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Abstract

In connectionist networks, newly-learned information destroys previously-learned
information unless the network is continually retrained on the old information. This
behavior, known as catastrophic forgetting, is unacceptable both for practical purposes
and as a model of mind. This paper advances the claim that catastrophic forgetting is a
direct consequence of the overlap of the system’s distributed representations and can be
reduced by reducing this overlap. A simple algorithm is presented that allows a
standard feedforward backpropagation network to develop semi-distributed
representations, thereby significantly reducing the problem of catastrophic forgetting.

1 Introduction
Catastrophic forgetting is the inability of a neural network to retain old

information in the presence of new. New information destroys old unless the old
information is continually relearned by the net. McCloskey & Cohen [1990] and
Ratcliff [1989] have demonstrated that this is a serious problem with connectionist
networks. A related problem is that connectionist networks are not sensitive to
overtraining. A network trained 1000 times to associate a pattern A with a pattern A’
will forget that fact just as quickly as would a network trained on that association for
100 cycles. Clearly, this behavior is unacceptable as a model of mind, as well as from
a purely practical standpoint. Once a network has thoroughly learned a set of patterns,
it should be able to learn a completely new set and still be able to recall the first set
with relative ease. In this paper I will suggest that catastrophic forgetting arises
because of the overlap of distributed representations and I will present an algorithm
that will allow a standard feedforward backpropagation (FFBP) network to overcome 
a significant extent the problems of catastrophic forgetting and insensitivity to
overtraining.

2 Catastrophic forgetting and the overlap of representations
I suggest the following relation between catastrophic

representations in a distributed system:
forgetting and

Catastrophic forgetting is a direct consequence of the overlap of
distributed representations and can be reduced by reducing this
overlap.

Very local representations will not exhibit catastrophic forgetting because there is
little interaction among representations. Consider the extreme example of a look-up
table where there is no overlap at all among representations. There is no catastrophic
forgetting; new information can be added without interfering at all with old
information. However, because of its completely local representations, a look-up table
lacks the all-important ability to generalize.
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At the other extreme are fully distributed networks where there is considerable
interaction among representations. This interaction is responsible for the networks’
generalization ability. On the other hand, these networks are severely affected by
catastrophic forgetting.

The moral of the story is that you can’t have it both ways. A system that develops
highly distributed representations will be able to generalize but will suffer from
castastrophic forgetting; conversely, a system that develops very local representations
will not suffer from catastrophic forgetting, but will lose some of its ability to
generalize. The challenge is to develop systems capable of producing semi-distributed
representations that are local enough to overcome catastrophic forgetting yet that are
sufficiently distributed to nonetheless allow generalization.

In what follows, I will examine two distributed systems that do not suffer from
catastrophic forgetting. Both of these systems work because their representations are
not fully distributed over the entire memory, but rather are semi-distributed and
hence exhibit limited representation overlap, at least prior to memory saturation.
Finally, I will present a simple method that allows standard layered feedforward
backpropagation networks to develop semi-distributed representations in the hidden
layer. Not only does this method appear to dramatically reduce catastrophic forgetting
but it also allows the system’s representations to partially reflect the degree to which a
particular pattern has been learned. Even after a particular pattern has been learned,
overlearning continues to modify connection weights in such a way that unlearning
of the pattern will be made more difficult.

3 Two examples of semi-distributed representations
I will briefly examine two systems that produce semi-distributed representations.

In both systems, assuming that they are not saturated, there is little overlap of the
representations produced. For this reason, they exhibit little catastrophic forgetting.

3.1 Sparse Distributed Memory
Sparse Distributed Memory (hereafter, SDM [Kanerva 1988]) is 

auto-associative, content-addressable memory typically consisting of one million
1000-bit "memory locations". The memoD, is called "sparse" because it uses only one
million locations out of a possible 21000 (i.e., 106 of approximately 10300 possible
locations). At each of these locations there is a vector of 1000 integers, called
"counters". New data are represented in the system as follows: If we wish to write a
particular 1000-bit string to this memory, we select all memory locations that are
within a Hamming distance of 450 bits of the write address. This gives us
approximately 1000 locations (i.e. 0.1% of all of the entire address space). Wherever
there is a 1 in the bit-string to be written to memory, we increment the corresponding
counter in each of the veer,., s at the 1000 memory locations; wherever there is a 0, we
decrement the corresponding counter. This is clearly a semi-distributed
representation of the input data: storage of the bit-string is distributed over 1000
different memory locations but these 1000 memory locations account for a mere 0.1%
of the total available memory.

This system can easily store new information without interfering with
previously stored information as long as the representations do not overlap too much.
As soon as the memory starts to become saturated (at somewhat less than 100,000
words written to memory), there is interference among representations, and learning
new information begins to interfere with the old. In this case, not only is there
forgetting of the old information but the new information cannot be stored either.

3.2 ALCOVE
ALCOVE [Kruschke 1990] is a computer memory model based on Nosofsky’s
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exemplar memory model [Nosofsky 1984]. This model does not suffer from the
phenomenon of catastrophic forgetting noted by Ratcliff and McCloskey & Cohen. As
we will see, ALCOVE, like SDM, uses semi-distributed representations.

ALCOVE is a three-layer feed-forward network in which the activation of a node
in the hidden layer is inversely exponentially proportional to the distance between the
hidden node position and the input stimulus position. The hidden layer can be
regarded as a "covering" of the input layer. The inverse exponential activation
function has the effect of producing a localized receptive field around each hidden
node, causing it to respond only to a limited part of the input field. This kind of
localization does not exist in standard FFBP networks. This system therefore
represents its inputs in a semi-distributed manner, with only a few hidden nodes
taking part in the representation of a given input.

The architecture of ALCOVE is such that the representation of new inputs,
especially of new inputs that are not close to already-learned patterns, will not overlap
significantly with the old representations. This means that the set of weights that
produced the old representations will remain largely unaffected by new input.

As in SDM, the representations in ALCOVE are also somewhat distributed,
conferring on the system its ability to generalize. When the width of the receptive
fields at each node is increased, thereby making each representation more distributed
and causing greater overlap among representations, the amount of interference
among representations increases.

4 Semi-distributed representations in FFBP networks
If catastrophic forgetting could be reduced, the order in which inputs are

presented to the network would be less important. Training could be done either
sequentially or concurrently. In other words, the artificial constraint of requiring
training data to be presented to the network in an interleaved fashion could be relaxed.
If, in addition, the representations also reflected the amount of training required to
produce them, it might be possible to produce a system that would better model
overlearning than standard FFBP networks. An initial attempt to reduce catastrophic
forgetting with semi-distributed representations by differentially modifying the
learning rates of the connections in the network was described in [French & Jones
1991]. While this technique gave promising results on very small networks, it failed
to scale up to larger networks. The algorithm presented below, using a different
technique, allows semi-distributed representations to evolve that significantly reduce
catastrophic forgetting.

5 Activation overlap and representational interference in FFBP networks
Catastrophic forgetting is closely related to the much-studied phenomenon of

crosstalk. The discussion of crosstalk has traditionally involved the capacity of a
network to store information [Willshaw 1981]: above a certain capacity, distributed
networks can no longer store new information without destroying old. In standard
backpropagation models, there is a much more serious problem. As things currently
stand, FFBP networks will not work at all without artificially interleaved training sets.
Even when the network is nowhere near its theoretical storage capacity, learning a
single new input can completely disrupt all of the previously learned information.
Catastrophic forgetting is crosstalk with a vengeance.

A feedforward backpropagation network represents its inputs as activation patterns
of units in the hidden layer. The amount of interaction among representations will be
measured by their degree of "activation overlap". The activation overlap of a number
of representations in the hidden layer is defined as their average shared activation
over all of the units in the hidden layer. For example, if there are four hidden units
and the representation for one input is (0.9, 0.1, 0.9, 0.1) and for a second is (0.2, 0.0,
1.0, 0.2), we calculate activation overlap by summing the smaller of the two
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activations (the "shared" activation) of each unit and averaging over all of the units.
Here the activation overlap would be (0.2 + 0.0 + 0.9 + 0.1)/4 = 0.3.

I suggest that the amount that two representations interfere with one another is
directly proportional to their amount of activation overlap. For example, consider the
two following activation patterns: (1, 0, 0, 0) and (0, 0, 1, 0). Their activation overlap 
0. Regardless of the weights of the connections between the hidden layer and the
output layer, there will be no interference in the production of two separate output
patterns. But as activation overlap increases, so does the level of interference.

Therefore, if we can find a way to coax the network to produce representations
with as little activation overlap as possible, we should be able to significantly reduce
catastrophic forgetting.

6 Sharpening the activation of hidden units
A technique that I call "activation sharpening" will allow an FFBP system to

gradually develop semi-distributed representations in the hidden layer. Activation
sharpening consists of increasing the activation of some number of the most active
hidden units by a small amount, slightly decreasing the activation of the other units
in a similar fashion, and then changing the input-to-hidden layer weights to
accommodate these changes. The new activation for nodes in the hidden layer is
calculated as follows:

Anew = Aold + 0~(1 - Aold) for the nodes to be sharpened;

Anew = Aold - C~Aold for the other nodes;

where 0~ is the sharpening factor.
The idea behind this is the following. Nodes whose activation values are close to

1 will have a far more significant effect on the output, on average, than nodes with
activations close to 0. If the system could evolve representations with a few highly
activated nodes, rather than many nodes with average activation levels, this would
reduce the average amount of activation overlap among representations. This should
result in a decrease in catastrophic forgetting. In addition, because sharpening occurs
gradually over the course of learning and continues even after a particular association
has been learned, the representations developed will reflect the amount of training
that it took to produce them.

Let us consider one-node sharpening. On each pass we find the most active node,
increase its activation slightly and decrease the activations of the other nodes. To
preserve these changes we then backpropagate the difference between the
pre-sharpened activation and the sharpened activation to the weights between the input
layer and the hidden layer. Here are the details of the algorithm for h-node
sharpening:

¯ Perform a forward-activation pass from the input layer to the hidden
layer. Record the activations in the hidden layer;

¯ "Sharpen" the activations of k nodes;
¯ Using the difference between the old activation and the sharpened

activation on each node as "error", backpropagate this error to the
input layer, modifying the weights between the input layer and the
hidden layer appropriately;

¯ Do a full forward pass from the input layer to the output layer.
¯ Backpropagate as usual from the output layer to the input layer;
¯ Repeat.

7 Experimental results
The experiments consisted of training (and overtraining) an 8-8-8 feedforward
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backpropagation network on a set of eleven associations. The learning rate was 0.2
and momentum 0.9. The network was then presented with a new association. After
this new association had been learned, one of the associations from the first set was
chosen and tested to see how well the system remembered it. On the first presentation
of this previously learned association, the network invariably did very badly. The
maximum error over all output nodes was almost always greater than 0.95 and the
average error greater than 0.5. The amount of memory refresh required for a standard
backpropagation network to relearn this association was recorded and compared to a
network with one-node, two-node, three-node, etc. sharpening. In each case the
sharpening factor was 0.2. The results are given in Figure la. (Note: 0-node
sharpening is standard backpropagation.) It can be seen that one-node, two-node and
three-node sharpening perform dramatically better than a standard FFBP network.

Over twenty separate runs, the standard FFBP network required an average of 330
cycles to relearn the previously-learned association. This figure dropped to 81 cycles
for one-node sharpening and to 53 cycles for two-node sharpening. (Note: all runs
were terminated at 500 cycles.) When the activations of three or more nodes were
sharpened, the amount of relearning began to rise again. With three-node
sharpening 175 cycles were required. With four-node (326 cycles) and five-node (346
cycles) sharpening, the modified system does no better than standard
backpropagation. Above this, it does significandy worse. [Figure la]

The two graphs in Figures la and lb suggest that amount of memory refresh
required varies directly with the amount of activation overlap among representations.
Figure l b shows the amount of activation overlap of the eleven originally-learned
inputs with various degrees of activation-sharpening. (As before "0 nodes sharpened"
indicates standard backpropagation.) In general, the less activation overlap, the less
the catastrophic forgetting as measured by the number of cycles required to relearn a
previously-learned pattern.

In Figure 2 we can see the effect of this sharpening algorithm on the
representations of one association. For each of twenty runs, the activation patterns on
the hidden nodes at the end of the initial training period were recorded. The nodes in
each of the twenty runs were sorted according to their activation levels and these
figures were then averaged. As might be expected, for standard backpropagation the
distribution of activations over the eight nodes was approximately uniform. This gives
an activation profile from the most active nodes to least active nodes of approximately
constant slope. However, the result of one-node sharpening is quite dramatic; one of
the eight nodes was much more active than the other seven. The same phenomenon
can be observed for the other experiments where two or more nodes where sharpened.

8. Why does activation sharpening work?
Let us examine why activation sharpening reduces catastrophic forgetting.

Consider two-node sharpening. As the system learns the first set of associations, it
develops a set of sharpened representations in the hidden layer. A new association is
then presented to the network. Activation sharpening immediately starts to coax the
new representation into a sharpened form where two of the eight hidden nodes are
highly active and six are not. Thus, very early on, the newly developing
representation will have less chance of activation overlap with the already-formed
representations than in standard backpropagation, where the activation is spread out
over all eight nodes.

Sharpened activation patterns interfere less with the weights of the network than
unsharpened ones. The reason for this has to do with the way the backpropagation
algorithm changes weights. When the activation of a node is near zero, the weight
changes of the links associated with it are small. Thus, if a significant number of the
nodes in the new representation have a very low activation, then the weights on the
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connections to and from that node will be modified much less, on average, than the
weights associated with a highly active node. Therefore, the only representations
significantly affected by the new representation will be those in which highly acdve
nodes overlap. Consequendy, if we reduce the probability of this overlap by activation
sharpening, there will be a decrease in the amount of disruption of the old weights
and catastrophic interference will be reduced.

The idea is to sharpen new activation patterns as quickly as possible, thereby
decreasing their potential to interfere with already learned patterns. Keeping the
learning rate low (< 0.2) with a relatively high sharpening factor (0.2) allows 
activation patterns to become sharpened before they have a chance to do much
damage to previously-learned weights. Preliminary experiments in fact indicate that
as the learning rate is decreased with the sharpening factor held constant, catastrophic
forgetting decreases.

It seems likely that semi-distributed representations will cost the network some of
its ability to generalize. Optimal generalization depends on as much information as
possible taking part in mapping from the input space to the output space. Any
mechanism tending to reduce the amount of information brought to bear on a new
association would most likely reduce the quality of the mapping. In some sense,
activation sharpening forces the input data through a representational botdeneck and
this results in information being lost. The extent and severity of this loss and its effect
on generalization is a subject of ongoing study.

9 How many nodes should be sharpened?
This is an open question. For n nodes in the hidden layer, the answer might be k

where k is the smallest integer such that nCk is greater than the number of inputs. In
other words, a sufficient number of nodes should be sharpened to allow the existence
of enough distinct sharpened representations to cover the input space. To minimize
the activation overlap, the least such sufficient number of sharpened nodes should be
chosen. If the number of input patterns to be learned is not known in advance, it
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might be reasonable to sharpen approximately log n nodes. This estimate is based on
work on crosstalk [Willshaw 1981]. This work indicates that in a distributed memory
crosstalk can be avoided when the number of active units for each input pattern is
proportional to the logarithm of the total number of units. It would seem reasonable to
apply this result to the sharpening of hidden-unit activations.

10 Conclusion
In this paper I have argued that catastrophic forgetting in distributed systems is a

direct consequence of the amount of overlap of representations in that system. I have
further suggested that the trade-off between catastrophic forgetting and generalization
is inevitable. It is claimed that one way to maintain generalization capabilities while
reducing catastrophic forgetting is to use semi-distributed representations. To this end,
I presented a simple method to allow a feedforward backpropagation network to
dynamically evolve its own semi-distributed representations.
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