Acquiring and Integrating Knowledge from Images for a Large Scale Hypermedia System

John H. Boose, Larry S. Baum, Randy J. Kelley

The Boeing Company, 7L-44, PO Box 24346, Seattle, WA 98124
john@redwood.rt.cs.boeing.com, lbaum@redwood.rt.cs.boeing.com, rkelley@redwood.rt.cs.boeing.com

Boeing’s Intelligent Graphics team also includes Mike Carter, Susan Chew, Chuck Gebhardt, Brent Hadley, Ed Hall, Tom Jenkins, Cathy Kitto, Steve Pruitt, and Dave Shema

Abstract

The Boeing Company maintains tens of millions of pages of information associated with the manufacture and delivery of its products. Much of this information must be made available electronically. We have developed tools to automatically convert and integrate electronic data into industry standard formats. Some of the technical challenges include: 1) handling a wide variety of source formats, 2) making sure that the tools scale up to handle millions of pages of information, and 3) adding functionality to graphics. We have processed over four million pages of text containing tens of thousands of graphics. In this paper we describe our tools that recognize and use information within vector and raster images.

Four Million Pages and Growing

The Boeing Company is committed to Air Transport Association Specification 2100 (ATA, 1995) which requires the use of the Standard Generalized Markup Language (SGML) (Goldfarb, 1990). To comply with these specifications Boeing has converted millions of document pages to SGML. Document sources include commercial tools (e.g., Microsoft Word, InterLeaf, FrameMaker), internal proprietary tools, and data from external vendors.

Manually converting such documents would be prohibitively expensive and error-prone. To meet this challenge our team built a series of text autotaggers that automatically convert documents into SGML. From 1990 to the present we developed autotaggers to create a testbed hypermedia system containing data from over four million pages. We use Electronic Book Technologies’ DynaText system as the browser, including custom extensions for viewing graphics. We will report our text autotagging methods and results elsewhere.

Graphic Navigation and Functionality

The autotaggers receive text in various formats. They receive graphics in vector formats (usually CGM) and raster formats (usually TIFF) and originally did little more than pass the graphics to viewers in DynaText. The graphics lacked information for navigation and retrieval. Users often needed to examine many images to find the right one, including multiple panning and zooming operations. Hyperlinking from a text reference in a graphic was not possible, nor was full text search. Graphics lack the basic functionality of the SGML text. The graphics also lacked useful functional information -- What is the logic in this troubleshooting diagram? What are the relationships between items in this table? What lines in this wiring diagram represent continuous circuits?

We built a series of graphic recognition tools that use vector and raster graphics to produce navigational and functional information represented in SGML. We then integrated this information into the testbed.

Graphics Recognition Tools

We used a similar approach for each graphic recognition problem:

- Develop a tool to reason about vector or raster graphics.
- Tune and evaluate the tool for accuracy and the ability to scale up.
- Integrate acquired graphic information with text in the testbed.
- Evaluate the usability of the results.
- Transfer the results to products and services.

The image counts given below are for a recent Boeing 747 airplane maintenance manual set. They illustrate the large scale of the problems.

Troubleshooting charts are vector drawings that provide mechanics with decision trees for fault isolation. One drawing can consist of as many as 30 individual sheets with intersheet connections linked by references. Our software analyzes the layout of the boxes and the arrows connecting them and builds an internal representation of the decision tree. It then generates hot spots so that users can easily navigate within a sheet and among sheets as well as follow links to other information. This manual set contains over 750 charts containing over 16,000 hot spots.
Fault reporting diagrams are vector images that pilots use to determine what messages to record in the flight logbook when a malfunction occurs. The variations in layout are more complex than the troubleshooting charts; still we've been able to accurately determine the decision networks in these diagrams and generate over 20,000 hot spots in over 1,600 diagrams (Figure 1).

Component location diagrams provide exploded views of aircraft and their components. Typically one diagram consists of multiple sheets, each of which has one or more subpictures (insets) with internal callout references. Our software must reliably subdivide each image into subpictures and generate the hot spots that link the callouts to the correct subpicture, including references to other sheets. In addition, the software generates hot spots around each equipment number, so that mechanics can easily navigate from the picture to information about that piece of equipment. This manual set contains over 650 vector component location diagrams; the system produced over 3200 subpictures containing over 25,000 hot spots.

Component index tables are vector drawings that tell the mechanic where to go to find the maintenance procedures for the equipment illustrated in the component location drawings. The index table recognizer determines the individual table cells and relationships among cell contents. It generates over 14,000 hot spots in over 300 tables linking the drawings to component location

Figure 1. The fault diagram recognizer finds arrows, diamonds, and other information, then uses knowledge about diagram layout to produce the application’s flow of logic.
diagrams, other component index tables and to maintenance procedures (Figure 2).

Wiring diagrams are vector drawings extracted from computer-aided design data sets. The intelligent graphics software analyzes both the vector image and the data set to determine how wires are laid out in the drawings so that circuit tracing is enabled in the hypermedia viewer. In addition, there are hot spots providing hyperlinks to equipment lists and wire lists as well as other diagrams. This manual set contains over 1400 diagrams with over 135,000 hot spots (Figures 3, 4).

System Schematics are similar in functionality and recognition requirements to wiring diagrams. This manual set contains over 1300 system schematics with over 461,000 hot spots.

Parts Illustrations are raster images that provide exploded views of the airplane much like component location diagrams. They contain callouts and item numbers that must be linked to other pages. Because they are raster images we must perform more complex analysis than with the vector images. We have developed routines to quickly process callouts and item numbers with high accuracy. This manual set contains over 13,000 sheets with more than 241,000 hot spots (Figure 5).

Standards tables contain information about Boeing engineering practices. The sources for many of these tables are paper copies that were several generations old, made with typewriters and ruled with ball point pens. The conversion team scanned these images for on-line use and was planning to manually re-enter the information. We developed recognition software to extract the logic in the tables. Together with a commercial optical character recognition package we automatically converted over 6600 tables to InterLeaf format (Figures 6, 7). Later these will also be converted to SGML.

Figure 2. The component location recognizer uses page layout logic to induce groups and attach callouts.
Figure 3. A wiring diagram recognizer finds connected circuits and links references together.

Figure 4. Users follow hotlinks to retrieve equipment information. The system stores wiring diagram links and other references in the DynaText database.
Figure 5. A raster parts illustration recognizer finds callouts and reference numbers, using symbol finding and optical character recognition.

<table>
<thead>
<tr>
<th>Filler Metal Classifications</th>
<th>Procurement Specifications (Information only)</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWE Class</td>
<td>Government Class</td>
<td>Trade Name or Type</td>
</tr>
<tr>
<td>BRAZ92A</td>
<td>A923A</td>
<td>AZ92A</td>
</tr>
<tr>
<td>BRAZ61A</td>
<td>A613A</td>
<td>AZ61A</td>
</tr>
<tr>
<td>BREZ88A</td>
<td>E883A</td>
<td>E883A</td>
</tr>
<tr>
<td>BRAZ101A</td>
<td>A1013A</td>
<td>AZ101A</td>
</tr>
<tr>
<td>-</td>
<td>LA141A</td>
<td>LA141A</td>
</tr>
</tbody>
</table>

Figure 6. This original standards table was made using a typewriter and ball-point pen.

Figure 7. After scanning the table in Figure 6, the table recognizer automatically finds cells, performs character recognition, then produces standard mark-up files.
Evaluating Recognition Results

To evaluate the results of text tagging our team commercial SGML verifiers and specialized custom systems. We developed tools that analyze the text output for consistency and completeness, including statistical measures and link verification. Often these tools find authoring errors as well as tagging errors.

It is more difficult to build such tools to check graphic recognition accuracy. We built a custom graphic analysis tool that simultaneously shows recognized objects and the corresponding SGML (Figure 8). For example, if the recognizer finds a reference, the viewer displays the hot spot along with the information as to what type of reference it is and to what it refers. Using this viewer we manually sampled thousands of images to assess recognition accuracy. Recognition accuracy ranged from about 97% for component location graphics to 99.9% for troubleshooting charts. These results exceeded our performance goals.

We can also find some types of graphics authoring errors. For example we can automatically detect incorrect references that point to non-existent locations. Previously, such errors could only be found by manual inspection.

![Figure 8. We assess recognition accuracy using our custom graphics analysis tool.](image-url)
Future Challenges - Work in Progress

We are currently working with Boeing's library of millions of structural and tooling raster drawings. These drawings have been scanned from aperture cards and placed on-line. We would like to recognize objects such as title blocks, part numbers, dimension lines, materials lists, and parts tables. Much of the text is hand written and many of the scanned images are skewed or noisy. This is challenging work (Figure 9).

We are also working on visual information retrieval strategies, including content-based and similarity-based methods (Figure 10).

Summary

We have successfully added functionality to tens of thousands of vector and raster graphics, integrating them with text in on-line navigation systems, addressing the problems of scale and accuracy. We hope to continue to add functionality to graphics to enhance the overall utility of Boeing's digital data.

References


Figure 9. The structural and tooling drawing recognizer must find part numbers, title blocks, and dimensions lines in raster images.
Figure 10. Our prototype visual search engine finds similar vector images in a database of over 6,000 drawings.