parallelism", Proceedings of the Fourth National
Conference, Canadian Society for Studies of Intelligence, Saskatoon, Saskatchewan.

Fahlman, S. E., G. E. Hinton, and T. J. Sejnowski (1983) "Massively Parallel Architectures for
Al: NETL, Thistle, and Boltzmann Machines" in Proceedings of the AAAI-83 Conference,
Morgan-Kaufmann, Los Altos CA.

Hillis, W. D. (1985) The Connection Machine, MIT Press.

Quillian, M. R. (1968), "Semantic Memory" in Semantic Information Processing,
M. L. Minsky (ed.), MIT Press.

Touretzky, D. S. (1986), The Mathematics of Inheritance Systems, Pitman & Morgan
Kaufmann publishers.

89





