
Situation Calculus Specifications for
Event Calculus Logic Programs

Rob Miller
Department of Computing,

Imperial College of Science, Technology & Medicine,
180, Queen’s Gate, London SW7 2BZ, ENGLAND

email: rsm@doc.ic.ac.uk

Abstract
A version of the Situation Calculus is presented which is
able to deal with information about the actual occurrence of
actions in time. Baker’s solution to the frame problem
using circumscription is adapted to enable default reasoning
about action occurrences, as well as about the effects of
actions. A translation of Situation Calculus style theories
into Event Calculus style logic programs is defined, and
results are given on its soundness and completeness.

1. Introduction
This paper compares two formalisms and two associated
default reasoning techniques for reasoning about action m
the Situation Calculus using a variant of Baker’s
circumscriptive solution to the frame problem [Baker,
1991], and the logic-programming based Event Calculus
[Kowalski & Sergot, 1986], in which default reasoning is
realised through negation-as-failure. The version of the
Situation Calculus used enables information about the
occurrences of actions along a time line to be represented.
A course of actions identified as actually occurring is
referred to as a narrative, and this formalism is referred to
as the Narrative Situation Calculus. Information about a
narrative might be incomplete, so that default assumptions
might be required. The circumscription policy incorporated
in the Narrative Situation Calculus minimises action
occurrences along the time-line. The original Event
Calculus incorporates an analogous default assumption
that the only action occurrences are those provable from
the theory.

The present paper shows that under certain circumstances
the Narrative Situation Calculus may be regarded as a
specification for Event Calculus style logic programs. The
programs presented here are described as "Event Calculus
style" because of their use of "Initiates" and "Terminates"
predicates to describe the effects of actions, because of the
form of their persistence axioms, and because of the use of
a time-line rather than the notion of a sequence or structure
of situations. They differ from some other variants of the
Event Calculus in that they do not assume complete
knowledge of an initial state, and in that properties can
hold (and persist) even if they have not been explicitly
initiated by an action. The programs described are "sound"
for a wide class of domains in that they only allow
derivation of "Holds" information which is semantically
entailed by their circumscriptive specifications. Where
total information is available about the initial state of
affairs, the programs are also "complete" in this same
sense.

Many-sorted first order predicate calculus together with
parallel and prioritised circumscription is used to describe
the Narrative Situation Calculus. Variable names begin
with a lower case letter. All variables in formulas are
universally quantified with maximum scope unless
otherwise indicated. To simplify descriptions of the
implementations, logic programs are written in a subset of
the same language, supplemented with the symbol "not"
(negation-as-failure). Meta-variables are often italicised,
that, for example, "F" might represent an arbitrary ground
term of a particular sort. The parallel circumscription of
predicates P1 Pn in a sentence T with V1 Vk
allowed to vary is written as

CIRC[T ; Pl Pn ; V1 Vk]

If RI Rm are also circumscribed, at a higher priority
than PI Pn, this is written as

CIRC[T ; R1 Rm ; P1 Pn,VI Vk]
A CIRC[T ; PI Pn ; VI Vk]

Justification for this notation can be found, for example,
in [Lifschitz, 1995]. One other piece of notation for
specifying uniqueness-of-names axioms will be useful.
UNA[F1,..,Fm] represents the set of axioms necessary to
ensure inequality between different terms built up from the
(possibly 0-ary) function symbols 1 Fm. It stands for
the axioms

Fi(xl Xk) # Fj(Yl Yn)

for i<j where Fi has arity k and Fj has arity n, together
with the following axiom for each Fi of arity k>0.

Fi(x 1 Xk)=Fi(y I Yk) --"> [x 1 =Y 1 A A xk=Yk]

2. A Narrative Situation Calculus
In this section an overview is given of the Narrative
Situation Calculus employed here as a specification
language. This work is presented more fully in [Miller &
Shanahan, 1994]. A class of many sorted first order
languages is defined, and the types of sentence which can
appear in particular domain descriptions are then described.
Finally, the circumscription policy is discussed.

From: AAAI Technical Report SS-95-07. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Definition {Narrative domain language }. A Narrative
domain language is a first order language with equality of
four sorts; a sort ct of actions with sort variables
{a,al,a2,... }, a sort 0g of generalised fluentsI with sort
variables {g,gl,g2 }, a sort o of situations with sort
variables {s,sl,s2 }, and a sort R of time-points with

sort variables { t, t 1, t2 }. The sort Sg has three sub-
sorts; the sub-sort 0+ of positive fluents with sort

1 2variables {f+,f~,f~,... }, the sub-sort 0- of negative fluents

with sort variables { f.,f_l,f.2,... }, and the sub-sort Sf of
fluents with sort variables {f, fl,f2,... }, such that

0+ n 0- = O 0+ L; 0- = 0f Of c 0g

It has time-point constant symbols corresponding to the
real numbers, a finite number of action and positive fluent
constants, a single situation constant SO, and no negative
or generalised fluent constants. It has five functions:
Result: tx x c~ ~ o, And: 0g x Sg --~ 0g, Neg: $+ ---) 0-,
Sit: Sg ~ t~, and State: R --~ ~, and six predicates (other
than equality): Holds ranging over 0g x ~, Ab ranging
over a x Sf x o, Absit ranging over Sg, < (infix)
ranging over R x R, < (infix) ranging over R x R, and
Happens ranging over ct x R. []

Only models are considered in which the predicates < and <
are interpreted in the usual way as the "less-than" and
"less-than-or-equal-to" relationships between real numbers.
"Happens(A,T)" represents that an action A occurs at time
T2, and "State(T)" represents the situation at time

Several domain independent axioms will always appear in
Narrative Situation Calculus theories. The following five
axioms are taken from [Baker, 1991].

Holds(And(g l,g2),s) --- [Holds(g l,s) A Holds(g2,s)]

Holds(Neg(f+),s) -- ~Holds(f+,s) 032)

Holds(g,Sit(g)) 4-- -,Absit(g) 033)

Sit(g l)=Sit(g2) -o g 1 034)

[Holds(f, Result(a,s)) -- Holds(f,s)] 6-- ---,Ab(a,f,s)

Axioms (BI)-(B4) are Baker’s "existence-of-situations"
axioms. Along with the minimisation of Absit, these
ensure that all consistent combinations of fluents are
accounted for in the overall theory. To solve the frame
problem, Ab is also minimised (at a lower priority)
allowing Result to vary. For details the reader should
consult [Baker, 1991] or [Miller, 1994].

I Generalised fluents supply names to conjunctions of
primitive fluents. For example the generalised fluent
"And(Loaded,Neg(Alive))" represents the joint property
being loaded and dead.
2This approach is modified to represent (possibly
overlapping) actions with a duration in [Miller & Shanhan,
1994].

Two more domain independent axioms are included in the
Narrative Situation Calculus, concerning properties of
narratives and time-points:

State(t)=S0 6-- --,3al,tl [Happens(al,tl) ^ tl<t]

State(t)--Result(a 1,State(t 1)) (N2)
[Happens(al,tl) ̂ tl<t
--,3a2,t2[Happens(a2,t2) ^ [al;~a2 v tlc:t2]

^tl<t2^t2<t]]

Axiom (N1) relates all time points before the first action
occurrence to the initial situation SO, and Axiom (N2)
says that if action A1 happens at TI, T1 is before T and
no other action happens between TI and T, then the
situation at is equal to Result(A1,State(Tl)).

Several types of axioms are either required or ~illowed in
Narrative Situation Calculus theories3. The following
definitions specify the form of such sentences.

Definition {Initial conditions description}. A formula is
an initial conditions description if
it is of the form

Holds(F, S0) or Holds(Neg(F),S0)

where F is a positive fluent constant. []

Definition {Action description}. A formula is an action
description if it is of the form

Holds(F, Result(A,s))

or Holds(Neg(F),Result(A,s))

or Holds(F,Result(A,s))
[Holds(Fl,s) ̂ ... ^ Holds(Fn,s)]

or Holds(Neg(F),Result(A,s))
[Holds(Fl,s) ̂ ... ^ Holds(Fn,s)]

where A is an action constant, F, FI Fn are ground fluent
terms, and for each i and j, l.g.i,j<n, Fi~Neg(Fj).

Definition { Occurrence description }. A formula is an
occurrence description if it is of the form

Happens(A,T)

where A is an action constant and T is a real number. []

Definition {Narrative domain description}. Given a
narrative domain language with positive fluent constants
F1 Fn and action constants A1 Am, a formula N is
a narrative domain description if it is a conjunction of
action descriptions, initial conditions descriptions,
occurrence descriptions, the frame axiom (F1), existence-

3Unlike in [Miller & Shanhan, 1994], domain constraints
between fluents are not considered here, since no translation
of these into logic programs will be given.

1/46

of-situations axioms (B I)-(B4), axioms (NI) and (N2),
uniqueness-of-names axiom

UNA[FI Fn,And,Neg] ̂ UNA[AI Am]

and a domain closure axiom for fluents

f=F1 v v f=Fn v f=Neg(Fl) v v f=Neg(Fn)

Although domain constraints have not been explicitly
included in narrative domain descriptions, care must be
taken, since domain constraints might be derived from
pairs of action descriptions, together with Axiom (B2).
For example, from the two action descriptions

and
Holds(FI,Result(A,s)) ~-- Holds(F2,s)

Holds(Neg(Fl),Result(A,s)) ~-- Holds(F3,s)

the sentence ~[Holds(F2,s) ̂ Holds(F3,s)] can be derived.
In fact, domain constraints are entailed only from pairs of
action descriptions of this form (see [Miller, 1994]). Hence
the following definition is included, of narrative domain
descriptions with no implicit domain constraints.

Definition { Fluent independence} A narrative domain
description N isfluent independent if for every pair of
action descriptions in N of the form

[Holds(F, Result(A,s))
[Holds(/~,s) ̂ ... ^ Holds(Fro,s)]]

and

[Holds(Neg(F),Result(A,s))
[Holds(Fm+l,S) ^ ... ^ Holds(Fn,s)]]

there is some i, l>i>m, and some j, m+l>j>_n, such that
F,=Neg(Fj) or 6=Neg(~)

The following definition is also useful. It identifies
narrative domain descriptions in which information about
what holds in the initial situation is complete.

Definition {Initially specified narrative domain
description } A narrative domain description N is initially
specified if for every positive fluent constant F in the
language, either Holds(F, S0) or Hoids(Neg(F),S0)
initial conditions description in N. []

Two examples of fluent independent narrative domain
descriptions are given below. The first is initially specified
and the second is not. Only the domain-dependent axioms
are given. Example 1 is a version of the Yale Shooting
Problem, including a simple narrative in which a sneeze
action occurs at time 1 followed by a shoot action at time
3. The full theory is referred to as Nysp.

Example 1 {The Yale Shooting Problem, Nysp].

Holds(Neg(Alive),Result(Shoot,s)) (Y1)
Holds(Loaded,s)

Holds(Loaded,S0) (Y2)

Holds(Alive,S0) (Y3)

UNA[Alive,Loaded,And,Neg] CY4)

UNA[Sneeze,Shoot] (Y5)

f=Alive v f=Loaded v CY6)
f=Neg(Alive) v f=Neg(Loaded)

Happens(Sneeze, 1) (Y7)

Happens(Shoot,3) (Y8)
[]

Because it is not initially specified, Example 2 below is
useful in illustrating that logic program translations
cannot be used to derive Holds literals not warranted by
their specifications (i.e. that they are "sound"). It concerns
an electric gate, connected to a button which will open the
gate when pressed, provided the system is connected to an
electric supply. The gate is initially closed. There is no
information as to whether the system is initially connected
to an electrical supply, hence it is not possible to deduce
that the gate will be either open or closed after the button
has been pressed. The full theory is referred to as NGATE.

Example 2. { NGATE }.

Holds(Open,Result(Press,s)) (GI)
Holds(Connected,s)

Holds(Neg(Open),S0) (G2)

UNA[Open,Connected,And,Neg] (G3)

f---Open v f--Connected v (G4)
f=Neg(Open) v f=Neg(Connected)

Happens(Press, l) (G5)

[]

For a given domain description D, Baker’s original
circumscription policy is

CIRC[D ; Absit ; Ab,Result,Holds,S0]
^ CIRC[D ; Ab ; Result,S0]

The above policy will be referred to as CIRCb. As regards
the Yale Shooting Problem, Baker shows that

CIRCb[Nysp]
Holds(Neg(Alive),Result(Shoot,Result(Sneeze,S0)))

The Narrative Situation Calculus introduces an extended
circumscription policy representing the assumption that
the only action occurrences are those explicitly described in
the narrative description. The separation of sentences in
theories into those which describe actions’ effects and
those which refer to the narrative allows this to be
achieved in a natural way simply by circumscribing

Happens in parallel with Ab, while varying State along
with Result. As before, Absit is circumscribed at a higher
priority so as to ensure the existence of all consistent
situations. Thus, given a narrative domain description N,
the extended circumscription policy is

CIRC[N ; Absit ; Ab,Happens,Result,Holds,S0,State]
A CIRC[N ; Ab,Happens ; Result,S0,State]

This circumscription policy is referred to as CIRCn. Three
theorems are useful at this point. Full proofs of these can
be found in [Miller, 1994]. The first two theorems show
that for the class of theory under consideration
minimisation of Happens does not interfere with the
minimisation used to solve the frame problem. The third
theorem shows that, unsurprisingly, circumscribing
Happens has the same effect as forming its completion,

Theorem 1. Let N be a narrative domain description.
Then

CIRCa[N] ~ CIRCb[N] []

Theorem 2. Let N be a narrative domain description, and
let W be a sentence which does not contain the predicate
symbol Happens and does not contain the function symbol
State. Then

CIRCa[N] W W if and only if CIRCb[N] ~ W []

Theorem 3. Let N be a narrative domain description
with k occurrence descriptions. If k<0 and the set of
occurrence descriptions is {Happens(Ai,Ti) l<i~"k} then

CIRCn[N]

k
Happens(a,t) V[a=Ai A t=Ti]

i=l

and if k=0 then CIRCa[N] ~ --da,t[Happens(a,t)] []

Theorems 1, 2 and 3 together with Axioms (N1) and (N2)
allow the deduction of what fluents hold at different time
points, i.e. they facilitate temporal projection. For
example, in the Yale Shooting Problem (Example 1),
can be shown4 that

CIRCn[Nysp] ~ Holds(Neg(Alive),State(5))

3. A Translation into Logic Programs
For the purposes of deriving information about what holds
along the time-line, the narrative domain descriptions of
the previous section can be translated into Event Calculus
style logic programs which do not contain situation terms
or arguments. In this section, logic programs are defined
which use the following predicate symbols: "Holdsat",
"Initially", "Initiates", "Terminates", "ClippedBetween",
"ClippedBefore", "Happens", "<" and "~". Given a
narrative domain description N, the aim is to define a logic
program EC[N] which facilitates temporal projection and

4A derivation of this is given in [Miller, 1994]

which is "sound" inthe following sense; for any ground
fluent term F and real number x, the positive literal
"Holds_at(F,x)" is SLDNF-derivable from EC[N] only
CIRCa[N] W Holds(F, State(x)), The following definition
of fluent converses will be useful.

Definition {Converse of a fluent} Let F be a ground
fluent term. Then the converse of F, written F*, is

¯ Neg(F)
¯ Ft

if F is a positive fluent constant
if F is of the form Neg(F3 for some

positive fluent constant F’ []

Occurrence descriptions are included directly in logic
programs as conditionless clauses. The following
definitions show how initial conditions descriptions and
action descriptions are translated into domain-specific
Initially, Initiates and Terminates clauses.

Definition {IN[IC] }. Let F be a ground fluent term and
let IC be an initial conditions description of the form
"Holds(F, S0)". The program clause IN[IC] is defined

Initially(F) []

Definition {INIT[AD] and TERM[AD] }. Let F, Ft Fn
be ground fluent terms, A an action constant, s a situation
variable and t a time-point variable. Let AD be an action
description of the form

Holds(F, Result(A,s))
[Holds(Fl,s) A A Holds(Fn,s)]

The program clause INIT[AD] is defined as

Initiates(A,F,t) <----
[Holds_.at(Fl,t) A A Holds_at(Fn,t)]

and the program clause TERM[AD] is defined as

Terminates(A,F*,t) ~--
[not Holds_at(Ft*,t) A A not Holds_at(F*,t)]

In the definition above, although Terminates clauses have
a similar structure to Initiates clauses, their bodies
incorporate negated (not) literals with fluent converses as
their first arguments. As will be seen from the examples
below, this difference becomes important for domains
where information about the initial situation is
incomplete. Whereas Initiates clauses describe the
immediate effects of actions, Terminates clauses play the
role of domain-specific "abnormality" clauses which help
determine those fluents which do not persist through an
action occurrence. The following definition gives a
complete translation of a narrative domain description into
a logic program.

Definition {EC[N] }. Given a narrative domain
description N with action descriptions ADI,..,ADn, initial
condition descriptions ID l,..,IDm and occurrence
descriptions ODI,..,ODk then the logic program EC[N] is
defined as

{INIT[AD1] INIT[ADn], TERM[ADI]

TERM[ADn], IN[IDI] IN[IDm], ODI,..,ODk}

together with the following domain-independent clauses

Holds at(f,t) <---
[Initially(f) not ClippedBefore(f,t)]

Holds at(f, t3) ~--
[Happens(a,tl) A tl<t3
Initiates(a,f,t 1)
not CI ippedBetween(t 1 ,f, t3)]

ClippedBefore(f,t)
[Happens(a,tl) A tl<t
Terminates(a,f,t 1)]

ClippedBetween(t l,f, t3)
[Happens(a,t2) A tl<t2 A t2<t3
Terminates(a,f,t 1)]

(ECD

(EC2)

(EC3)

(EC4)

[]

Clauses (ECI) and (EC2) above are persistence axioms.
Clause (ECI) states that a fluent F holds at a time T if
is initially true and it has not been cancelled ("clipped")
before T by some action. Clause (EC2) states that a fluent
holds at a time T3 if it is initiated by an action occurrence
at some previous time TI, and is not clipped in the
meantime. Clauses (EC3) and (EC4) give the definitions
for ClippedBefore and ClippedBetween in terms of
Happens and Terminates. Notice that there is no direct
representation of Axiom (B2) in EC programs. No clause
such as "Holds_at(Neg(f),t) not Holds_at(f,t)" is
included, since this would clearly cause unsoundness in
cases where narrative domain descriptions are not initially
specified (such as Example 2). In the method presented
here, a distinction should be made between

EC[N] ~SLDNF Holds_at(F,x)

which should be interpreted as "it is not provable that F
holds at time x", and

EC[N] ~SLDNF Holds_at(Neg(F),x)

which should be interpreted as "F does not hold at time ’¢’.

As regards the Yale Shooting Problem (Example 1), the
domain dependent clauses in EC[Nysp] are

Initiates(Shoot,Neg(Alive),t)
Holds_at(Loaded,t)

Terminates(Shoot,Alive,t) <---
not Holds._at(Neg(Loaded),t)

Initially(Loaded)

tN1T[(Y1)1

TERM[(Y1)I

IN[(Y2)I

Initially(Alive)

Happens(Sneeze, 1)

Happens(Shoot,3)

IN[(Y3)I
(Y7)
0:8)

so that
EC[Nysp] I-SLDNF Holds_at(Neg(Alive),5)

In Example 2 (of the electric gate), the initial situation
was not fully specified. EC[NGATE] consists of the clauses
(EC I)-(EC4) together with the clauses

Initiates(Press,Open,t) <----
Holds_at(Connected,t)

Terminates(Press,Neg(Open),t)
not Holds_at(Neg(Connected),t)

Initially(Neg(Open))

Happens(Press, 1)

INrr[(G1)]

TERM[(GI)I

IN[(G2)]
(G5)

Example 2 illustrates the need for the use of negation-as-
failure in the bodies of Terminates clauses. Had
TERM[(G1)] simply been

Terminates(Press,Neg(Open),t)

Holds_at(Connected),t)

then the query "Holds_at(Neg(Open),2)" would succeed,
that the program would be unsound in the sense described
above. In fact, Theorems 4 and 5 below show that the
translation method given is unsound only under two
circumstances -- (i) if the narrative domain description
not fluent independent, and (ii) if two or more different
actions in the narrative occur simultaneously. If there are
no simultaneous action occurrences and the theory is both
fluent independent and initially specified, then the
translations are both sound and complete.

Theorem 4. Let N be a fluent independent narrative
domain description, let ’r be a real number, and let F be a
ground fluent term. Suppose that for all x’<x there is at
most one occurrence description in N of the form
"Happens(A,x’)". Then CIRCn[N] ~ Holds(F, State(x))
EC[N] ~"SLDNF Holds_at(F,x) []

Theorem 5. Let N be an initially specified fluent
independent narrative domain description, let "r be a real
number, and let F be a ground fluent term. Suppose that
for all x’<x there is at most one occurrence description in
N of the form "Happens(A,x’)". Then
CIRCn[N] ~ Holds(F, State(’r)) if and only
EC[N] [-SLDNF Holds_at(F,x) []

Space limitations do not permit full proofs to be given
here; these can be found in [Miller, 1994]. However, the
following remarks summarise the arguments. Theorems 4
and 5 rely on several intermediate propositions. In the
proofs, an intermediate translation of circumscribed
theories into Situation Calculus style logic programs is
given, and soundness and/or completeness is shown for

these programs. They are of independent interest because
equivalents of Theorems 4 and 5 above hold for these
programs even where simultaneous actions occur. To show
this, several properties of the circumscriptions are first
proved. In particular, it is shown that the circumscriptive
formulation is, in Lin and Shoham’s terms,
epistemologically complete [Lin & Shoham, 1991]. That
is, given any situation in which all fluent values are
known, then all fluent values will also be known in the
situation resulting from a single action. Propositions are
also proved which express limits to the possible extension
of the predicate Ab, even in the general ease where theories
are not initially specified, in terms of syntactic properties
of the theories. These show that, in this general case, it is
possible to partially compute what holds in any situation
named by action sequences by consideration of each action
in turn, and that the nesting of the not operator in the
Situation Calculus programs (similar to the nesting of not
in the Event Calculus programs) provides precisely the
strength of default persistence required.

The Situation Calculus style programs contain a clausal
counterpart to the frame axiom (FI). They also contain
domain-specific Ab clauses analogous to the Terminates
clauses described above. The essential difference between
the two is in their expression of default persistence, and
their correspondence is shown using induction on the
number of occurrence descriptions in the narrative.

In [Miller, 1994] a simple general procedure is described
which transforms programs so that they are both sound and
complete in the more general case (i.e. where the domains
are not initially specified). The transformed programs
achieve completeness by testing queries with every
possible consistent initial situation, using "second order"
programming techniques.

5. Related Work
This paper contributes to a growing body of research into
the correspondence between different mechanisms for
reasoning about actions, and on the use of logic
programming in this respect. A recent result of Kowalski
and Sadri [1994] is closely related to topic of this paper.
This shows that, in the context of a class of logic
programs for reasoning about actions and narratives, then
all other aspects of programs being equal, the Situation
Calculus type and Event Calculus type persistence clauses
are interchangeable. Pinto and Reiter [1993] also show
how reasoning about a narrative may be accomplished with
Situation Calculus style logic programs. The present paper
addresses Pinto and Reiter’s criticism of the original Event
Calculus -- that "it does not characterize a class of sound
programs". Both Kowalski and Sadri and Pinto and Reiter
use the Clark completion to give a "semantics" to
programs, which can be regarded as their "specification" in
the sense used here. Shanahan [1995] shows how a
circumscription policy related to Baker’s may be used with
Event Calculus style first order theories to model default
reasoning. As regards the non-narrative aspects of
reasoning about action, various results enable a network of
correspondences between formalisms to be built up. For

example, Kartha [1993] shows a correspondence between
Baker’s formalism and the Language A introduced in
[Gelfond & Lifschitz, 1992]. Furthermore, Gelfond and
Lifschitz, Dung [1993], Baral and Gelfond [1993], and
Denecker and De Schreye [1993] have each shown how the
Language A can be used as a specification for various logic
programming formulations. Like the work in this paper,
most results are restricted to cases where theories are
"fluent independent".

References
[Baker, 1991], A.B.Baker, Nonmonotonic Reasoning in

the Framework of the Situation Calculus, Artificial
Intelligence, vol 49 (1991), page

[Baral & Gelfond, 1993] Chitta Baral and Michael Gelfond,
Representing Concurrent Actions in Extended Logic
Programming, Proceedings IJCAI 1993, Morgan
Kaufmann, page 866

[Denecker & De Schreye, 1993], Marc Denecker and
Danny De Schreye, Representing Incomplete
Knowledge in Abductive Logic Programming,
Proceedings, ISLP 1993

[Dung, 1993], Phan Minh Dung, Representing Actions in
Logic Programming and its Applications in Database
Updates, Proceedings ICLP, ed David S. Warren, MIT
Press, pages 222-238

[Gelfond & Lifshitz, 1992] Michael Gelfond and Vladimir
Lifschitz, Representing Actions in Extended Logic
Programming, Proceedings, JICSLP, ed. Krzysztof
Apt, MIT Press, page 560

[Kartha, 1993] G. Neelakantan Kartha, Soundness and
Completeness Theorems for Three Formalizations of
Action, Proceedings IJCAI 1993, page 724

[Kowalski & Sadri, 1994] R.A.Kowalski and F.Sadri, The
Situation Calculus and Event Calculus Compared,
Proceedings, ILPS 94

[Kowalski & Sergot, 1986] R.A.Kowalski and
M.J.Sergot, A Logic-Based Calculus of Events, New
Generation Computing, vol 4 (1986), page 267.

[Lifschitz, 1995] V.Lifschitz, Circumscription, in
Handbook of Logic in Artificial Intelligence, ed.
D.Gabbay, C.Hogger and J.A.Robinson, Oxford
University Press, pages 297-352.

[Lin & Shoham, 1991] Fangzhen Lin and Yoav Shoham,
Provably Correct Theories of Action, Proceedings
AAAI 1991, MIT Press, page 349

[Miller, 1994] Rob Miller, Narratives in the Context of
Temporal Reasoning, Imperial College Research Report
DoC 94/3, 1994

[Miller & Shanahan, 1994] R.S.Miller and
M.P.Shanahan, Narratives in the Situation Calculus,
Journal of Logic and Computation -- Special Issue on
Actions and Processes (1994), Volume 4, number
Oxford University Press, pages 513-530

[Pinto & Reiter, 1993] J. Pinto and R. Reiter, Temporal
Reasoning in Logic Programming: A Case for the
Situation Calculus, in Proceedings ICLP 93., ed. David
S. Warren, MIT Press

[Shanahan, 1995] M.P.Shanahan, A Circumscriptive
Calculus of Events, Artificial Intelligence (1995),
Volume 75, number 2.

