From: AAAI Technical Report SS-97-06. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

METHONTOLOGY:
From Ontological Art Towards Ontological Engineering

Mariano Fernidndez, Asunciéon Gémez-Pérez, Natalia Juristo

Laboratorio de Inteligencia Artificial
Facuitad de Informdtica
Universidad Politécnica de Madrid
Campus de Montegancedo sn.
Boadilla del Monte, 28660. Madrid, Spain.
Tel: (34-1) 336-74-39, Fax: (34-1) 336-7412
Email: {mfernand, asun, natalia} @delicias.dia.fi.upm.es

Abstact

This paper does not pretend either to transform
completely the ontological art in engineering or to
enumerate exhaustively the complete set of works that
has been reported in this area. Its goal is to clarify to
readers interested in building ontologies from scratch,
the activities they should perform and in which order,
as well as the set of techniques to be used in each
phase of the methodology. This paper only presents a
set of activities that conform the ontology
development process, a life cycle to build ontologies
based in evolving prototypes, and
METHONTOLOGY, a well-structured methodology
used to build ontologies from scratch. This paper
gathers the experience of the authors on building an
ontology in the domain of chemicals.

1. Introduction

Until now, a big quantity of ontologies have been
developed by different groups, under different approaches,
and using different methods and techniques. However a few
works have been published about how to proceed, showing
the practices, design criteria, activities, methodologies, and
tools used to build them. The consequence is clear, the
absences of standardized activities, life cycles, and
systematic methodologies as well as a set of well-defined
design criteria, techniques and tools make the ontologies
development a craft rather than an engineering activity. So,
the art will became engineering when there exist a
definition and standardization of a life cycle that goes from
requirements definition to maintenance of the finished
product, as well as methodologies and techniques that drive
their development.

One of the main problems that Knowledge Engineers
(KEs) have when building expert systems is the difficulty
of getting a set of requirements for the system.
Requirements specify how the system will behave. Since

33

experts are not usually able to describe in a concrete and
complete way how they behave in the application domain,
it is hard for KEs to specify the future behavior of the
Knowledge-Based Systems (KBS). So, KBS are usually
built incrementally using evolving prototypes in which the
deficiencies of the final product of each cycle can be used as
the specification of the next prototype. In ontologies do not
occur the same. Ontologies are built to be reused or shared
anytime, anywhere, and independently of the behavior and
domain of the application that uses them. So, ontologists
should be able to specify, at least partially, a big portion of
the needed vocabulary that the ontology will cover for a
given domain. This is the main difference between
ontologies and KBS development processes. Consequently,
methodologies used to build KBSs can not completely be
applied to build ontologies.

In the following sections, this paper presents a set of
activities that conforms the ontology development process
(section #2), a life cycle of ontologies (section #3) and
METHONTOLOGY (section #4), a method to build
ontologies from scratch.,

2. Ontology Development Process

The ontology development process refers to what activities
you need to carry out when building your ontologies.
However, the ontology development process does not
imply an order of execution of such activities. Its goal is to
identify the list of activities to be completed. Usually verbs
are used to refer to such activities. The ontology
development process is composed of the following:

* Before building your ontology, you should plan the
main tasks to be done, how they will be arranged,
how much time you need to perform them and with
which resources (people, software and hardware).

* As you do not plan a trip without knowing your
destination (your goal), you should not start the

development of your ontology without knowing its
purpose and scope. So, try to answer the questions:
why this ontology is being built and what are its
intended uses and end-users. Then, specify or write
the answers in an ontology requirements
specification document. As an example of an
informal and formal specification of two independent
ontologies in the domain of modeling enterprise, to
cite the Enterprise ontology (by Uschold) and the
TOVE ontology (by Gruninger). Although their
outputs are almost the same (a set of terms), the
degree of formality in writing their requirements
specification documents are different. The Enterprise
ontology has been specified in natural language and
the TOVE ontology using a set of competence
questions (Uschold & Gruninger 1996).

Unless you wish to build a toy ontology or unless
you are an expert in the domain, you will elicit
knowledge using KBSs knowledge elicitation
techniques. As a result, you should be able to list
the sources of knowledge and give, a rough
description of how you carried out the processes, and
of the techniques you used. The most extensive
work on capturing knowledge was reported by
Uschold and Gruninger (Uschold & Gruninger
1996).

Once you have acquired enough knowledge you
conceptualize it in a conceptual model that
describes the problem and its solution. A set of
intermediate representations for conceptualizing a
domain ontology of objects were presented by
G6mez-Pérez and colleagues at (G6mez-Pérez,
Ferméndez, & De Vicente 1996).

To transform the conceptual model into a formal or
semi-compatible model, you need to formalize it
using frame-oriented or description logic
representation systems.

Ontologies are built to be reused. In this way,
duplication of work in building ontologies has less
sense than its duplication when you build a
traditional Knowledge Base. So, you should reuse
existing ontologies. Try to integrate as much as
possible existing ontologies in your ontology. A
method to integrate ontologically heterogeneous
taxonomic knowledge and its application to the
medical domain was presented by Gangemi and
colleagues in (Gangemi, Steve, & Giacomelli
1996). Farquhar and colleagues (Farquar et al. 1995)
have identified four kind of relationships between
ontologies that have been integrated: inclusion,
polymorphic refinement, circular dependencies and
restrictions. Their ontology server provides a
semantic model for ontology inclusion in order to
avoid conflict between symbols.

To make your ontology computable, you need to
implement it in a formal language. As a reference

34

framework for selecting target languages, we would
cite the comparative study performed by Speel and
colleagues at (Speel et al. 1995) as part of Plinius
project (Vet, Speel. & Mars 1995).

* What do you think that it will happen if you use a
meta-ontology or ontologies already built with
wrong definitions? Probably, your ontology will be
wrong too. Before making your ontology available
to others, evaluate it, that is, make a technical
judgment with respect to a frame of reference. A
framework for evaluating ontologies was provided
by Gomez-Pérez and colleagues at (Gémez-Pérez,
Juristo, & Pazos 1995).

* Have you ever try to modify or reuse a program
without having a good documentation? Sure, you
have. The absence of a sound documentation is also
an important obstacle when you reuse/share
ontologies already built. So, if you wish your
ontology to be reused/shared by others try to
document it as best you can. No work has been
published on this field.

* Anytime, anywhere, someone could ask for
including or modifying definitions in the ontology.
To maintain the ontology is an important activity
to be done carefully. Guidelines for maintaining
ontologies are also needed.

We remark that the ontology development process does
not imply an order on the execution of such tasks. Its goal
is only to identify the list of activities to be done.

3. Ontology Life Cycle

"Don't build your house starting by the roof”, says a
Spanish proverb to advice that activities require an order and
that they should be divided and carry out step by step in a
planned way, in order to succeed. In the previous section,
we divided the ontology development process in a set of
activities. However, we did not indicate the order and depth
in which such activities should be done. It is obvious that
planification and maintenance are the first and the last, but
it is not clear whether or not knowledge acquisition is
totally or partially simultaneous with the specification and
conceptualization activities, if conceptualization precedes to
the integration and this one goes before the
implementation, if the evaluation and documentation are
sequential to the implementation or if they should be done
as all the activities move forward, and if you should carry
out an activity totally or partially before starting the
following.

First, the ontology life cycle answers the previous
questions identifying the set of stages though which the
ontology moves during its life. Making an analogy, we
could say that the ontology development process is similar
to the production chains in a manufacturing domain as the
ontology is to the final product that such production chain

Activity

States

Conceptualization
Specification

Planification

implementation

Integration

Activities

i

Acquiring Knowledge

Documenting

Evaluating

Figure 1. States and activities

creates. Just as the life cycle of human beings moves
forward sequentially and irreversibly through the following
states: childhood, adolescence, youth, maturity and old age,
the ontology life cycle moves forward through the
following states: specification, conceptualization,
formalization, integration, implementation and
maintenance. So, the ontology development process
transforms the initial product (the need you have to build
the ontology) into a final product (the evaluated,

documented ontology, codified in a formal language). The .

previous states through which the ontology pass conforms
its life cycle, as it is shown in figure 1. Knowledge
Acquisition, evaluation of ontologies and documentation
are tasks that are carried out during the whole life of the
ontology as figure 1 shows. In fact, unless the ontologist
is an expert in the application domain, most of the
acquisition is done simultaneously with the requirements
specification phase and decreases as the ontology
development process moves forward. In order to prevent
error propagation, most of evaluation should be done during
the earliest stages of the ontology development process.
Finally, you should produce detailed documentation.

Second, the ontology life cycle shows when you
should perform the activities to move from a given state to
the next and in how much depth. Some life cycle models
have been described in Software Engineering and transferred
to Knowledge Engineering (Alonso et al. 1996). As we said
before, the main problem facing KE when (s)he begins a
new KBS is to build a requirements specification document.
Unlike, an ontologist must be able to partially specify a set
of requirements before building an ontology, which will
constitute the initial core of the ontology. So, the ontology

35

life cycle is closer to a classic software life cycle than it is
to a KBS life cycle.

The waterfall life cycle defined by Royce (Royce 1987)
is the traditional life cycle model in Software Engineering.
In this model, activities are sequential in the sense that
you cannot move onto the next activity until you have
completely finished the previous one. This model forces the
ontologist to identify all the terms at the beginning, and
the implementation must be a mirror of the specification,
that is, it must satisfy the complete requirements
specification document. Its main inconvenient is that the
ontology is static, you cannot include, remove or modify
terms in it. Obviously the use of a waterfall life cycle
model is not adequate due to the absence of a complete
requirements specification at the earliest stages of the
development process and due to the evolution of the
ontologies definitions over time. Figure 2.a shows how the
system grows under this approach. The incremental life
cycle (McCracken & Jackson 1982) solves some problems,
allowing the partial specification of the requirements.
According to this approach, the ontology would grow by
layers, allowing the inclusion of new definitions only when
a new version is planned. This model prevents the
inclusion of new definitions if they are not planned, but it
does permit an incremental development. Figure 2.b shows
how the ontology grows according this approach. Finally,
the evolving prototype life cycle solves the previous
problems since the ontology grows depending on the needs.
Indeed, this model lets you to modify, add, and remove
definitions in the ontology at any time. So, we think that
the evolving prototypes are appropriate life cycle for
building ontologies.

a) Traditional b) Incremental ¢) Evolving

Figure 2. How the ontology grows?

4. METHONTOLOGY: A Methodology to
Build Ontologies from Scratch

In general, methodologies give you a set of guidelines of
how you should carry out the activities identified in the
ontology development process, what kinds of techniques are
the most appropriate in each activity and what products
each one produces. Until now, methodological approaches
in building ontologies have been reported by Uschold in the
Enterprise ontology, Gruninger in the TOVE project, both
in the domain of enterprise modeling (Uschold & Gruninger
1996), and Gémez-Pérez and colleagues in the domain of
chemicals (Gémez-Pérez, Ferndndez, & De Vicente 1996).
Figure 3 summarizes the activities proposed and what are
equivalent.

Obviously, it is almost impossible to take the three
above contributions to propose a general method for
building any kind of ontology or meta-ontology. This
section presents METHONTOLOGY, a structured method
to build ontologies. It is based on the experience acquired in
developing an ontology in the domain of chemicals.

4.1 Specification

The goal of the specification phase is to produce either an
informal, semi-formal or formal ontology specification
document written in natural language, using a set of
intermediate representations or using competency questions,
respectively. METHONTOLOGY proposes that at least the
following information be included:

a) The purpose of the ontology, including its intended
uses, scenarios of use, end-users, etc.

b) Level of formality of the implemented ontology,
depending on the formality that will be use to codify
the terms and their meaning. Uschold (Uschold &
Gruninger 1996) classifies the degree or level of
formality in a range of: highly informal, semi-
informal, semi-formal or rigorously formal
ontologies, depending on whether terms and their
meanings are codified in a language between natural

language and a rigorous formal language.

c) Scope, which includes the set of terms to be
represented, its characteristics and granularity.

36

1. Identify purpose and scope
2. Building the ontology \ y 4

2.1 Ontology capture/

1. Acquire knowledge

. Build a requirements specification

d t
2.2 Ontology coding ocumen
231 ti isting?™\, .
or::)gl;;i:f existin 3. Conceptualize the ontology
- ~—
3. Evaluation 4. Implement the ontology

o—

4. Guideliness for each phase ™5, Evaluation during each phase

6. Documentation after each phase

a) Uschold and Gruninger b) Gomez-Perez and colieagues

Figure 3.Relationship between phases of two
methodologies

The formality of the ontology specification document
varies on its degree of formality depending on if you use
natral language, competency questions or a middle-out
approach. For example, in a middle-out approach, in the
scoping activity, you can use a glossary of terms to gather
the set of terms that must be included in the ontology,
whether or not you know their meaning at this stage of the
ontology development process. It is also advisable to group
concepts in concepts classifications trees (G6émez-Pérez,
Ferndndez, & De Vicente). The use of these intermediate
representations will allow you not only to verify, at the
earliest possible stage, relevant terms missed and to include
them in the specification document, but also to remove
terms that are synonyms and not relevant in your ontology
anymore. The goal of these checks is to guarantee the
conciseness and completeness of the ontology specification
document. Figure 4 shows a short example of an ontology
requirements specification document in the domain of
chemicals.

Uschold (Uschold & Gruninger 1996) gives an
excellent argument on the use of a middle-out as opposed
the classic bottom-up and top-down approach in identifying
the main terms of your glossary. The main advantage of the
middle-out approach is that it allows you to identify the
primary concepts of the ontology you are starting on. After
reaching agreement on such terms and their definition you
can move on to specialize or generalize them, only if they
are necessary. As a result, the terms that you use are more
stable, and less re-work and overall effort are required.

Since you can not prove the total completeness of your
ontology specification document (any time, anywhere,
someone may find a new relevant term to be included), you
must guarantee in a good ontology specification document
must have the following properties:

* Concision, that is, each and every term is relevant,
and there are no duplicated or irrelevant terms.

ONTOLOGY REQUIREMENT SPECIFICATION DOCUMENT

Domain: Chemicals

Date: May, 15th 1996

Conceptualized-by: Asuncién Goémez-Pérez
Implemented-by: Mariano Fernandez-Lépez

Purpose: Ontology about chemical substances to be used when information
about chemical elements is required in teaching, manufacturing.
analysis, etc. This ontology coul be used to ascertain. e.g..the
atomic weight of the element Sodium.

Level of Formality: Semi-formal.

Scope: List of 103 elements of substances: Lithium, Sodium, Chlorine, ...
List of concepts: Halogens, noble-gases, semi-metal, metal,
At least information about the following properties: atomic-number.
atomic-weight, atomic-volume-at-20-degrees-celsius. boiling-point,
density-at-20-degrees-celsius, electronegativity, electron-affinity,
and symbol.

Sources of Knowledge: Handbook of Chemistry and Physics. 65th edition.
CRC-Press, Inc. 1984-1985.

Figure 4. Ontology requirements specification in the
domain of chemicals.

* Partial completeness, which is related with the
coverage of the terms, the stopover problem and
level of granularity of each and every term.

* Consistency, which refers to all terms and their
meanings making sense in the domain.

4.2. Knowledge Acquisition

It is important to bear in mind that knowledge acquisition
is an independent activity in the ontology development
process. However, it is coincident with other activities. As
we told before, most of the acquisition is done
simultaneously with the requirements specification phase,
and decreases as the ontology development process moves
forward.

Experts, books, handbooks, figures, tables and even
other ontologies are sources of knowledge from which the
knowledge can be elucidated using in conjunction
techniques such us: brainstorming, interviews, formal and
informal analysis of texts, and knowledge acquisition tools.
For example, if you have no a clear idea of the purpose of
your ontology, brainstorming technique, informal
interviews with experts, and inspecting similar ontologies
will allow you to elaborate a first glossary with terms
potentially relevant. To refine the list of terms and their
meaning, formal and informal analysis of text techniques in
books and handbooks in conjunction with structured and
non-structured interviews with experts might be used to
include or remove terms in the glossary. Interviews to
expert might help you to build concepts classifications
trees and to contrast them against figures given in books.

37

The techniques we used in the knowledge acquisition phase
of the chemical ontology were:

* Non-structured interviews with experts, to build a
preliminary draft of the requirements specification
document.

* Informal text analysis, to study the main concepts

given in books and handbooks. This study enables
you to fill in the set of intermediate representations
of the conceptualization.

* Formal text analysis. The first thing to do is to
identify the structures to be detected (definition,
affirmation, etc.) and the kind of knowledge
contributed by each one (concepts, attributes, values,
and relationships).

* Structured interviews with experts to get specific and
detailed knowledge about concepts, their properties
and their relationships, to evaluate the conceptual
mode! once the conceptualization activity has been
finished, and to evaluate implementation.

4.3. Conceptualization

In this activity, you will structure the domain knowledge in
a conceptual model that describes the problem and its
solution in terms of the domain vocabulary identified in the
ontology specification activity. The first thing to do is to
build a complete Glossary of Terms (GT). Terms inciude
concepts, instances, verbs and properties. So, the GT
identifies and gathers all the useful and potentially usable
domain knowledge and its meanings. Note that you do not
start from scratch when you develop your GT. If you made
a good specification document, many terms will have been
identified in that document. Other will be identified as the
ontology construction process advances. Then, these new
terms must be included in the GT.

Once you have almost completed the GT, you must
group terms as concepts and verbs. Each set of
concepts/verbs would include concepts/verbs that are
closely related to other concepts/verbs inside the same
group as opposed to other groups. Indeed, for each set of
related concepts and related verbs, a concepts classification
tree and a verbs diagram is built. After they have been
built, you can split your ontology development process
into different, but related, teams. Those related with
concepts, should follow the guidelines presented by Gémez-
Pérez and colleagues in (Gémez-Pérez, Fernindez, & De
Vicente 1996), and those encharged of conceptualizing
verbs are presented at (Vicente 1997). Figure 5 graphically
summarizes the intermediate representations used in the
conceptualization phase.

Concepts will be described using (Gdémez-Pérez,
Ferndndez, & De Vicente 1996). Data Dictionary, which
describes and gathers all the useful and potentially usable
domain concepts, their meanings, attributes, instances, etc.;
tables of instance attributes, which provide information
about the attribute or about its values at the instance; tables

of class attributes, to describe the concept itself, not its
instances; tables of constants, used to specify information
related to the domain of knowledge that always take the
same value; tables of instances, which define instances; and
attributes classification trees, to graphically display
attributes and constants related in the inference sequence of
the root attributes, as well as the sequence of formulas or
rules to be executed to infer such attributes.

Verbs represent actions in the domain. They could be
described using (Vicente 1997): a Verbs Dictionary, to
express the meaning of verbs in a declarative way; tables of
conditions, which specify a set of conditions to be satisfied
before executing an action, or a set of conditions to be
guaranteed after the execution of an action. Finally, to say
that tables of formulas and tables of rules gather
knowledge about formulas and rules. Note that both
branches use these two intermediate representations.

[Glossary of Temﬂ

C(:CV\\:M

Verbs Diagrams

Concepts Classification Trees

Data Dictionaries

Tables of Instance Attributes
Tables of Class Attributes
Tables of Constants

Tables of Instances

Attributes Classification Trees

' J

Table of Formulas
Table of Rules

Verbs Dictionary
Table of Conditions

Figure 5. Set of Intermediate Representations in the
conceptualization phase.

In sum, METHONTOLOGY produces in this phase a
conceptual model expressed as a set of well-defined
deliverables that will allow to the final users: (a) to
ascertain whether or not an ontology is useful and usable
for a given application without inspecting its source code;
and (b) to compare the scope and completeness of several
ontologies, their reusability, and shareability by analyzing
the knowledge expressed in each IR.

4.4. Integration

With the goal of speeding up the construction of your
ontology, you might consider reuse of definitions already
built into other ontologies instead of starting from scratch.
In this case, we propose the following:

1. Inspect meta-ontologies (.., in Cyc, in
Ontolingua, ...) to select those that better fit your

38

conceptualization. The goal is to guarantee that the
sets of new and reused definitions are based upon the
same set of basic terms. If existing meta-ontologies
are not appropriate for your ontology, you should
start the definition and implementation of a new
meta-ontology in a formal language.

2. Whether or not you reuse existing meta-ontologies,
the next step is to find out which libraries of
ontologies provide definitions of terms whose
semantic and implementation is coherent with the
terms identified in your conceptualization. Once you
have chosen the most appropriate terms, if the meta-
ontology upon which those terms have been built is
different of the meta-ontology used to build the
yours, you should check the existence of translators
to transform definitions into your target language.

Sometimes it might occur that a term in your
conceptualization (e.g., centimeter), that should be included
in a given ontology (e.g., Standard Units in Ontolingua) is
not provided by the ontology server. In this case, you
should justify the need to include the missed definitions as
well as the benefits of such inclusion to the ontolcgy
maintainer.

As a result of this activityy, METHONTOLOGY
proposes the development of an integration document,
summarizing: the meta-ontology you will use and, for each
and every term whose definition is going to be used: the
name of the term in the conceptual model, the name of the
ontology from which you will take its definition, the name
of the definition and its arguments in the ontology, as
shown in figure 6.

Meta-Ontology The frame-ontology in Ontolingua

Term in your | Ontology to be reused Name of the

Conceptualization term in the
ontology

Kilometer Standard-Units in Ontolingua | Kilometer

Centimeter Standard-Units in Ontolingua | Undefined

Exponent KIF-Numbers in Ontolingua | Expt

Figure 6. An example of an integration document

4.5. Implementation
Ontologies implementation requires the use of an
environment that supports the meta-ontology and

ontologies selected at the integration phase. The result of
this phase is the ontology codified in a formal language
such us: CLASSIC, BACK, LOOM, Ontolingua, Prolog,
C++ or in your favorite language.

Any ontology development environment should
provide, at least: a lexical and syntactic analyzer to
guarantee the absence of lexical and syntactic errors;
translators, to guarantee the portability of the definitions
into other target languages; an editor, to add, remove or
modify definitions; a browser, to inspect the library of

ontologies and their definitions; a searcher, to look for the
most appropriate definitions; evaluators, to detect
incompleteness, inconsistencies and redundant knowledge:
an automatic maintainer, to manage the inclusion, removal
or modification of existing definitions, and so on.

4.6. Evaluation

A framework for evaluating knowledge sharing technology
(software, ontologies and documentation) has been
presented by Gémez Pérez and colleagues in (Gomez-Pérez,
Juristo, & Pazos 1995). Evaluation means to carry out a
technical judgment of the ontologies, their software
environment and documentation with respect to a frame of
reference (in our case the requirements specification
document) during each phase and between phases of their
life cycle. Evaluation subsumes the terms Verification and
Validation. Verification refers to the technical process that
guarantees the correctness of an ontology, its associated
software environments, and documentation with respect to a
frame of reference during each phase and between phases of
their life cycle. Validation guarantees that the ontologies,
the software environment and documentation correspond to
the system that they are supposed to represent. Based on the
experience of verifying Ontolingua ontologies, a set of
guidelines and how to look for incompleteness,
inconsistencies and redundancies have been presented in
(G6émez-Pérez 1997).

The output proposed by METHONTOLOGY for this
activity is many evaluation document in which the
ontologist will describe how the ontology has been
evaluated, the techniques used, the kind of errors found in
each activity, and the sources of knowledge used in the
evaluation.

4.7. Documentation

There are not consensuated guidelines on how to document
ontologies. In many cases, the only documentation
available is in the code of the ontology, the natural
language text attached to formal definitions, and papers
published in conference proceedings and journals settings
out important questions of the ontology already build. This
problem is the result of a vicious circle: almost anyone
documents ontologies due to there are no guidelines to
perform it, there are no guidelines to document ontologies
because of the absence of methodologies to build
ontologies, and there are no standard methodologies to build
ontologies due to ontologist do not write, during the whole
ontology development process, the steps they follow to
build ontologies.

METHONTOLOGY pretends to break this circle
including the documentation as an activity to be done
during the whole ontology development process. In fact,
after the specification phase, you get a requirements
specification document; after the knowledge acquisition
phase, a knowledge acquisition document; after the
conceptualization, a conceptual model document that

39

includes a set of intermediate representations that describe
the application domain; after the formalization, a
JSormalization document, after the integration, an integration
document, after the implementation, the implementation
document, and during the evaluation, an evaluation
document.

5. Conclusion

In this paper we have reduced the existing gap between
ontological art and ontological engineering by: :

l. Identifying a set of activities to be done during the
ontology development process. They are: planify,
specify, acquire knowledge, conceptualize, formalize,
integrate, implement, evaluate, document, and
maintain.

2. Proposing the evolving prototype as the life cycle
that better fits with the ontology life cycle. The life
of an ontology moves on through the following
states: specification, conceptualization,
formalization. integration, implementation, and
maintenance. The evolving prototype life cycle
allows the ontologist to go back from any state to
other if some definition is missed or wrong. So, this
life cycle permits the inclusion, removal or
madification of definitions anytime of the ontology
life cycle. Knowledge acquisition, documentation
and evaluation are support activities that are carried
out during the majority of these states.

3. Defining METHONTOLOGY, a well structured
methodology to build ontologies from scratch. The
methodologies includes a set of activities, techniques
to carry out each one, and deliverables to be produced
after the execution of such activities using its
attached technigues. METHONTOLOGY highly
recommend the reuse of existing ontologies

References

Alonso, F.; Juristo, N.; Maté, J.L.; Pazos, J. Software
Engineering and Knowledge Engineering: Towards a
Common Life-Cycle. Journal of Systems and
Software. N° 33. 1996. Pags 65-79.

Farquhar, A. Fikes, R.; Pratt, W.; Rice, J. Collaborative
Ontology Construction for Information Integration. KSL-
95-63. Technical Report Knowledge Systems Laboratory.
Stanford University. Ca. August 1995.

Gangemi, A.; Steve, G.; Giacomelli, F; ONIONS: an
ontological methodology for taxonomic knowledge
integration. Working notes of the workshop
Ontological Engineering. ECAI'96. Pags. 29-40.

Gémez-Pérez, A.; Juristo, N.; Pazos, J. Evaluation ad
Assessment of Knowledge Sharing Technology. Towards

Very Large Knowledge Bases. Ed. by N. Mars. 108
Press. Amsterdam. 1995. Pags. 289-296.

Gémez-Pérez, A.; Femindez, M; De Vicente, A.; Towards
a Method to Conceptualize Domain Ontologies. Working
notes of the wokshop Ontological Engineering.
ECAI'96. Pags. 41-52.

G6mez-Pérez, A. A framework to Verify Knowledge
Sharing Technology. Expert Systems with
Application. To be published

McCracken; M. A. Jackson. Life Cycle Concept
Considered Harmful ACM Software Engineering
notes. April 1982. Pags 29-32.

Royce W. ‘M. Managing the Development of Large
Software Systems. Proc. 9th International
Conference Software Engineering. IEEE.
Computer Society. 1987. Pags. 328-338

Speel, H.; Raalte, F; Vet, P.; Mars, N. Scalability of the
Performance of Knowledge Represenation Systems.
Towards Very Large Knowledge Bases. Ed. by N.
Mars. IOS Press. Amsterdam. 1995. Pags. 173-184.

Uschold, M.; Gruninger, M. ONTOLOGIES: Principles,
Methods and Applications. Knowledge Engineering
Review. Vol. 11; N. 2; June 1996.

Vet, P.; Speel, P.; Mars, N. Ontologies for Very Large
Knowledge Bases in Material Science: a Case Study.
Towards Very Large Knowledge Bases. Ed. by N.
Mars. 10S Press. Amsterdam. 1995. Pags. 73-83.

Vicente, A; Concepualizacion de verbos en
ontologias de dominio. Tésis de Master en Ingenieria
del Conocimiento. Facultad ‘de Informatica. Universidad
Politécnica de Madrid. 1997. To be published.

40

