From: AAAI Technical Report SS-95-08. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Learning Information Retrieval Agents:
Experiments with Automated Web Browsing

Marko Balabanovié*and Yoav Shoham
markoQcs.stanford.edu, shoham@robotics.stanford.edu

Department of Computer Science,
Stanford University, Stanford, CA 94305

Abstract

The current exponential growth of the Internet precip-
itates a need for new tools to help people cope with the
volume of information. To complement recent work on
creating searchable indexes of the World-Wide Web
and systems for filtering incoming e-mail and Usenet
news articles, we describe a system which helps users
keep abreast of new and interesting information. Ev-
ery day it presents a selection of interesting web pages.
The user evaluates each page, and given this feedback
the system adapts and attempts to produce better
pages the following day. We present some early re-
sults from an Al programming class to whom this was
set as a project, and then describe our current imple-
mentation. Over the course of 24 days the output of
our system was compared to both randomly-selected
and human-selected pages. It consistently performed
better than the random pages, and was better than
the human-selected pages half of the time.

Introduction

In recent years there has been a well-publicized explo-
sion of information available on the Internet, and a cor-
responding increase in usage. This is particularly true
of the World-Wide Web and its associated browsers
(e.g. NCSA Mosaic), which allow easier access to the
information available and thus make it accessible to a
wider audience.

When people access the web, we can classify their
activities into two broad categories. They are either
searching for specific information, or they are brows-
ing, looking for something new or interesting (often
referred to as surfing). There have been several ef-
forts to index the web, and the ability to search such
an index would primarily support the searching activ-
ity. This paper describes a system which attempts to
support the browsing activity.

Inherent in this decision is the principle that users of
the system should not have to supply specific search re-
quests or a description of the set of documents in which

*This work was supported in part by the NSF/ARPA/
NASA Digital Library project (NSF IRI-9411306), and in
part by ARPA grant F49620-94-1-0900.

13

they are interested, as is appropriate for the searching
activity. Instead, we propose a system which presents
users with a selection of documents it thinks they will
find interesting. Users then evaluate each document,
and the system adjusts its parameters in order to try
to improve its performance.

There are obvious advantages to the use of machine
learning for retrieval and interface agents, as discussed
in (Maes & Kozierok 1993). However, note that our
application is different from filtering, where the system
filters a stream of incoming information (such as e-mail
or Usenet newsgroups) to reduce the burden on the
user. In contrast, the web is a rapidly changing and
expanding resource, where the onus is on the user or
agent to actively seek out relevant information.

In the remainder of this document we give an
overview of our approach, describe some interesting
early results from an Al programming class to whom
this was set as a project, and finally briefly discuss
our current implementation. We assume only a basic
familiarity with the World-Wide Web.

Outline of the Agent

In this section we present a general overview of the de-
sign of the agent, along with some examples of ways of
implementing the various components. Later sections
discuss results from a variety of implementations all
following this outline.

The system runs in discrete cycles. The following
algorithm summarizes its behavior for one cycle:

1. Search the web, using some search heuristic, taking
a bounded amount of time.

2. Select the best p pages to present to the user, using
some selection heuristic (which may be the same as
the search heuristic).

3. Receive an evaluation from the user for each page
presented.

4. Update the search and selection heuristics according
to this feedback.



http://www.service.com/PAW/thisweek/sports/1994-Jun-3.new-and-recommended.html
http://www.commerce.digital.com/palo~alto/chamber-of-commerce/events/wCup/home.html

Figure 1: First five entries from a sample top-ten list produced by a student’s program.

1.

2.

3. http://www.service.com/PAW/thisweek/sports/1994-Jun-3.sports-shorts.html
4. http://www.atm.ch.cam.ac.uk/sports/wc94.html

5. http://www.cedar.buffalo.edu/khoub-s/WC94.html

Search

There is a clear mapping between the problem of
searching the web and the classic Al search paradigm.
Each page of the web is a node, and the hypertext
links to other pages are the edges of the graph to be
searched. For simplicity we will only consider textual
HTML pages, and ignore the multimedia information
available.

In typical AI domains a good heuristic will rate
nodes higher as we progress towards some goal node.
In the web domain, the heuristic models how interest-
ing a page is to a user. There is not necessarily any
correlation with the heuristic values of nearby pages.
However, we assume that it will be beneficial to expand
nodes with higher heuristic values.

Clearly the web is too large to search exhaustively.
Furthermore, pages will be changing, appearing and
disappearing as the search is taking place. The sim-
plest search technique we have looked at is a best-first
strategy, with a resource limit to restrict the number
of pages the agent could access on each cycle.

Features of Documents

We need to extract some features from each page found
so that we can evaluate a search heuristic, and to pro-
vide a basis for the learning component. Various ap-
proaches which have been tried. The most promising
uses the vector space information retrieval paradigm,
where documents are represented as vectors (Salton
& McGill 1983). Assume some dictionary vector D,
where each elgment d; is a word. Each document then
has a vector V, where element v; is the weight of word

d; for that document. If the document does not contain

d; then v; = 0.

Word weights can be determined using a TFIDF!
scheme, which calculates the “interestingness” value
of a word based on how unusual it is. In the simplest
case, the weight v; of a word d; in a document T is
given by:

) n
v; = tf(7) - log 70

where #f(3) is the number of times word d; appears in

document T (the term frequency), df(i) is the number

of documents in the collection which contain d; (the

!Term Frequency x Inverse Document Frequency

14

document frequency) and n is the number of documents
in the collection.

Using this measure we can extract the best words
from each document to incorporate into a representa-
tion of the users interests, and this in turn can be the
set of features for the learning subsystem. One way
to do this would be to maintain a vector M for each
user, where the weight for each word corresponded to
the user’s preferences. The search heuristic for a docu-

ment with vector V could then be evaluated by simply
taking the dot product V.M.

Learning Algorithms

The information supplied to the learning subsystem
consists of a number of documents, each with a certain
number of keywords picked out (those with the highest
weights), and also an associated evaluation supplied by
the user.

Its task is to update the weights for words in M, and
potentially apply some decay function. One way to do
this is to use an instance-based scheme and attempt to
maintain several prototype points in the feature space
that define interesting documents (this would entail

actually using several M ’s). An even simpler method

is to increment or decrement the weights in M directly
according to the users feedback.

User Interface

We intend to use HTML forms as the primary way of
accessing the agent. In this way the system will be
usable from any point on the Internet, merely requir-
ing an appropriate browser. In addition, we envisage
that in coming years some of the main beneficiaries
of systems such as this will be users of mobile com-
puters, linked to wireless networks. In this situation
it is imperative that the large information space be-
ing accessed is somehow condensed to minimize com-
munications bandwidth and screen space. The limita-
tions of mobile computers primarily affect the ability
to browse, not to search (where both the request and
the resulting data can be quite small). To this end, a
textual e-mail based interface to the system will also be
provided, to be usable from a mobile computer linked
to a wireless e-mail service.



Early Experiments: Class Project

The outline just described roughly corresponds to a
project set for the CS227 (AI Techniques in Prolog)
class at Stanford University in the spring of 1994.

In order to provide a controlled and safe test-bed
for the students’ agents, the first task was to cooper-
atively construct a self-contained “mini-web” of inter-
linked pages. Although the mini-web contained only
240 nodes and 850 links, it was surprisingly easy to ex-
perience the well known “lost in hyperspace” feeling.

Early assignments included building a map of the
entire mini-web? and inventing heuristics for best-first
search, which were tested by searching for pages con-
taining specific keywords. Eventually learning compo-
nents were also incorporated, creating complete agents
similar to the outline originally described.

After testing the agents on the mini-web, the final for
the class involved sending them out into the real web to
see what they could find. A trial over twenty simulated
days was run for each agent (each day actually being
ten minutes of real time), with “daily” feedback from
a user. The system presented 5 new pages each day,
and at the end of the twenty days supplied an ordered
“top-ten” list of what it considered the most interesting
pages found.

Features

Features ranged from the TFIDF scheme as described,
to schemes where words inside HTML tags were rated
higher3, to using structural features such as the length
of a document or the number of pictures it contained.

Search

Most of the projects based their search on a standard
best-first algorithm, with bounds imposed on the mem-
ory and time used for each search.

Learning

Learning methods included a neural network approach,
variants on nearest neighbor schemes, and various sim-
pler weight updating strategies.

Results

Given the short time-frame, the systems produced were
remarkably successful. However, due to the informal
nature of the experiments, only anecdotal results can
be reported. In one experiment, a user gave high scores
to pages which related to soccer and the World Cup.
After the twenty days of feedback, the system pre-
sented a top-ten list where the top five pages were
World Cup related (figure 1). In another experiment, a
preference for Japan-related pages led to a top-ten list

2See http://robotics.stanford.edu/people/marko/
fridge-door/MiniWebMap_2x2.ps for an example.

3E.g. in HTML <B>this</B> would appear in bold face,
and thus would be assumed to be more indicative of the
document content.

15

containing only such pages. In fact most of the testers
reported similar successes.

Current Implementation

Recently we have created a more stable implementa-
tion, which we have used to perform an initial exper-
iment. The system is intended to run one cycle every
night, presenting users with fresh output each morning.

Features

Before extracting keywords we run the pages through
a number of parsing steps common in information re-
trieval applications: we remove HTML markup tags, re-
move stop words (words so common as to be useless as
discriminators, like the) and then stem the remainder
of the words. This reduces words to their ‘stems’, and
thus diminishes redundancy. For instance, computer,
computers, computing and computability all reduce
to comput. We use the Porter suffix-stripping algo-
rithm (Porter 1980), as implemented in (Frakes 1992).

Word weights are calculated using a more sophiti-
cated TFIDF scheme which normalizes for document
length, following recommendations in (Salton & Buck-
ley 1987):

(0540578 (108 77 )

((0‘5 rosg) 2 (1 dfT(Lj)Y)

where #fpqr 1s the maximum term frequency over
all words in 7. The document frequency compo-
nent is calculated using a fixed dictionary of approxi-
mately 27,000 words gathered from the web and then
stemmed. Currently we include only the 10 highest-
weighted words in a document vector, for computa-
tional reasons. Salton and Buckley (1987) show that
restricting the number of words has only a minor effect
on the performance of a retrieval system.

D

d; €T

Search

A fairly standard best-first search is used. It has been
slightly modified it so that it will halt after using up
its limit of CPU time, output the best pages found so
far, and be ready to resume searching from the same
point the next time it is executed.

Learning

Each page 17, will be viewed by the user and receive an
evaluation e; (an integer in the range [—5, +5]). Given
this information we update the weights of M by a sim-
ple addition:

p
T SR
i=1

In the IR literature this is referred to as relevance
Jeedback (Rocchio 1971).



Average Score/Number of Users

U U UL LU U v v v Y U
9 ¢ 0 0 0 0 9 0 0 ¢ @
88 QR8 8404684
le\wo'\OH(I\](vI)JﬁLﬁ\O
A 4 A4 A - A

USERS —O0——cooL

53388882 38888°3¢3

faRffaaassaaa
]

~ 0 & 9 dJd N m 9N W~ 0o &

A H 4NN NN NN NN NN

Date

_A__RANDOM = LIRA

Figure 2: Comparison of our system (LIRA) against random (RANDOM) and human-selected (COOL) pages. The
vertical axis shows both the number of users each day and the average score for each source of pages. The gaps
indicate holidays or periods when the system was down for debugging.

Results

So far we have performed only a preliminary experi-
ment, recording the evaluation scores given by users
each day.

We have attempted to compare the pages produced
by our system with both human-selected and randomly
selected pages. Each day a separate process takes six
pages produced by our system, three random pages and
one human-selected page. These are presented to the
user in a random order. In this way neither the user nor
the experimenter know which page comes from which
source. We keep a log of the evaluations received for
each of the three sources.

For the human-selected page we make use of the
“Cool Site of the Day” link (Davis 1994). Note that
this is not tuned to a particular user. The random
pages are selected from a static list of several hundred
thousand URLs, checked for accessibility. The system
does not use the evaluations of these control pages to
update its weights.

Figure 2 shows the results collected during the first
24 days of operation of the system.

Analysis

Given the short duration of this experiment and the
limitations of our first implementation, the results are
very encouraging. After the first couple of days, our
system’s performance becomes consistently better than
the randomly-selected pages. It beats the human-

16

selected page half of the time. The greater variability
in the score for the human-selected page is probably
due to the fact that it is only a single page.

Our prediction was that the scores given to pages
from our system would rise slowly, as it learned the
preferences of individual users. However, it appears to
stay fairly constant. On the face of it, this suggests
that apart from a short initial period adaption does
not help. However, we believe this actually highlights
a difficulty in our experimental methodology. Over
time users tend to normalize their scores, so that the
same page will receive a different score if it is presented
amongst worse pages than if it is presented amongst
better pages. Furthermore, users will consciously at-
tempt to influence the algorithm by giving minimum
scores to pages relating to topics they are no longer
interested in, despite giving pages on those topics high
scores in the past.

It has been difficult to advise users on evaluating
pages. For instance, users may do some exploration
of their own starting from a page provided by the
system, and discover something they find interesting
which they would not have found otherwise. Should
this have a bearing on the evaluation of the page the
system provided? Ideally the system would be able to
accept feedback on pages which it had not suggested.

Since we anticipate the use of this system over a
longer period, this short experiment provides only a
promising initial glimpse at its utility. Apart from re-



porting various bugs, the only negative reaction from
the test users related to the systems’ tendency to focus
on one particular set of interests, so that the pages re-
turned would cover a single topic rather than a range.

Related Work

There has been much recent work in a similar vein
where the aim 1s to build an index of the web, and then
allow users to search that index: (Mauldin & Leavitt
1994), (Pinkerton 1994). In this other work the sys-
tem is supporting a directed search, initiated by the
user. There is a possibility of an interesting symbiosis
between these indexes and our searcher: the searcher
could potentially make use of the indexes when search-
ing, and the pages it produced could, if publicly acces-
sible, be indexed by the indexer. The Harvest frame-
work (Bowman et al. 1994) is more general and allows
indexes and search engines to be created in a modular
way.

Another related area of work attempts to automat-
ically filter incoming information, notably (Maes &
Kozierok 1993), (Lashkari, Metral, & Maes 1994). In
this case, the system is not contributing new informa-
tion but attempting to organize the existing flow to
the user. This kind of application is inherently more
risky. For instance, an inadvertently deleted mail mes-
sage could have disastrous consequences. Thus it is
more important not only that the agent have a model
of the user but also that the user has a model of the
agent, in order to build up trust.

The SIFT system (Yan & Garcia-Molina 1995)
shares our goal of continuously informing the user of
new information. In contrast, however, SIFT requires
that users submit a profile which represents their inter-
ests, and then allows them to modify this by relevance
feedback.

Although we borrow many techniques from the field
of IR, our domain is quite different: there is no search
query provided by the user, the collection of documents
has not been indexed in advance, and operation is over
longer periods of time.

Future Work

One extension of this work we intend to pursue would
allow communication and cooperation between in-
stances of the system running on behalf of different
users. Since the output of a given system is just an-
other web page, part of the required mechanism al-
ready exists. One can imagine systems not tied to a
particular user, whose narrow focus of interest could
form a specialized information resource for a group of
users. Like the designers of the Tapestry system (Gold-
berg et al. 1992), we envision that the shared interests
among a group of users would serve to cut down on
duplicated searching.

17

Conclusions

We have described some preliminary designs and cn-
couraging experimental results for agents which dis-
cover interesting information on the Internet, adapt-
ing to a particular user. The domain appears to be
amenable to applying Al techniques, making it inter-
esting not only from a research standpoint, but also as
a educational tool.

Acknowledgments

We would like to thank last year’s CS227 students,
all the members of the Nobotics research group who
participated in the experiment described (and gave lots
of helpful advice), Glenn Davis for allowing the use of
his daily “cool site” selection and Michael Mauldin for
allowing the use of a list of URLs and various word
frequency lists gathered by the Lycos system.

References

Bowman, C. M.; Danzig, P. B.; Hardy, D. R.; Manber,
U.; and Schwartz, M. F. 1994. Harvest: A scalable,
customizable discovery and access system. Technical
Report CU-CS-732-94, Department of Computer Sci-
ence, University of Colorado—Boulder.

Davis, G. 1994. Cool site of the day.
http://www.infi.net/cool . html.

Frakes, W. B. 1992. Stemming algorithms. In Frakes,
W. B,, and Baeza-Yates, R., eds., Information Re-
trieval Data Structures and Algorithms. Englewood
Cliffs, NJ: Prentice Hall, Inc. 131-160.

Goldberg, D.; Nichols, D.; Oki, B. M.; and Terry,
D. 1992. Using collaborative filtering to weave an
information tapestry. Communications of the ACM
35(12):61-70.

Lashkari, Y.; Metral, M.; and Maes, P. 1994. Collab-
orative interface agents. In Proccedings of the 12"
National Conference on Artificial Intelligence.

Maes, P., and Kozierok, R. 1993. Learning interface
agents. In Proccedings of the 11 th National Confer-
ence on Artificial Intelligence.

Mauldin, M. L., and Leavitt, J. R. 1994. Web-agent
related research at the CMT. In Proceedings of the
ACM Special Interest Group on Networked Informa-
tion Discovery and Retrieval.

Pinkerton, B. 1994. Finding what people want: Ex-
periences with the WebCrawler. In The Second Inter-
national WWW Conference: Mosaic and the Web.

Porter, M. 1980. An algorithm for suffix stripping.
Program 14(3):130-137.

Rocchio, Jr., J. 1971. Relevance feedback in infor-
mation retrieval. In The Smart System—FEzperiments

in Automatic Document Processing. Englewood Cliffs,
NJ: Prentice Hall Inc. 313-323.



Salton, G., and Buckley, C. 1987. Term weighting
approaches in automatic text retrieval. Technical Re-
port 87-881, Cornell University, Department of Com-
puter Science.

Salton, G., and McGill, M. J. 1983. An Iniroduction
to Modern Information Retrieval. McGraw-Hill.
Yan, T. W., and Garcia-Molina, H. 1995. SIFT—
a tool for wide-area information dissemination. In
Proceedings of the USENIX Technical Conference.

18





