An Integrative, Layered Approach to
Lexical Semantics
and its Application to Machine Translation

Inderjeet Mani
The MITRE Corporation, Z401
7525 Colshire Drive
McLean, VA 22102-3481
Phone: (703) 883-6149
mani @ starbase.mitre.org

1. Introduction

One of the practical problems which stands in the
way of the goal of developing a common lexicon
for a language is the variation in granularities of
meaning representation. These varying
granularities have developed out of ecological
needs. For example, in the field of machine
translation (MT), researchers working on
problems of translation divergences at the
semantic level [Dorr 93a] [Dorr 93b], [Dorr and
Voss 93] have tended to favor fairly abstract
representations of meaning, such as
Jackendoffian Conceptual Structures (CS)
[Jackendoff 83], [Jackendoff 90]. Others
(whether working in an “interlingual” paradigm,
e.g., [Carbonell and Tomita 87], [Carlson and
Nirenburg 90], [Meyer et al. 90], [Barnett et al.
94], or semantic transfer paradigm, e.g., [Nagao
87]) have depended on more concrete
specifications of meaning, for example, based on
microtheories of different domains, e.g., [Levin
and Nirenburg 94]. The question then arises as
to whether these different granularities of
meaning representation can be related to each
other. In addition, there is the problem of
framework compatibility; in particular, between
meaning representations more or less based on
logic, with its emphasis on the semantics of
reference and quantification, and the more
conceptual structure-oriented approaches (like
Jackendoff-inspired approaches) which focus
mainly on a rich ontology of primitives and
structures. In general, the logic-based
representations appear to be especially useful in
application to “functional” (or closed-class)
categories associated with modality, mood,
tense, aspect, conjunctions, determiners, etc.,
while the Jackendoffian approaches are
particularly useful in connection with “lexical”
(or open-class) categories.

This paper addresses these two problems by
describing a representation for meaning which
combines the advantages of both the logic-
oriented and the conceptual structure-oriented
frameworks. The approach is layered, allowing
different aspects or distinctions of meaning to
appear at different levels. As will be illustrated
here, in accommodating different granularities of
meaning, it offers a basis for the development of
a common lexicon.

2. The Approach: Integration

2.1 Representational Assumptions

We will begin with a semantic representation that
is logic-based. We will assume a standard
Davidsonian [Davidson 67] representation for
reference to events. To simplify the
presentation, we will use for the most part a
uniform semantic treatment of modification
within the Davidsonian approach, as sketched by
[Parsons 90]. Our overall framework will be
that of Discourse Representation Theory [Kamp
84], but this is merely a matter of convenience,
related in part to its theoretical interest and in part
to experience with using this framework in
various NLP areas, including MT ([Barnett et al.
90], [Barnett et al. 94]).

To illustrate the approach, consider the sentence:

(1) A boy swam across a river.

In the Discourse Representation Structure (DRS)
for this sentence, shown in Figure 1, certain
letter variables stand for certain basic sorts:
e1..en: events; x1..xn: things. The sorts indicate
the ontological class of the object denoted by the
variable. The terms contributed by the morpheme
“swim” are in boldface.

\[
\begin{align*}
e1 \times x1 \times x2 \\
\text{swimming}(e1, x1, x2), \text{past}(e1), \\
\text{boy}(x1), \text{river}(x2), \text{water}(x2), \text{across}(e1, x2)
\end{align*}
\]

Figure 1: DRS for “A boy swam across a river.”

2.2 Decomposition

Now, assume we wish to represent the lexical
semantics of “swim” at a slightly finer level of
granularity, in terms of “movement, across
water, by means of limbs, caused by an animate
agent”. The new terms contributed by this new
view of the morpheme “swim” are shown in boldface in Figure 2.

```
e1 e2 x1 x2 x3
cause(e2, x1, e1), move(e1, x1, x2),
past(e1),
boy(x1), animate(x1),
water(x2), river(x2), across(e1, x2),
limbs(x3), with(e1, x3)
```

Figure 2: DRS for “A boy swam across a river.”, where “swim” is decomposed in terms of “move”.

It is important to note that these DRS’s can encode a decompositional representation such as Jackendoff’s CS. This follows from the formalization of CS described by [Zwarts and Verkuyl 94], where the authors show how CS can be interpreted as a (many-sorted) first-order logic. Viewed as representational languages, the main difference between CS and typical logical representations for meaning is that CS has many different sorts of entities, with the variables and existential quantifiers which are explicit in logic made invisible in CS. To see the intuition behind this encoding, assume we view moving as a kind of going. Let sort variables j stand for spatial events, sort variables k stand for spatial paths, and sort variables w stand for instrumental positions. (Here we are using an extended set of Lexical Conceptual Structure (LCS) primitives inventoried in [Dorr 93a, p.170].) We then have the DRS in Figure 3:

```
j1 e1 x1 x2 x3 k1 w1
cause(e1, x1, j1), go(j1, x1, k1, w1), past(j1),
boy(x1),
water(x2), river(x2), via(k1, x2),
limbs(x3), with(w1, x3)
```

Figure 3: DRS for CS-level decomposition for “A boy swam across a river.”

A simple syntactic transformation on the DRS in Figure 3 yields the equivalent CS shown in Figure 4:

```
[Event CAUSE ([Thing-Animate X1],
[Event GOspatial ([Thing-Animate X1],
[Path VIA([water X2])])))
[Position WTHInstr ([Limbs X3])])]]
```

Figure 4: CS for “A boy swam across a river.”, from DRS of Figure 3.

Note that the DRS in Figure 3 is also equivalent to the following expression in standard first-order logic:

```
\exists j1 \exists e1 \exists x1 \exists x2 \exists x3 \exists k1 \exists w1 [\text{cause}(e1, x1, j1) \& \text{go}(j1, x1, k1, w1) \& \text{past}(j1) \& \text{boy}(x1) \& \text{river}(x2) \& \text{via}(k1, x2) \& \text{limbs}(x3) \& \text{with}(w1, x3)]
```

Figure 5: First-order logic representation for “A boy swam across a river.”, from DRS of Figure 3.

In general, for any sentence, a meaning representation in any one of these three formalisms (CS, DRT, and first-order logic) can be transformed into an equivalent representation in any of the others in which the sentence’s meaning can be expressed. It is worth pointing out that while existential quantification is expressed in a straightforward manner in CS, the extent to which universal quantification can be expressed in CS is the subject of further research. Thus the DRS representation allows us to capture the quantifier scoping in sentences like (2), while the CS representation (at present) does not.

(2) Every boy who knew where the river was swam across it.

2.3 Using different ontologies

By using a many-sorted DRS in the manner illustrated, we have demonstrated how to encode the semantics of sentences like (1) at a variety of different levels of granularity. The CS approach turns out to be simply a particular level of granularity, with variables in the representation associated with a specific ontology, with sorts like spatial events (j variables), spatial paths (k variables), and instrumental positions (w variables). For a particular application, we could consider substituting a different ontology, for example, the PENMAN Upper Model [Bateman et al. 1990], an ontology for NLP used widely in generation and MT. For a sample representation in the PENMAN ontology, let the e variables be of the sort relational process, j variables of the sort motion process, x variables of the sort object, k variables of the sort spatial extent, and w variables of the sort instrumental, where all these sorts are appropriate concepts in the Penman ontology. We then have the same DRS as in the "CS" view in Figure 3, but now in
terms of the Penman upper model. Of course, in this case the mapping from the CS ontology to a different ontology was apparently not problematic; in practice we would expect conflicts.

2.4 Application

In the examples in Section 2.2, we showed how a given meaning could be decomposed into and expressed in rather different representations, without loss of meaning. In Section 2.3, we showed how a common representation of meaning could be tied to different ontologies. These suggest practical applications, in allowing MT systems to exploit the advantages of both logic-based representations, e.g., [Barnett et al. 94], and conceptual structure oriented representations, e.g., [Dorr 93a] [Dorr 93b], [Dorr and Voss 93]. For example, we can represent precisely the semantics of (3a) and (3b) in DRT (but not in CS).

(3a) Every boy swam across the Potomac.

(3b) Every boy crossed the Potomac swimming.

Note that the DRS for (1) in Figure 2 could also serve as the semantics for sentences like (4):2

(4) A boy crossed a river by swimming.

Similarly, by decomposing "swim" to a CS-level go in the DRS for (3a), we will end up with the decomposed DRS for sentences like (3b), which happens to be a form of the natural French translation of (3a). The difference between this pair of sentences (as well as (1) and (4)), termed translation divergences [Dorr 93a], [Dorr 93b], [Barnett et al. 94], reflects the fact that English typically allows incorporation (conflation) of manner (which has been decomposed out in our representations) into the verb, whereas French doesn't [Talmy 85]. By integrating these different lexical approaches in a common formalism, which can, further, be tied to different ontologies (e.g., CS, PENMAN), the MT system gains considerable power.

3 The Approach: Layering

Thus far, our discussion has dealt in general with sentential semantics. We now turn to the problem of lexical representation, in relation to different granularities of meaning. We will first introduce the idea of views in relation to decomposition, as a device for information hiding. We will then discuss the applications of this idea.

3.1 Decomposition and Views

The different levels of decomposition are analogous to different views of a concept in terms of its position in a subsumption hierarchy. Figure 6a shows the "minimal" view for the morpheme "swim" (i.e., the view corresponding to the terms for "swim" in Figure 1). For clarity of presentation, we used a more structured variant of a DRS encoded in a feature-structure formalism instead of a term-based formalism. This representation is in fact the language InL [Calder et al. 89], where "(i) every expression has a privileged variable (its index) and (ii) every variable is sorted, so indicating the ontological category of the object denoted by the variable" [Calder et al. 89, p. 234].

As shown in Figure 6a, the meaning of "swim" is expressed in the DRS of Figure 1 by means of a minimal view of the concept of swimming - with only certain structures being considered salient. These structures include required arguments. For sorts, only the most general sorts (event and thing) and important selectional restrictions are considered salient at this level.

[pred: swimming
 index: e
 arg1: [index: x1thing]
 arg2: [index: x2water]]

Figure 6a: View of "swim" (minimal representation)

Figure 6b shows an initial decomposition view of the same morpheme, where "swim" is decomposed to movement (as before). Here, we

1It is worth noting that the PENMAN ontology has since been merged (by hand) with the ONTOS [Carlson and Nirenburg 90] ontology, as reported by [Knight and Luk 94].

2We briefly discuss problems with claiming equivalence via decomposition in Section 4.

3Note that such language dependencies in meaning alternations, e.g., [Talmy 85], [Levin 93], etc., seem to support the idea of distinguishing language-dependent aspects of lexical meaning from world knowledge. See [Hobbs 87], [Kegl 87], [Pustejovsky 90] for various points of view on this.
augment the minimal view with other structures. In addition to the emergent cause structure, the “agent” argument (common to both events) becomes an animate being, a swimming event becomes a “move” event, and the optional “instrument” argument and direction feature are included.

Figure 6b: View of “swim” decomposed to “move”

In Figure 6c, we show the LCS representation. Here the “move” event becomes a “go” spatial event, whose second and third arguments are “via” spatial paths and instrumental positions, respectively.

Figure 6c: View of “swim” decomposed to LCS

Thus, at each level, different aspects of structure, including sortal changes, emerge and become salient.

3.2 Application

The layered representation of lexical meaning has several applications. First, the minimal representation helps to distinguish verbs which may have the same CS decomposition. Second, layering obviously provides for a more perspicuous representation (analogous to the use of a hierarchy of lexical templates). Third, the different layers could be associated with different lexical modules: for example, in MT applications, a minimal representation of meaning of “swim” used in a semantic-transfer oriented lexicon (with certain associated sortal restrictions on arguments) may be decomposed further into more elaborated representations of meaning used in more “interlingual” lexicons (with sortal restrictions associated with more elaborated ontologies). Fourth, it is likely that different levels of decomposition may be associated with different linguistic processes. For example, processes like ellipsis, as in (5), might look only at the minimal representation. On the other hand, an item in “implicit focus”, like the limbs in (6), may be associated with a more decomposed representation.

(5) John swam across the river and Bill did so too.

(6) John swam across the river, even though his limbs were aching.

Finally, one might speculate that such a layered representation of morpheme meaning may be necessary for efficiency in natural language communication.

4 Decomposition and Problems of Generation and Translation

In practice, some of the terms in a more decomposed DRS may correspond to new morphemes which were not present in the minimal DRS. The DRS in Figure 2 could serve as the semantics (for the generation of) sentences like (7) and (8), in addition to (1) (repeated here):

(1) A boy swam across a river.

(7) A boy crossed a river by swimming.

(8) A boy caused his limbs to move through water in a river.

If the decomposition is meaning preserving (as it should be in principle), then the sentences corresponding to the original and decomposed DRS should be equivalent in meaning. As with many instances of decomposition (cf. the discussion of kill = cause-to-die [Lakoff 71], [Fodor 73], [Jackendoff 84], [Dowty 90], [Parsons 90]), it is unclear if these sentences are
in fact equivalent. However, this can, in principle, be tested by checking entailments.

Whether or not certain decompositions preserve meaning, a layered view of meaning suggests that different aspects of meaning become salient at different levels of decomposition. Indeed, sentences which are related by decomposition may differ in pragmatic properties, such as focus. For example, consider the alternations involved in a causative/intoactive decomposition. A given DRS could generate, depending on the level of decomposition:

(9a) Mary broke the vase.
(9b) Mary caused the vase to become broken.
(9c) Mary did something which caused the vase to get into a broken state.

The choice between these forms may depend on factors like focus, with the focus in (9b) being in general more likely to fall on the vase than on Mary.

4 Conclusion

This paper described a representation for lexical semantics which is able to integrate in a uniform way both logic-oriented aspects as well as structure-oriented aspects of meaning, which have traditionally been considered separately. Our representational tool was the language of many-sorted, indexed, first-order logic, embedded in a DRT framework. The representation has the potential to map to different ontologies. It is also layered, allowing for different linguistic processes like ellipsis and implicit focus to operate at different levels. In terms of these layers, minimal representations of lexical meaning appear to preserve what is explicitly mentioned in the utterance. Decomposed representations appear to differ (at least) pragmatically from their originals, but offer considerable advantages for grouping together divergences in form (whether across or within languages). We believe the framework described here helps to bridge the gap between various traditions in lexical semantics, and between various lexicographic approaches to MT.

Acknowledgements

I am grateful to Paul Portner for many insightful comments and suggestions on draft versions of this paper.

References

