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Abstract

The work described here concerns situational
modelling in the support of dynamic decision
making when planning in the driving domain.
When resources are constrained, sensing and rea-
soning can be dynamically prioritised by evalu-
ating which part of an agent’s situational model
most needs updating to support the agent’s activ-
ities. A probabilistic network approach is used to
competatively prioritise modelling requirements.

Motivating Situational Modelling

Dynamic, multi-agent environments impose on the
agent the need to respond in a timely manner to ongo-
ing events. The problem of how to generate such timely
responses has given rise to two modes of approach;
the reactive (of Agre and Chapman, 1987) or reflex
architecture, and the hybrid architecture embodying
more deliberative techniques (cf Sanborn and Hendler,
1988). Other approaches attempt to make the goal
driven approach more robust under rapidly changing
conditions (Georgeff and Lansky, 1987; Wood, 1993).

An intrinsic feature of many reactive systems, or
those including a reactive component, is their reliance
on the information held in the current situation - the
world as it appears now - in informing an appropri-
ate response. And yet, at any given moment, relevant
information may not be entirely accessible and the re-
sponse made is likely to be impoverished as a result
(Wood, 1995). Constructing an enduring model of the
situation, based on information accumulated from pre-
vious observations helps to guard against this pitfall
(Wood, 1993). A timely response may also require
the agent’s active anticipation in predicting events to
which it must react, in order to initiate a reaction in
good time (Wood, 1993; 1995).

Situational modelling can therefore play a twofold
role. It can provide a more complete picture of events
than can be sensed at any given moment in time. It
can also provide a picture of anticipated future events

that can be used to inform the actions of the agent,
thus enabling those actions to be initiated in a timely
manner.

The Modelling and Sensing

Relationship

Modelling situations and their outcomes in order to
support timely i.nteractions is itself subject to the same
constraints as deliberating about how to respond. Lim-
itations on sensing have led to the use of active vi-
sion techniques (Aloimonos et al, 1987; Bajcsy and
Allen, 1984; Reece and Sharer, 1995; Tsotsos, 1992)
to guide sensing in a task-related manner. This al-
lows the agent’s informational needs to be taken into
account when prioritising what to sense.

The role of situational modelling is to serve the
agent’s informational needs; to the extent that it is do-
ing this effectively, sensing and modelling complement
each other. The agent’s task needs might be said to
be the determinant of the model’s content, whilst the
agent’s situational modelling needs, which indirectly
serve its tasks, might be said to be the determinant
of what the agent senses. It is this model of the rela-
tionship between sensing and modelling that forms the
framework for the work described here.

Situational modelling needs arise when the informa-
tion being modelled becomes out of date. We can
notionally attribute this two factors, although they
amount to one and the same thing: uncertainty. There
is inherent uncertainty in making predictions because
we cannot necessarily identify all the factors causally
related in the outcome of a situation (this is especially
true in determining the behaviour of other agents (c]
Schmidt et al, 1978; Wood, 1993). An agent may there-
fore believe an event is going to occur, but it may not,
and something else may take its place. Predictions
must therefore be monitored for confirmatory and dis-
confirmatory evidence (cf Huber, 1993). Where the
agent’s beliefs are based on direct observation, these
beliefs are nonetheless subject to persistence effects (cf
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Dean and McDermott, 1987) which sooner or later ren-
der them invalid.

Focus of Attention in Situational
Modelling

The work described here focusses on the use of situa-
tional modelling to support interaction with dynamic,
rapidly changing driving situations. It extends ear-
lier work (Wood, 1993) by supplementing sensing and
modelling activities with mechanisms to direct the fo-
cus of attention according to modelling needs. These
needs will sometimes be in conflict with each other,
and work in progress involves the application of prob-
abilistic network techniques in evaluating and priori-
tising sensing requirements. The aim of the work is
to enable the building of situational models that are
satisficing (Simon, 1981) to the agent’s needs whilst
reducing the computational overhead involved in main-
taining a complete and accurate model of the enduring
situation.

The process of prioritising sensing requirements
takes place in two stages, corresponding to a hierar-
chical decomposition of the allocating focus of atten-
tion task. The first stage corresponds approximately
to determining direction of gaze in a human driver1.

The outcome is a decision, determined probabilisti-
cally, about whether, for example, to direct gaze di-
rectly ahead, or behind, or towards a number of other
locations manifest within the driving scene, for exam-
ple, intersections (junctions). The topology of the road
network may require further differentiation into spe-
cific carriageways, corresponding to the different di-
rections of travel available to traffic, and into lanes on
wider roads2. The decision combines a fixed weighting
reflecting the intrinsic value to the agent of directing
gaze in a particular direction, with evidence concerning
the reliability of data modelled.

A probabilistic network is initialised for each driver-
viewable region. The network is a singiy-connected di-
rected acyclic graph (DAG). For example, in the scene
in Figure 1, regions include the give-way zones for turn-
ing left(A) and right(B); exit zones for turning left 
the nearside(C) and offside(D) lanes; a turning right
zone(E); an exit zone for impending traffic from the
right(F); impending right and left nearside and offside

lit could also correspond to determining which camera
image to process from a collection of fixed cameras mounted
in differing orientations.

2Note that the defined road regions, eg the give-way zone
to an intersection, are independent of the viewer (Wood,
1993) hut the choice of which region to view next would
then be interpreted as a decision to, say, look straight
ahead, etc, according to the relationship of the region to
the observer-driver.

I AiBI

--7

Figure 1: Example of Typical Zones at Intersection

Figure 2: Network for Regions

zones(G,H,M,N) and a similar set of zones for retreat-
ing traffic(I,J,K,L).

The network is shown in Figure 2. The node, POD
(Persistence of Object Data) represents the probabilis-
tic expectation regarding the persistence of data in-
tegrity for the region. The node, RLL (Recency of Last
Look) represents the probabilistic expectation that the
region has been recently observed. These probabili-
ties combine with evidence for types of (previously ob-
served) objects in the region (not shown in diagram).
This in turn combines with the expected reliability of
the modelled data, prepresented by node RD (Relia-
bility of Data). Node AE (Attractor Event) represents
the probabilistic expectation that an attention-worthy
event has taken place in the region.

Node DT (Direction of Travel) represents the prob-
abilistic expectation that the region lies in the driver’s
pathway. The node UDR (Urgency Data Required)
represents the probabilistic expectation concerning the
urgency with which the region should be attended
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Figure 3: AutoAttend

to. Nodes DS (Driver Speed) and OTC (Object Time
to Collision/Contact) represent probabilistic expecta-
tions regarding of driver and object behaviour. The
node NL (Need to Look) represents the probabilistic
expectation of the driver’s need to observe the region.
The node Region represents the probabilistic expecta-
tion that the region should be observed.

A net is initialised for each region viewable by the
driver 3. The status of the network is based on data
held in the situational model. As observations are
made by the driver, and the status of simulated data
alters over time, the networks will be updated to pro-
vide an evaluation of the priority with which each re-
gion should be viewed.

The second stage of prioritising sensing requirements
corresponds to identifying a fixational target. This will
be some object, such as the vehicle in front, or location,
such as the edge of the carriageway, that falls within
the field of view as determined by the direction of gaze.
The choice made combines a weighting reflecting the
observation-worthiness of the object with evidence con-
cerning the reliability of data currently modelled. This
evidence might be viewed as a rating of belief in the
persistence of belief concerning the modelled object.
The rating of observation-worthiness might itself com-
prise several factors reflecting properties of the object,
such as its type, its speed of movement4 and its tra-
jectory, for example.

The AutoAttend mechanism is currently undergo-
ing integration into the AutoDrive architecture (Wood,
1993). The relevant components of this architecture (ie
omitting the world simulation, planning and decision-
making components) are shown in Figure 3. The dot-
ted lines describe the new role of Domain Knowledge

aRegions are designated by a simulation program which
generates descriptions of the driver’s world for each cloned
driver agent (Wood, 1993).

4Even fixed objects "move" relative to the viewer!
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Figure 4: Attention Requests - collection of networks

on the interpretation of evidence, for example, that a
region in the driver’s pathway has an impact on their
need to look (NL) at that region; and the new role
of the Situational Model in providing evidence for the
networks 5

Attention Requests take the form of probabilisticaUy
determined evaluations of the need to view each of the
regions within sight of the driver (see Figure 4). The
role of the Attention Director is to select (oneof) the
highest priority regions for attention by the Perception
Mechanism6.

Once a region has been selected, potential objects to
fixate (and process further) from within the chosen re-
gion are treated in a similar manner as for regions. The
objects, or Attention Requests, in the form of proba-
bilistic networks~ are evaluated and a selection made
by the Attention Director for attention by the Percep-
tion Mechanism.

Discussion
The probabilistic model is currently under develop-
ment, but appears to offer a means of addressing some
of the problems posed by modelling under resource con-
stralnts and the construction of satisficing models.

The two stage process described above allows the
monitoring of the current situation in a manner that
supports the construction and maintenance of a satis-
ricing model of the agent’s scenario. Where resource
limitations constrain sensing and modelling activities,
the probabilistic model identifies how these would be

5Solid lines indicate flow of control/data generation,
dashed lines indicate data flow.

6Although in practice this might involve a notional head
movement, attention is not mediated via the agent actions
in this implementation. Instead, the agent simply "ignores"
data for other regions by partitioning the data available.

7The networks for objects are currently under
construction.
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most usefully targetted and efficacious in satisfying the
informational needs of the agent. Where the tasks of
the agent, including the task of identifying the inten-
tions of other agents (cfWood 1993; Huber, 1993), are
supported by the model, they have no direct impact on
this process; indirectly, they may impose a stricter re-
quirement on the reliability of the data modelled which
may be reflected in the competitative prioritisation of
where to direct gaze and which object to fixate.

References

Agre, PE & Chapman, D (1987) Pengi: an implemen-
tation of a theory of activity In Proceedings AAAI-6
Vol. 1, Seattle, Washington, pp268-272
Aloimonos, Y, Weiss,I & Bandopadhay, A (1987) Ac-
tive Vision, In Proceedings IEEE First International
Conference on Computer Vision, London, pp35-54
Bajcsy, R & Allen, P (1991) Sensing Strategies, In Pro-
ceedings US-I~rance Robotics Workshop
Dean, TL & McDermott, DV (1987) Temporal Data
Base Management Artificial Intelligence, Vol 3P, ppl-
55
Georgeff, MP & Lansky, AL (1987) Reactive Reasoning
and Planning In Proceedings of AAAI-87, pp677-682
Huber, MJ (1993) Observational Uncertainty in Plan
Recognition Among Interacting Robots in Proceedings
of the Workshop on Dynamically Interacting Robots,
IJCAI-93, Lille, France.
Reece, DA & Shafer, SA (1995) Control of Perceptual
Attention in Robot Driving Artificial Intelligence, Vol
7S(I-~), ppSgT-~SO
Sanborn, J & Hendler, J (1988) A Model of Reaction
for Planning in Dynamic Environments AI in Engi-
neering, Vol 3(~), ppg5-10P
Schmidt, CF, Sridharan, NS & Goodson, JL (1978)
The Plan Recognition Problem: An intersection of
psychology and artificial intelligence Artificial Intelli-
gence, Vol 11, pp45-83
Simon, HA (1981) The Sciences of the Artificial MIT
Press, Cambridge, MA
Tsotsos, JK (1992) On the Relative Complexity of Ac-
tive vs Passive Visual Search International Journal of
Computer Vision, Vol 7(2), pp127-14P
Wood, S (1993) Planning and Decision-Making in Dy-
namic Domains Ellis Horwood, Chichester, W.Sussex
Wood, S (1995) When Being Reactive Just Won’t Do,
Proceedings of the AAAI Spring Symposium Workshop
on Integrated Planning Systems, Stanford University,
March 1995

9O




