Analyzing and Predicting Patterns of DAMSL Utterance Tags

Mark G. Core
Department of Computer Science
University of Rochester
Rochester, NY 14627
mcore@cs.rochester.edu

Abstract

We have been annotating TRAINS dialogs with dialog acts in order to produce training data for a dialog act predictor, and to study how language is used in these dialogs. We are using DAMSL dialog acts which consist of 15 independent attributes. For the purposes of this paper, infrequent attributes such as Unintelligible and Self-Talk were set aside to concentrate on the eight major DAMSL tag sets. For five of these eight tag sets, hand constructed decision trees (based solely on the previous utterance's DAMSL tags) did better than always guessing the most frequent DAMSL tag values. This result suggests that it is possible to automatically build such decision trees especially if other sources of context are added. Our initial efforts to address our second goal (studying language use in the TRAINS dialogs) consist of measuring DAMSL tag co-occurrences and bigrams. Some interesting patterns have emerged from this simple analysis such as the fact that signaling non-understanding is often done through questions. These patterns suggest that we should also be considering an n-gram dialog act model for use in predicting DAMSL tags.

Machine learning techniques have been successfully applied to speech recognition, part of speech tagging, word sense disambiguation, and parsing. One reason for this success is that researchers have been able to define "correct" answers even for word sense disambiguation (Miller et al. 1993) and parsing (Marcus, Santorini, & Marcinkiewicz 1992). DAMSL (Dialog Act Markup in Several Layers) is a system for labeling the "correct" dialog acts for an utterance. We are annotating dialogs with DAMSL tags in order to produce training data for a dialog act predictor, and to study how language is used in our dialog corpus.

We start this paper with a brief description of DAMSL as well as a discussion of its suitability for encoding the "correct" dialog acts for an utterance. The second section of the paper discusses the motivation for using machine learning to automatically predict DAMSL tags, and the third section describes an initial attempt at constructing decision trees to predict DAMSL tags. The fourth section covers interesting tag co-occurrences and bigrams showing a few ways language is used in these dialogs and suggesting that a n-gram dialog act model may be the best approach for predicting DAMSL tags.

DAMSL

Searle's taxonomy of illocutionary acts (Searle 1975) has been highly influential on the set of dialog acts recognized by computational systems. Two examples are the VERBMOBIL dialog system (Reithinger & Maier 1995) and the TRAINS dialog system (Ferguson, Allen, & Miller 1996). Both have dialog acts fitting under Searle's Directives label such as Request-Suggest in VERBMOBIL and Request in TRAINS. However, with other dialog acts such as VERBMOBIL's Digress act or TRAIN's Acknowledge Apology it is difficult to see the parallelism between the systems or their relation to Searle's taxonomy.

Different types of dialogs, being analyzed for different purposes will lead to specialized dialog acts such as Digress and Acknowledge Apology. However, research groups can agree to a common set of higher-level dialog acts so they can share annotated dialogs, increasing the amount of training data available for dialog act recognizers. For example, TRAINS and VERBMOBIL might agree to a general acknowledgment dialog act under which Acknowledge Apology would fit as well as VERBMOBIL's Feedback dialog act.

The Multiparty Discourse Group was formed to develop such a set of dialog acts. It has meet twice at meetings of the Discourse Research Initiative (DRI). The DAMSL utterance annotation scheme was developed from this effort and includes traditional illocutionary acts as well as a label of the utterance's general topic and how it responds to previous utterances. The annotation manual describing the la-

1See the DRI home page for more details: http://www.georgetown.edu/luperfoy/Discourse-Treebank/dri-home.html
bels of DAMSL and when they apply is available at “ftp://ftp.cs.rochester.edu/pub/packages/dialog-
annotation/manual.ps.gz”. Note this is a work in
progress; the manual has been changed based on an-
notation work done with DAMSL and should not be
taken as the final word on the DRI scheme. Continued
work with DAMSL as well as subsequent DRI meetings
will likely result in refinement of the scheme.

DAMSL has three main layers: Forward Commu-
nicative Functions, Backward Communicative Func-
tions, and Information Level. The Forward Commu-
nicative Functions consist of a taxonomy in a simi-
lar style as the actions of traditional speech act the-
ory. The Backward Communicative Functions indicate
how the current utterance relates to the previous di-
alog, such as accepting a proposal, confirming under-
standing, or answering a question. Information Level
encodes whether the utterance deals with the dialog
task, the communication process, or metalevel discus-
sion about the task.

Forward Communicative Function

The main Forward Communicative Functions are
shown below. Each function is labeled independently
of the others, so, for example, an utterance can be a
statement as well as a question. Statements are defined
as claims about the world, and are further subdivided
based on whether the speaker is trying to affect the
beliefs of the hearer, or is repeating information for
emphasis or acknowledgment. Directives fit under the
more general category, Influencing-Addressee-Future-
Action, which includes all utterances that discuss po-
tential actions of the addressee. Directives are sub-
divided into two categories: Info-Request, which con-
ists of questions and requests such as “tell me the
time”, and Action-Directive, which covers requests for
action such as “please take out the trash” and “close
the door”. Influencing-Addressee-Future-Action also
includes Open-Option where a speaker gives a potential
course of action but does not show preference toward
it, “how about going to Joey's Pizza”. Commissives
are given the more descriptive name, Committing-
Speaker-Future-Action, and are subdivided into Of-
ers and Commitments. The Other Forward Func-
tion category is a default choice for communicative ac-
tions that influence the future of the dialog in a way
not captured by the other categories. Sentence initial
words such as “okay” are often separated into sepa-
rate utterances and marked as Other Forward Func-
tion. These words may have Forward Communicative
Functions such as signaling a repair or change in topic
or holding the turn (while the person is thinking) as
well as Backward Communicative Functions such as

Context:

A: Would you like the book and
its review?

Accept B: Yes please.
Accept-Part B: I'd like the book.
Maybe B: I'll have to think about it
(intended literally)
Reject-Part B: I don't want the review.
Reject B: No thank you.
Hold B: Do I have to pay for them?

Figure 1: Example annotations using the Agreement
Label

Accepting and Acknowledging. Future work in this an-
notation effort will include developing classes of Other
Forward Functions.

- **Statement**
 - Assert
 - Reassert
 - Other-Statement

- **Influencing Addressee Future Action**
 - Open-option
 - Directive
 - Info-Request
 - Action-Directive

- **Committing Speaker Future Action**
 - Offer
 - Commit

- **Other Forward Function**

Backward Communicative Function

The Backward Communicative Functions of DAMSL
are shown below. The classes Agreement, Understanding,
and Answer are independent so an utterance may
simultaneously accept information and acknowledge
that the information was understood as well as answer
a question.

Agreement has several subclasses; Accept and Reject
refer to fully accepting or rejecting an utterance or
set of utterances. Accept-Part and Reject-Part refer
to partially accepting or rejecting a proposal. Hold
refers to utterances such as clarification questions that
delay the listener's reaction to a proposal or question.
Maybe refers to cases where the listener refuses to make
a judgment at this point. The examples in figure 1
illustrate each type of agreement in response to the
offer “Would you like the book and its review?”.
The Understanding dimension concerns whether the listener understood the speaker. The listener may signal understanding or non-understanding or attempt to correct the speaker (showing that they either did not understand or that they did understand but that the speaker misspoke). Non-understanding can be indicated by utterances such as “huh?”, clarification questions (“To Dansville?”) and by explicit questions about what the speaker said or meant. Understanding can be indicated by acknowledgments such as “right” or “okay”, by repeating some of the speaker’s utterance, or by continuing or completing the speaker’s sentence.

The Answer dimension indicates that an utterance is supplying information explicitly requested by a previous Info-Request act. This is a highly specific function that you might expect could be generalized into some other form of response, but we have not as yet been able to identify what the generalization would be.

- **Agreement**
 - Accept
 - Accept-Part
 - Maybe
 - Reject-Part
 - Reject
 - Hold

- **Understanding**
 - Signal-Non-Understanding
 - Signal-Understanding
 - Acknowledge
 - Repeat-Rephrase
 - Completion
 - Correct-Misspeaking

- **Answer**

Information Level

The third part of DAMSL is the Information Level annotation and encodes whether the utterance deals with the dialog task, the communication process, or metalevel discussion about the task. This dimension eliminates the need to have tags such as Communication-Info-Request, for utterances such as “What did you say?” and Task-Info-Request for utterances such as “What times are available?” With this information, we can identify three independent subdialogs within a single dialog. The topic motivating the dialog is developed and discussed in the Task part of the dialog. The Task-Management part of a dialog involves explicit planning and monitoring of how well the task is being accomplished. The physical requirements of the dialog (such as being able to hear one another) are maintained in the Communication-Management part of the dialog. Note that in some sense all utterances have a Communication-Management component. It is only marked, however, when the utterance has no Task or Task Management component.

- **Information Level**
 - Task
 - Task Management
 - Communication Management
 - Other

Inter-Annotator Reliability

Two goals of labeling dialogs with DAMSL tags are to provide training data for dialog systems and to gain a better knowledge of how phenomena such as “acceptances” are used. Such uses require reliably labeled dialogs; otherwise there will not be consistent patterns to identify. The kappa statistic (Siegel & Jr. 1988) for inter-annotator reliability is becoming the standard for annotations of this type. According to (Carletta 1996) even for tentative conclusions to be drawn, kappas must be above 0.67 with above 0.8 being considered reliable.

(Core & Allen 1997) shows kappa scores from annotations of eight TRAINS dialogs by University of Rochester (undergraduate and graduate) students. The TRAINS dialogs which are also used in the experiments of section are discussions between humans on solving transportation problems involving trains (Heeman & Allen 1995). Most of the kappa scores of these eight TRAINS dialogs are close to or above the 0.67 limit discussed above. (Core & Allen 1997) discusses reasons for annotator disagreement; most of these issues have been addressed in the newest version of the DAMSL annotation manual. The next round of annotations should have higher kappa scores as the manual now contains examples and instructions for cases where annotators would often differ in labeling. In the meantime, some tentative conclusions can be drawn about the TRAINS dialogs based on the current data.

Automatically Predicting DAMSL Tags

Can machine learning techniques predict DAMSL tags well enough to be useful in a dialog system? (Cohen & Perrault 1979) introduced the notation of formulating dialog acts as plan operators. Such an architecture allows the system to perform plan recognition to determine the appropriate dialog acts for an utterance. The major problem with such an architecture
is that the planner must sort through a large space of communicative plans and may also have to perform planning related to the domain (the dialog may involve constructing plans). (Allen & Perrault 1980) talk about heuristics to guide a planner through this space of plans so that the system does not waste its time considering implausible plans. Plans are given weights based on heuristics, but these heuristics are all general purpose and apply to any set of plan operators. Simply knowing the frequency with which a dialog act operator occurs would help a planner give more accurate weights to its plans. Even more useful would be estimating the probability of a dialog act operator given the current context: previous dialog acts, other dialog acts of the current utterance, cue words and phrases, the sentence form (declarative, imperative, etc.), and prosodic cues (including change of turns and knowing whether the utterance to be tagged is an interruption).

Machine learning techniques have been used successfully in similar applications where there is a large amount of background information and it is unclear what the relevant pieces are. Connectionist models have been used in parsing (Wermter & Weber 1994), while inductive learning methods have been used in parsing (Magerman 1995), part of speech tagging, and speech repair correction (Heeman 1997).

To predict an utterance’s DAMSL tags, one could simply use the highest frequency values for each label. Hopefully, one can do better by using machine learning techniques to identify contexts where alternative values are more likely. The syntactic form of the sentence will likely prove important as declarative sentences are usually *Asserts*; imperative sentences, commands; and so on. Common-sense notions about dialog such as:

- questions end in a rising pitch
- you answer questions
- you accept/reject commands and statements
- no often signals a reject

will prove important in predicting DAMSL tags. However, it will be up to machine learning techniques to find more complex patterns in the sentence forms, cue words, and DAMSL tags of dialogs. The context around each utterance could correspond to a 28 or more dimension space, a difficult puzzle to sort out by hand.

Preliminary Experiments

In the process of building a system to predict dialog acts, it is important to measure the frequency of these acts. These frequencies create a baseline for a tag predictor to beat; if the predictor is worse than this baseline then we are better off always guessing the most frequent tag. Table 1 shows the highest frequency tag values for the eight major DAMSL tag sets.

The DAMSL tag frequencies (discussed in the following subsection) and the decision tree testing data came from a corpus of 19 annotated TRAINS dialogs containing 1524 utterances. These 19 dialogs were annotated by pairs of University of Rochester (undergraduate and graduate) students; initially the students worked separately and then collaborated to produce a final annotation.

Nature of the Corpus

Using the probabilities of the tag values for the 8 major DAMSL tag sets, cross entropy and perplexity can be computed. In this case, we are using cross entropy to measure how random the distributions of a tag’s values are given no context. The formula used here for cross entropy is:

\[
H = - \frac{1}{K} \sum_{i=1}^{N} (c_i / \text{incorpus}) \cdot \log_2(p(v_i))
\]

where \(v_i\) indicates a tag value, \(K\) is the size of the corpus (1524), \(c_i\) is how often \(v_i\) appears in the corpus, and \(p(v_i) = c_i / K\). Perplexity is simply \(2^H\); an intuitive view of perplexity is that it gives the average number of choices faced by a tag prediction model. In the case of a two valued tag such as Other Forward Function, the worst perplexity is two; the values are completely random and each is equally likely. The best perplexity will always be one; only one value is possible.

Table 2 shows the cross entropy and perplexity of the 8 major DAMSL tag sets. The results show that the high frequency tag values keep the perplexity of tag prediction low.

Initial Decision Trees

Our plan is to use decision trees to find exceptions to cases where high frequency tag values such as “Not an answer” apply. A preliminary test of this plan involved hand constructing decision trees that were better than always guessing the most frequent tag. Table 3 shows the accuracies (percent right/total) of these trees and figure 2 describes their structure. Notice Info-level, Influencing Addressee Future Action, and Other-forward-function are not listed in the table. Our current decision tree system only uses the last DAMSL tags as context. Thus, it is difficult to recognize questions and commands (Influencing Addressee Future Action).
<table>
<thead>
<tr>
<th>Tag Set</th>
<th>Most Freq. Value</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other-ForF</td>
<td>No Other-ForF</td>
<td>0.926</td>
</tr>
<tr>
<td>Info-level</td>
<td>Task</td>
<td>0.772</td>
</tr>
<tr>
<td>Statement</td>
<td>Not Statement</td>
<td>0.541</td>
</tr>
<tr>
<td>Infl-Addressee</td>
<td>No Influence</td>
<td>0.726</td>
</tr>
<tr>
<td>Commiting-Spk</td>
<td>No Commitment</td>
<td>0.762</td>
</tr>
<tr>
<td>Agreement</td>
<td>No Agreement</td>
<td>0.636</td>
</tr>
<tr>
<td>Understanding</td>
<td>No Understanding</td>
<td>0.684</td>
</tr>
<tr>
<td>Answer</td>
<td>Not an Answer</td>
<td>0.853</td>
</tr>
</tbody>
</table>

Table 1: Highest Frequency Tag Values and Their Probabilities

<table>
<thead>
<tr>
<th>Tag Set</th>
<th>Cross Entropy</th>
<th>Perplexity</th>
<th># Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other-ForFunct</td>
<td>0.381</td>
<td>1.30</td>
<td>2</td>
</tr>
<tr>
<td>Info-level</td>
<td>0.957</td>
<td>1.94</td>
<td>5</td>
</tr>
<tr>
<td>Statement</td>
<td>1.4</td>
<td>2.64</td>
<td>4</td>
</tr>
<tr>
<td>Infl-Listener</td>
<td>1.2</td>
<td>2.29</td>
<td>4</td>
</tr>
<tr>
<td>Infl-Speaker</td>
<td>0.97</td>
<td>1.96</td>
<td>3</td>
</tr>
<tr>
<td>Agreement</td>
<td>1.25</td>
<td>2.37</td>
<td>7</td>
</tr>
<tr>
<td>Understand</td>
<td>1.19</td>
<td>2.29</td>
<td>6</td>
</tr>
<tr>
<td>Answer</td>
<td>0.6</td>
<td>1.52</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2: Entropy and Perplexity of Current Annotations

Other-forward-function and Info-level are both complicated by the frequency of utterances such as okay that serve as acknowledgments and signals of repairs and topic shifts. Sometimes, however, okay serves as an acceptance and has a different set of Other-forward-function and Info-level tags. If we gave the decision tree the ability to recognize cue words such as okay, it is unclear whether this would be an advantage as it would still have to decide whether it was an acceptance or not. However, in 5 (6 if we assume that more context will help us predict Influencing Addressee Future Action) out of 8 cases, it looks like decision trees will allow us to do better than always guessing the most frequent tag.

<table>
<thead>
<tr>
<th>Tag Set</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>63.2</td>
</tr>
<tr>
<td>Infl-Speaker</td>
<td>78.8</td>
</tr>
<tr>
<td>Agreement</td>
<td>70.0</td>
</tr>
<tr>
<td>Understand</td>
<td>70.1</td>
</tr>
<tr>
<td>Answer</td>
<td>93.8</td>
</tr>
</tbody>
</table>

Table 3: Accuracies of Hand Coded Decision Trees

<table>
<thead>
<tr>
<th>Conditional Probability</th>
<th>Value</th>
<th>Unigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(\text{Assert}_i</td>
<td>\text{Task-management}_i))</td>
<td>0.586</td>
</tr>
<tr>
<td>(P(\text{Assert}_i</td>
<td>\text{Answer}_i))</td>
<td>0.955</td>
</tr>
<tr>
<td>(P(\text{Info-request}_i</td>
<td>\text{Other-statement}_i))</td>
<td>0.889</td>
</tr>
<tr>
<td>(P(\text{Info-request}_i</td>
<td>\text{Info-request}_i))</td>
<td>0.791</td>
</tr>
<tr>
<td>(P(\text{Signal-non-understand}_i</td>
<td>\text{Other-statement}_i))</td>
<td>0.647</td>
</tr>
<tr>
<td>(P(\text{Signal-non-understand}_i</td>
<td>\text{Signal-non-understand}_i))</td>
<td>0.706</td>
</tr>
<tr>
<td>(P(\text{Hold}_i</td>
<td>\text{Hold}_{i-1}))</td>
<td>0.740</td>
</tr>
<tr>
<td>(P(\text{Open-option}_i</td>
<td>\text{Open-option}_i))</td>
<td>0.806</td>
</tr>
<tr>
<td>(P(\text{Action-directive}_i</td>
<td>\text{Reject}_i))</td>
<td>0.558</td>
</tr>
<tr>
<td>(P(\text{Competition}_i</td>
<td>\text{Reject}_i))</td>
<td>0.971</td>
</tr>
<tr>
<td>(P(\text{Action-directive}_i</td>
<td>\text{Repeat}_i))</td>
<td>0.909</td>
</tr>
<tr>
<td>(P(\text{Answer}_i</td>
<td>\text{Answer}_i))</td>
<td>0.699</td>
</tr>
<tr>
<td>(P(\text{Answer}_i</td>
<td>\text{Other-statement}_i))</td>
<td>0.683</td>
</tr>
<tr>
<td>(P(\text{Answer}_i</td>
<td>\text{Repeat}_i))</td>
<td>0.641</td>
</tr>
<tr>
<td>(P(\text{Answer}_i</td>
<td>\text{Acknowledge}_i))</td>
<td>0.797</td>
</tr>
</tbody>
</table>

Table 4: Useful Conditional Probabilities

Figure 2: Hand crafted decision trees
Corpus Analysis

The unigram probabilities of table 1 do not tell us much about our corpus of dialogs. The fact that 54.1% of utterances are not statements is not surprising since we would expect a mixture of commands and questions as well as statements. To investigate more interesting probabilities, we measured conditional probabilities that indicate cases where a tag is more probable than the most likely tag (given no context). These probabilities are shown in table 4 with the third column showing the relevant unigram tag probability. The subscripts refer to utterance numbers; some of the conditional probabilities involve tags of the same utterance while others refer back to a previous utterance.

The first set of probabilities in the table involves task management. Task management utterances in DAMSL are defined as meta-level discussion about planning and experimental procedure: “let’s work on the orange juice problem first”, “Are we done?”. 34 of the 58 task management utterances in the experiment were Asserts. Many of these utterances state that the task is completed: “we are done”. The rest are various assertions about the problem solving process: “we need to do this part first”, “I added wrong”, “either solution is fine”. Since in general Asserts only occur 37.3% of the time, this information is valuable and gives us insight into meta-level planning discussion.

The second set of probabilities in the table involves questions and answers. Check-questions are statements about the world as well as questions. An example is “there are oranges in Corning right”. They are usually labeled Other-statement because they generally do not introduce new information but are not repeating anything either since they deal with assumptions. Other-statement is highly co-related to Info-requests, and Asserts are highly co-related to answers. Thus, the probability of an Assert is higher after an Other-statement. Interestingly, the conditional probability of an Assert following an Info-request is lower. Some answers are imperatives and are not marked as Asserts. Answers to check questions are more likely to be “okay” or “yes” and marked as Asserts.

Signaling non-understanding is commonly done through questions; answers are likely to follow so that the next utterance is likely an Assert. When a speaker makes a request or assertion, the listener is obligated to at least implicitly accept or reject the utterance. Sometimes the listener will ask for clarification or otherwise delay their judgment. These utterances are marked Holds. Since clarification is needed if a listener does not understand the previous utterance, Holds and Signaling non-understanding co-occur. Answers that are Asserts often follow Holds.

The third set of probabilities in the table concerns open-options and action-directives. Open-options are weak suggestions by the speaker. These are likely to be Asserts (“there are oranges at the Corning warehouse you could use”). The annotation manual states Open-options are usually Offers explaining why annotators have so far marked every Open-option as an Offer. Action-directives are requests by the speaker that the listener perform an action. In the TRAINS domain, 55.8% of the Action-directives are also Asserts. Since the TRAINS domain is about planning, these are utterances such as “the train will go through Corning” that serve as statements but are also requests that the listener accept the action as part of a plan. A common way to make a rejection is through an Assert, and completions of another speaker’s utterance are often marked Asserts as well.

The last set of probabilities in the table involves the frequency of acceptances. In TRAINS, the two speakers have roughly the same expertise although one speaker has travel time information and the other does not. 70% of the responses to Action-directives were Accepts because the listener is not likely to immediately see a problem in a speaker’s request since they both have similar levels of expertise and knowledge. The same is true of check questions indicated by their Other-statement tag. Given that an utterance is an acknowledgment (“okay”, “right”) or an acknowledgment made through repetition, it is likely that the utterance is also an accept.

Using a sophisticated statistical tool such as a decision tree should bring out additional results based on looking at more complex patterns of DAMSL tags. The addition of cue words and sentence forms to the context should bring new developments as well. Another area for exploration is the use of data mining techniques to extract interesting patterns from the corpus. (Dehaspe & Raedt 1997) tries such an approach on part of speech tags in a corpus of Wall Street Journal text.

Conclusions

Results on hand coded decision trees (given only the context of the last utterance’s DAMSL tags) suggest that automatically derived decision trees should be effective DAMSL tag predictors. The conditional probabilities taken from the labeled corpus not only provide interesting insights into these dialogs, but suggest that an n-gram model of dialog acts could also be an effective DAMSL tag predictor. (Jurafsky et al. 1997) uses such an n-gram dialog act model as a component of
their 3 part system which also includes word models and a decision tree using prosodic features as context. Different n-gram word models are created for each dialog act and one the best fitting the input is chosen for each utterance. (Mast et al. 1996) compares using decision trees (having the utterance's words as context) to using word models like (Jurafsky et al. 1997) and finds that the word models are better. Thus as work proceeds on predicting DAMSL tags in TRAINS dialogues, it may turn out that word models and n-gram dialog act models are used.

Having the best possible estimates of the probability of each DAMSL tag being present in the current utterance, it would be interesting to feed these into a fully connected network containing nodes for all the DAMSL tags. The connections would be weighted according to the probabilities of tag co-occurrence. Node probabilities could be recomputed based on these link values and the probabilities of the nodes they were connected to. This should give a better estimate of tag probabilities and take advantage of the unique nature of DAMSL's layers of independent tags.

Acknowledgments

This work was supported in part by National Science Foundation grants IRI-95-03312 and IRI-95-28998, the latter of which was under a subcontract from Columbia University. The Rochester annotation effort is headed by James Allen with the help of Teresa Sikorski, George Ferguson, and myself. Thanks to James Allen and Lucian Galescu for their help with this paper.

References

Heeman, P., and Allen, J. 1995. the TRAINS 93 dialogues. TRAINS Technical Note 94-2, Department of Computer Science, University of Rochester, Rochester, NY 14627-0226.

