From: AAAI Technical Report SS-97-01. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

A Concept Mapping Tool to Handle Multiple Formalisms

Rob Kremer

Knowledge Science Institute
University of Calgary
Calgary, Alberta Canada T2N 1N4
kremer@cpsc.ucalgary.ca

Abstract

Concept maps are used in a wide variety of disciplines
because of their ability to make complex information
structures explicit. Concept maps can be used
informally or formally — where the graphical
"syntax” of the maps is tightly controlled. Both forms
are needed. Constraint Graphs is a program in which
users can constrain arbitrary graphs to conform to any
of a wide variety of graphical formalisms. The
Constraint Graphs program is combined with a
graphical user interface to yield an interactive concept
mapping system, that can transcend informal concept
mapping and many concept mapping formalisms.

SUMMARY: CONCEPT MAPS AND
KNOWLEDGE MANAGEMENT

Concept mapping is a simple and intuitive method of
representing knowledge in a more flexible and natural
form than is possible with other forms of representation
such as pure text or strict formalisms (e.g. predicate logic).
Concept maps are composed of nodes and arcs connecting
the nodes. Nodes represent concepts and are labeled with a
short description of the concepts. Arcs represent the
relationships among the concept nodes and are usually
labeled with a the relationship type. This simple notion
leads to very powerful knowledge representation for both
human understanding and computer processing.

For example, Figure 1 shows a concept map the may be
developed by the participants in a decision-making
meeting. The visual language used in Figure 1 is a semi-
formalism called gIBIS (Graphical Issue Based
Information System). Here, the elliptical nodes represent
issues, the rounded-rectangular nodes represent positions
taken on the issues, and the rectangular nodes represent
arguments. The arcs connecting the nodes are all labeled
with relationship types.

The decision making process represented in Figure 1
shows a clear and clean structure that would be quite
difficult to represent using plain text. The relative linearity
of text would obscure the relationships among the
individual arguments and the sub-set of positions they

86

related to. To be sure, a two-dimensional table could
clearly represent the structure of most of Figure 1 (with the
exception of the "standardization” part), but tables quickly
become difficult as the complexity of the situation
increases. The flexible, two-dimensional structure of the
concept map is much more capable of clearly representing
complex knowledge structures.

Concept maps can not only be used for decision making,
but also for design, description, planning, brainstorming,
scenario construction, and modeling. Furthermore, if
concept maps are used in these ways, they can also serve as
easy-to-collect corporate records of these activities. In
addition, concept maps can be used in conjunction with
hypermedia navigation systems to create “meta-concept
maps”" — concept maps that can be used to organize and
navigate large collections of other concept maps.

If the "syntax" of concept maps is restricted (formalized)
such that a semantics may be associated with them, then
computer programs can be created to process the maps in
various ways: for information retrieval, for decision
support, and for knowledge-based inference by automated
agents.

Thus, various forms of concept mapping are useful in
industry for representing knowledge for both human
understanding and computer support. But the different
sorts of concept maps used in different ways may become
difficult to handle and support. A central concept mapping

Standardizatlon“

tsuggested-dy head office
has
generalizes pports tandardized

o “supports
reponds-to —
e we have a

"‘:i::”‘mpﬂﬁds»{nm..‘,_ﬁupporlsr—”"" very limited
¥ budget

What
computer
should we
buy?

e, ohjects-te
" we have no
objectsto_ | in-house
expertise on
UNIX

Figure 1: A concept map used to support at decission
about buying a computer

|Standards|
thoughts
Functional
Requirements E-mail
enabled
pplications
considerations
. Group btandards
Implications of considerations houghts
X400 in the Other Internet
Organisation OpCo
227
work
Operational external m
Considerations connections
» implications

thoughts

Questions
DRP

Product _.iterative _] Network Netvyork
suite ? philosophy design : :
aming/addressing
277
Snr Mgmt |standards|"?- [
ppreciation All BUs
bovered 7 backu
External rocedures [»to do
Considerations — Sideines
considerations contacts policies -(?_t_)
Business -
Requirements taffin to do period
retention
policy
Figure 2: A concept map developed by a three member group brainstorming network design (Kremer 1993).

system that could serve as a "shell" for all the different
uses of concept maps would address this problem. The
remainder of this paper describes just such as system.

CONCEPT MAPS

Concept mapping is a simple and intuitive visual form of
knowledge representation. For human users, concept maps
tend to make the structure of a body of knowledge much
more salient than other forms of knowledge representation
such as pure text and predicate logic (Nosek & Roth 1990).
Concept maps have been used in education (Lambiotte et
al. 1984; Novak & Gowin 1984), in management (Axelrod
1976; Hart 1977; Eden, Jones & Sims 1979; Banathy
1991), in artificial intelligence (Quillian 1968), in
knowledge acquisition (McNeese et al. 1990), in linguistics
(Sowa 1984; Graesser & Clark 1985) and for many other
varied purposes. Concept maps can (and have) been used
to represent knowledge at the very informal level, such as
for "brainstorming”, as well as at the very formal level,
such as executable expert systems (Gaines 1991) or
graphic forms (Ellis & Levinson 1992; Eklund, Leane & C.
1993) of Conceptual Graphs (Sowa 1984) (see also
(Kremer 1994; Kremer 1995)).

Concept maps are graphs consisting of nodes with

connecting arcs, which represent relationships between
nodes (Lambiotte et al. 1984). The nodes are labeled with
descriptive text, representing the “concept”, and the arcs
are often labeled with a relationship type. Nodes may be
represented using distinct visual attributes, such as shape
and color, to distinguish node types; arcs may be similarly
distinguished.

Figure 2 is an example of an informal concept map
developed by a group during an interactive brainstorming
session about a new network in a large company. In
contrast, Figure 3 shows a formal concept map, called a
Conceptual Graph (Sowa 1984), which models the
sentence "Tom believes Mary wants to marry a sailor" in a
way that is amenable to straightforward, unambiguous
interpretation by a computer program.

Concept mapping (and the constraint graphs architecture
in particular) is applicable to many areas of knowledge
management in business. Business applications range from
structured brainstorming (Figure 2) to "corporate memory"
applications, to formal knowledge representation and
execution such as expert systems.

87

PERSON:
Tom

)

PROPOSITION:

PERSON:
Mary @ WANT
SITUATION:

Figure 3: A concept map in the form of Sowa's
conceptual graphs describing the sentence "Tom believes
that Mary wants to marry a sailor."

CONSTRAINT GRAPHS

The purpose of a constraint
graph is to provide an
abstract mechanism to
describe a graphical
formalism. Constraint graphs are formally specified using
a dialect of the specification language Z (Hayes 1987)
called ZSL (Jia 1995). The complete specification is
posted on the Web (Kremer 1996¢). The basic premise is
that all graphs contain only two basic object types: nodes
and arcs (collectively referred to as components). Each of
the basic types may be further elaborated into a lattice of
subtypes. Each new subtype can introduce new attributes
on top of those of its parent type. Constraint predicates
can be attached to each subtype and are used as necessary
to constrain the graph to conform to a particular formalism.

Interestingly, the traditional distinction between a type
and an object is abandoned. But one may consider a
component to be an object if it possesses a “~Exists
x.x<this”' predicate (“there is nothing that is a proper
subtype of me”). Actually, the predicate ‘“Forall
xIx<this.~Exists y.y<x” (‘“nothing that is a proper subtype
of me has any proper subtypes”) is more common. For
example, for the CLASSIC (Borgida et al. 1989)
formalism, such a predicate is used to describe the fact the

" The reader should note that predicates are not interpreted
in the form given in this paper. System authors must
translate their predicates to C++ (if an appropriate one is
not already in the library).

88

no Individual can be a superclass. (But the Individual
object itself has to have subclasses, or there would be no
individuals!)

The type lattice of a
constraint graph is fully
integrated with the graph

itself. That is, is-a arcs are
just a subtype of the basic arc
and are "drawn" into the
graph just as any ordinary arc
type (like owns, has-color, or bigger-than) would be. Of
course, is-a adds several constraints on top of a basic arc
because the is-a projection of the graph must be a lattice.
These constrains include the fact that is-a arcs cannot form
cycles and is-a arcs are always directed binary arcs’. The
type system is so well integrated with the graph system that
users may specify the type of an object by drawing an is-a
arc from the object to its type object (or by selecting its
type from a menu at create time). Since the constraint
graphs specification defines arc endpoints as terminating
on components (not just nodes), a "separate” lattice of arcs
(including is-a arcs) can also be formed, as required by the
target formalism.

The addition, deletion, or modification of any
component of a graph causes the system do a type check.
This involves evaluating the constraint predicates and also
related components. A constraint predicate takes as
parameters the graph itself, the target object (the one in
question), and the object that the predicate is actually
attached to. Any component is legal if and only if
e Each of its predicates of the component evaluates to

true.
¢ Every subtype component is legal.
¢ Every predicate of every one of its supertypes evaluates
to true with the component as the target paremeter.
e It does not violate any of the types of the attributes of
any its supertypes.
In addition, an arc (either isa or non-isa) is legal if and only
if
e Itis legal according to the above rules for components
The objects at each of its terminals are legal.
Every terminal that has a corresponding terminal in one
or more of its parents must be either unconnected or
connected to a component who's type is a subtype of
each of the components connected to the parents’
corresponding terminals.
Furthermore, an is-a arc is legal if and only if
e It is legal according to the above rules for arcs and
components

? Non-isa arcs may be of arbitrary arity, each or the
terminals may be tagged with "directional identifiers" TO,
FROM, BOTH, or NONE.

e It forms no cycles in the is-a-projection of
the graph.
A common concern is constraining the types

3 IS 4

of the objects in which arcs can terminate.

This is accomplished by simply attaching the
terminals of the defining arc’ to the
appropriate type objects. More complex cases

Individual Role

[Cons(raint] | I Rule] I

can be handled using predicates. For example,
the brother relationship can be constrained
(without bothering with a male-person
concept) by the constraint predicate

this.arity=2 /\ type(this.terminal[0])<=person
N type(this.terminal[1])<=person A
this.terminal{ 1].sex=male

|] l

yy Insmv hw has-valu constrained/by y’ corefw dw/

Figure 4: A constraint graph model of KDraw. The vertical and horizontal
arcs represent the subtype relation. Objects above to heavy line the types
of the contraint graph domain; objects below the heavy line are in system

types in the KDraw domain.

("brother is a binary relation between two persons where
the second one is male"). Note that the second and third
conjunct are redundant if

=
]

_,' brother
0 /

is drawn as the definition (by the second arc rule). Also
note that the first conjunct, "this.arity=2" is still required to
prevent a subtype of brother from becoming a trinary arc.

For convenience, a constraint graph is divided into
levels. Level | consists of the graph types themselves —
node, arc, is-a and composite — and is immutable as far as
the user is concerned. The designation of the rest of the
levels is left to the discretion of the formalism
implementor. Generally, levels 2 and 3 should be at the
system level where the basic types are defined according to
the target formalism. These types should normally be
considered immutable by any end users, since to disrupt
them may compromise the interpretation of the graph.
Two system levels are often used (where level 2 is hidden
from the end user and used for hidden type hierarchies,
while level 3 is public and used to populate the space of
type identifiers for the end user). Level 4 is generally
considered to be the user level, where the end user builds
some specific knowledge structure. More levels are
possible: for example, level 4 might be used to construct
types in some specific domain, and a fifth level might be
added to hold objects of that domain within some
hypothetical world.

* The defining arc is the prototype (supertype) arc all arcs
of that type as defined by the transitive closure of is-a arcs
terminating on the prototype arc. This is analogous a class
definition in C++.

An Example: KDraw

As an example, Figure 4 shows how a constraint graph can
model KDraw (Gaines 1991), a visual form of CLASSIC
(Borgida et al. 1989). The Constraint Graphs KDraw
implementation is formally specified in Z in (Kremer
1996a). All the subtypes pictured below the heavy line in
Figure 4 are not primitive in the constraint graph, but are
added by a user describing KDraw. These all belong to
level 3*. The basic node types are concept, primitive,
individual, constraint, and rule. KDraw has nine relations,
two of which are subtypes of the is-a arc. The
considerable semantics (rules) associated with the is-a arc
(is-a arcs cannot form cycles, is-a arcs are binary, etc.) are
automatically inherited by the subtype is-a and instance-of
arcs.

Above the heavy line in Figure 4 are the primitive (level
1) objects of the constraint graph: rode, arc, and is-a. Is-a
is a subtype of arc (and forms the type lattice of a
constraint graph).

Figure 5 shows an actual Constraint Graphs schema for
the object types in KDraw. Node labels all begin with
upper-case letters; arcs (relationships) are pictured as all
lower-case letters. The surrounds of nodes are the same
shape and style used in KDraw. Arcs in KDraw are all
unlabeled (they are only labeled here for clarity), and for
most part, are binary directed arcs (arrows) unambiguously
distinguished by the (visual) type of their terminal objects.
The cases where arcs types are not unambiguous are those
in which the arc types have both terminals at concepts: Is-
a, exclusive, and coreferent. These are visually
disambiguated by Is-a being a directed arc, exclusive being
an undirected arc, and coreferent being a double-directed
arc.

“ Level 2 is reserved for a few "hidden" objects which
allow for secondary inheritance of visual attributes.

. Objectwith-Ntole

exception

If-tlfu:n yd ' /
coreferent '

Prote-Cancep —-has- domaln/

Rol - hag-constraint -

/

/ .
Arity-Constraint ;l
&

{ \‘
@/ hasiller / [
y ya / f i
/98 Instance -of / 7 /’ /[Min[Max—ConstraintJ\
FMin—Constraint J \

[Max-Constraint]
~
G-Constraint I [Includes-Constraint]

Figure 5: A Constraint Graphs schema of the object types in KDraw. Here, node labels all start with upper-case letters,
legal arcs (relationships) are pictured in lower-case terms. No arc is legal unless the types of its terminals are subtypes of
the terminal types in the diagram. The unlabeled arcs are isa arcs. The dark shaded nodes (as well as Constraint, Arity-
Constraint, and Set-Constraint) are hidden from the end user and are used to define the type hierarchy. The surrounds of
nodes are similar shapes and styles to those used in KDraw.

mutex

set-contains: Set-Constraint

* Primitive

Of course, each of the objects shown in Figure 4 must be
constrained to conform to the graphical syntax of KDraw.
This is done in the Constraint Graph schema of Figure 5.
For nodes, this is trivial, for the arcs alone suffice to
control the syntax. (Any nodes could stand alone and
unattached without violating any KDraw rules, but they
wouldn’t be very meaningful.) The only predicates applied
to nodes are regular expression constraints which apply to
the labels the end user puts on the various Constraint
nodes. For the most part, arcs can be constrained by
merely connecting their terminals to the appropriate type
object (as per the second link rule above). These terminals
are (almost) precisely those shown in Figure 5.
Complications arise due to the need to introduce additional
types to encapsulate "polymorphic" relationships (such as

Figure 6: Constraint Graphs options dialog window

90

has-role), and to handle the natural inheritance of visual
attributes from Concepts to Individuals through instance-of
arcs without giving Individuals all the semantics of
Concepts (to be detailed below).

Figure 5 contains several nodes which are hidden from
the user: Object-withRole, ProtoConcept, Constraint, Set-
Constraint, and Arity-Constraint. These are hidden by
placing them in level 2, and blocking level 2 from end user
visibility using the options dialog (Figure 6). The purpose
of these nodes is to allow "polymorphic" relationships
between nodes. For example, there are four node types
that can be the root of a has-role arc — Concept, Primitive,
Rule, and Individual. This similarity is captured by
introducing the (hidden) common supertype Object-with-

Role. Similarly, the commonality among the various
Constraint types is captured by hidden common
supertypes’.

There are several other constraints necessary to emulate
KDraw. These are added as predicates:
e All of the arcs are binary.
e No proper subtype of any of the KDraw arcs may be

* The reader may wonder why there is need to have all the
different subclasses of Constraints. Each of the constraint
types has a predicate which uses user-specified regular
expressions to restrict the textual syntax of the node labels.
This is not detailed further in this paper.

subtyped (they are “objects”™).
e No proper subtype of
constraint, rule, and role
subtyped (they are “objects”).
e No proper subtype of any of KDraw
objects except primitive-concept,
concept, and individual may inherit
from more than one parent (no multiple
inheritance)‘ instance-of-127
These links and rules are sufficient to i
constrain a graph to the legal graphical
syntax of a KDraw. (It’s still possible to
construct a nonsensical graph, but that’s

individual,
may be

is-a~105

—-—-has-role-l 21——whAge———has-filler-123

_Gc_prgé_ ——has-rele-133——mAge-m ~has-filler-137---

has-role-109—mAge ----has-domain-113

<=1<=

has-censtraint-141

N
instance-of-117 .
.
instance-of-135
P

Figure 7: A simple KDraw example

another story!)

The distinctive shapes of the node surrounds in KDraw
are modeled by attributes in the constraint graph system.
The nodes in the KDraw domain are each given a shape
attribute: for example, concept has "shape=ellipse”, role
has "shape=none". Attributes are inherited by subtypes;
so, all subtypes of concept will have the "shape=ellipse"
attribute. But things are not that simple, as the example in
Figure 7 shows. In this example, one needs to say not only
that George is an instance-of Person, but also that George
is-a individual. Clearly George is (and should be) both a
subtype of the concept Person and of Individual. The
semantics of KDraw dictates that the surround for George
should be a rectangle and not an ellipse. But George
inherits both "shape=rectangle" (from individual) and
"shape=ellipse" (from person). How are these properly
disambiguated? One may consider disambiguating using
the predicates, but this would only allow or disallow a
particular configuration; what is needed is a way to
automatically and efficiently choose the correct shape.
The system used in Constraint Graphs is to extend
attributes with properties. One of those properties is
priority, which is of type natural number, {0, 1, 2, ...}.
The highest priority is 0. Using this scheme, individual's
shape attribute is given the priority 0, and concept's shape
attribute is given the priority 1. Thus, the system is able to
unambiguously compute George's shape as rectangle.

A related problem is that George should naturally inherit
the color that the user has given to Person, since George is
an instance-of Person. Instance-of is a subtype of isa, so
the color inheritance happens naturally. But Individuals
must not inherit other abilities that a Concept supertype
might have, such as the ability to be on the root side of a
has-rule relationship (see Figure 5). This trick is
accomplished by filtering appropriate isa arcs. The arc
instance-of-127 is tagged (by a predicate rule in instance-
of) with the domain filter (used by the visual inheritance
system), while the graph is using the (mutually exclusive)
KR filter to determine arc eligibility (see Figure 6).

Another problem arises because the visual syntax of

91

KDraw is completely dictated by the surround shape; that
is, users expect ellipses to represent concepts, rectangles to
represent individuals, etc. If a user were to override the
shape of concept for instance, the concept map would be
rendered unreadable (but still computable, because the
system uses abstract types, not shape). On the other hand
users could override other attributes, such as color, without
effecting the readability of the map. This problem is
solved by again using properties of attributes. A second
property, constant, is introduced. A constant attribute
cannot be overridden by any object at a lower level. Thus,
the shape attribute can be locked on all KDraw objects,
preventing users from changing the shape, while still
allowing them to change attributes like color. Locking
could easily be accomplished by using predicates, but since
it occurs relatively often it is a part of the attribute system,
where it is more convenient to specify.

Compiling

The Constraint Graph program is capable of capturing the
syntax of other graphical formalisms by inferencing via the
type lattice, but the reader should note that it is not
intended to take on the deeper semantic nuances of any
arbitrary graphical formalism. For example, although it
can emulate the syntax of KDraw, Constraint Graph cannot
do the inferences of KDraw.

However, the Constraint Graph program is relatively
easy to extend to "compile” a graph into the native notation
of a target formalism. For example, it took only a single
day to write an extension to output the graph as a complete
Z specification — this automatic generation produced the
specifications found in (Kremer 1996a) and (Kremer
1996b). Future work on this project includes adding an
extension to compile a graph into KDraw's native notation,
calling up a separate KDraw interpreter (possibly
elsewhere on the Internet), and writing back the inferences
into the original graph.

INTERFACE ISSUES

The constraint graphs program itself lacks a graphical
interface. The figures produced here are done by
combining the constraint graphs program with an program
called KSIMapper. KSIMapper is a graphical concept
mapping program. Each time a user creates a new
component in the KSIMapper interface, a corresponding
component is created in the constraint graph. The
component in the constraint graph is checked for legality.
If it is not legal, the creation is undone in both places and
an appropriate message dispatched to the user. Likewise,
for any modification to an object in the interface (such as
changing the value of an attribute) the corresponding
change is made in the constraint graph, checked for
legality, and undone if it is not legal. Thus, the graphical
interface is always kept in conformance to legal syntax
according to the constraint graph.

Changes in one place in the graph may affect changes in
other places in the graph. For example, if the person
concept has the attribute “color=green”, and a user
changed the attribute to “color=blue”, then (assuming no
subtype overrides the attribute value) all subtypes of
person (primitive-concepts, concepts, or individuals)
should also change their color to blue. This is
accomplished easily in the program because when an
KSIMapper component/constraint graphs component pair
is created the two are linked using the observer pattern
(Gamma et al. 1995) so that any changes to the Graphs
object are broadcast to the corresponding KSIMapper
object. When any attribute of a Graphs object changes, the
changes are automatically propagated to all subtypes
which, in turn, broadcast the update to all their observers in
KSIMapper.

FUTURE WORK

Since the two parts of the program, KSIMapper and
Graphs, have such a high degree of independence, it should
be relatively easy to reconfigure the software. For
example, one could start with a very informal map drawn
with KSIMapper alone (which imposes no constraints), and
then “clip-on” a KDraw constraint graph to allow the
gradual “formalization” of the map to match KDraw
syntax. - Work in this area has not yet been undertaken, but
it looks relatively straight-forward. A more difficult
problem is the smooth transition from one formalism to
another (related) one. There are many more problems
here, having to do with phasing out of one formalism and
the introduction of another without producing too much
inconsistency in the meantime.

Efficiency is also a significant problem in the current
version of the software. The independence of the two
halves of the program is paid for by a certain amount of

92

redundancy, both in terms of space and time complexity.
The checking of the legality of a object in a constraint
graph also has a polynomial time complexity on the
number of objects in the graph according the specification.
Actually, one of the implementations of the specification
caches relationships, and so the time complexity is reduced
to polynomial on the depth of the graph. However, there is
lots of room for improvement here.

Constraint graphs have only been applied to KDraw,
Conceptual Graphs, and gIBIS to date. Applying them to
other graphical formalisms such as Petri nets would be
useful to show the utility of constraint graphs. This may
also serve to further generalize the tool.

SUMMARY

Concept maps are an intuitive form of knowledge
representation. Concept maps can be used in informal
(unstructured) forms as well as formal (structured) forms.
The constraint graphs program is designed to emulate
many graphical formalisms. It can be used to constrain an
internally represented graph to conform to many graphical
formalisms via a user-specifiable type lattice augmented by
object attributes and "constraint predicates".

The constraint graphs program can be combined with the
KSIMapper graphical interface. In this way, a flexible,
multi-user, programmable concept mapping "shell" is
formed.

It is still early in the life cycle of these programs.
Exactly how easy it is to configure constraint graphs to
handle other formalisms (other than its it initial test cases)
remains to be seen. Efficiency considerations need to be
addressed as well. Furthermore, the KSIMapper user
interface is still quite rarefied and needs to be extended to
handle several common direct manipulation features.
Finally, it will be interesting to study whether such a
system can simplify the transition between informal and
formal systems.

Concept mapping applies to knowledge management in
industry in both informal and formal forms for human
comprehension and computer support respectively.
However, the diversity of uses implies a variety of concept
mapping "languages”. A high-level, configurable system
such as Constraint Graphs may be an ideal way to deal
with the variety.

REFERENCES

Axelrod, R. 1976. Structure of Decision. Princeton, New
Jersey, Princeton University Press.

Banathy, B. H. 1991. Cognitive mapping of educational
systems for future generations. World Future 30(1): 5-17.

Borgida, A., Brachman, R. J., McGuiness, D. L. &
Resnick, L. A. 1989. CLASSIC: A Structural Data Model
for Objects. Proceeding of 1989 SIGMOD Conference on
the Management of Data. New York, ACM Press: 58-67.

Eden, C., Jones, S. & Sims, D. 1979. Thinking in
Organizations. London, Macmillan.

Eklund, P. W, Leane, J. & C., N. 1993. GRIT: Toward a
Standard GUI for Conceptual Structures. Second
International Workshop on PEIRCE: A Conceptual Graphs
Workbench. Laval University, Quebec, Canada.

Ellis, G. & Levinson, R., Eds. 1992. Proceedings of the
First International Workshop on PEIRCE: A Conceptual
Graphs Workbench. Las Cruccs, New Mexico.

Gaines, B. R. 1991. An Interactive Visual Language for
Term Subsumption Languages. IJCAI-91. Sydney,
Australia.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading Mass., Addison Wesley.

Graesser, A. C. & Clark, L. F. 1985. Structures and
Procedures of Implicit Knowledge. New Jersey, Ablex.

Hart, J. A. 1977. Cognitive maps of three latin american
policy makers. World Politics 30(1): 115-140.

Hayes, 1., Ed. 1987. Specification
Englewood Cliffs, N. J., Prentice-Hall.

Jia, X. 1995. ZTC: A type checker for Z (version 2.02).
ftp://ise.cs.depaul.edu/pub/ZTC/, September 29,1996.

Kremer, R. 1993. A Concept Map Based Approach to the
Shared Workspace. MSc. Thesis, Department of Computer
Science, University of Calgary, Calgary, Canada.

Case Studies.

Kremer, R. 1994. Concept Mapping: Informal to Formal.
Third International Conference on Conceptual Structures,
Knowledge Represetnation Workshop. University of
Maryland.

Kremer, R. 1995. The Design of a Concept Mapping
Environment for Knowledge Acquisition and Knowledge
Representation. Banff Knowledge Acquisition Workshop.
Banff, Alberta.

Kremer, R. 1996a. A Z Specification for KRS using Typed
Graphs.
http://www.cpsc.ucalgary.ca/~kremer/graphs/KRS_Z.html,
September 30, 1996.

93

Kremer, R. 1996b. A Z Specification for the Conceptual
Graphs based on of Typed Graphs.
http://www .cpsc.ucalgary.ca/~kremer/graphs/CG_Z.html,
September 30, 1996.

Kremer, R. 1996c. A Z Specification for the Formal
Interpretation of Typed Graphs.
http://www .cpsc.ucalgary.ca/~kremer/graphs/graphsZ2.ht

ml, September 30, 1996.

Lambiotte, J. G., Dansereau, D. F., Cross, D. R. &
Reynolds, S. B. 1984. Multirelational Semantic Maps.
Educational Psychology Review 1(4): 331-367.

McNeese, M. D., Zaff, B. S., Peio, K. I., Snyder, D. E,,
Duncan, J. C. & McFarren, M. R. 1990. An Advanced
Knowledge and Design Acquisition Methodology for the
Pilot’s Associate. Wright-Patterson Air Force Base, Ohio,
Harry G. Armstrong Aerospace Medical Research
Laboratory.

Nosek, J. T. & Roth, I. 1990. A Comparison of Formal
Knowledge Representation Schemes as Communication
Tools: Predicate Logic vs. Semantic Network.
International Journal of Man-Machine Studies 33: 227-
239.

Novak, J. D. & Gowin, D. B. 1984. Learning How To
Learn. New York, Cambridge University Press.

Quillian, M. R. 1968. Semantic memory. Semantic
Information Processing. M. Minsky. Cambridge,
Massachusetts, MIT Press: 216-270.

Sowa, J. F. 1984. Conceptual Structures: Information
Processing in Mind and Machine. Reading, Massachusetts,
Addison-Wesley.

