From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

NetNeg: A Connectionist-Agent Integrated System for Representing
Musical Knowledge

Dan Gang and Claudia V. Goldman *and Daniel Lehmann and Jeffrey S. Rosenschein
Institute of Computer Science
The Hebrew University
Givat Ram, Jerusalem, Israel
ph: 011-972-2-658-5353 fax: 011-972-2-658-5439
Email: dang, clag, lehmann, jeff@cs.huji.ac.il
URL: http://www.cs.huji.ac.il/{~ clag, ~ dang, ~ jef f}

Abstract

The system presented here shows the feasibility of mod-
eling the knowledge involved in a complex musical ac-
tivity by integrating sub-symbolic and symbolic pro-
cesses. This research focuses on the question of whether
there is any advantage in integrating a neural network
together with a distributed artificial intelligence ap-
proach within the music domain.

The system is designed to perform in real time and to
be used for interactive computer music composition or
performance. The hybrid approach introduced in this
work enables the musician to encode his knowledge and
aesthetic taste into different modules. This is done by
applying three distinct functions: rules, fuzzy concepts,
and learning.

As a case study, we began experimenting with first
species two-part counterpoint melodies. We have de-
veloped a hybrid system composed of a connectionist
module and an agent-based module to combine the sub-
symbolic and symbolic levels to achieve this task. The
technique presented here to represent musical knowl-
edge constitutes a new approach for composing poly-
phonic music.

Introduction

Simulating and modeling a musician’s activities are
tasks that are appropriate for experimentation within
the framework of artificial intelligence. The cognitive
processes a musician undergoes are complex and non-
trivial to model. Whenever we are involved in any
musical activity, we are faced with symbolic and sub-
symbolic processes. While listening, our aesthetic judg-
ment cannot be applied by following explicit rules solely.
Applying a learning mechanism to model the task of lis-
tening (Bharucha & Todd 1991; Berger & Gang 1997)
has been shown to be a convenient (and appropriate)
way to overcome the explicit formulation of rules. Nev-
ertheless, some of these aesthetic processes might have
a symbolic representation and might be specified by a
rule-based system (Jackendoff 1991).

The contribution of this work to Al is in the area of
knowledge representation. To demonstrate the advan-

Dan Gang and Claudia Goldman are supported by
Eshkol Fellowships from the Israel Ministry of Science

59

tages and computational power of our hybrid knowledge
representation, we design a model that describes the
different aspects a user might be interested in consider-
ing when involved in a musical activity. The approach
we suggest in this work enables the musician to encode
his knowledge, intuitions, and aesthetic taste into dif-
ferent modules. The system captures these aspects by
computing and applying three distinct functions: rules,
fuzzy concepts, and learning.

The primary goal is to design a system that will per-
form in real time. Such a system will be useful for
interactive computer music. The human musician and
the machine will mutually interact in live performance
or during the composition process. In these creative
processes the machine will enable flexible representa-
tion and processing of the user’s musical knowledge.
The user’s musical experience and her musical aesthetic
taste (or the musical experience and the musical taste
of other users) will be reflected during the interaction
with the machine.

The current work follows and simulates real time mu-
sical contrapuntal processes. Contrapuntal music is a
common musical form and is desired for many inter-
active musical situations. Representing musical knowl-
edge might add musical intelligence to the machine re-
sponse. However, creating contrapuntal music in real
time is a complex and challenging domain of research.
A single paradigm may not be sufficient to deal with
this kind of music. We therefore suggest using this
music creation task as a domain in which to test the
feasibility of our hybrid knowledge representation.

To examine the performance of the hybrid system,
we chose a specific task for implementation. The spe-
cific case study we have chosen to experiment with is
the polyphonic vocal style of the Sixteenth Century;
more specifically, we investigate two-part species coun-
terpoint (i.e, bicinia).

First Species Counterpoint: this is the first
species, the most restrictive one, out of five species de-
fined in species counterpoint music. Following (Randel
1996):
The progressive arrangement of the method, in di-
alogue form, with the rules for each species depen-

dent more or less on the restrictions of the preced-
ing was widely admired for its pedagogical value.

In first species counterpoint, the cantus firmus (i.e.,
one of the two voices) is given in a whole note repre-
sentation. The counterpoint (i.e., the second voice) is
created by matching a note against another note in the
cantus firmus. This matching follows specific rules as
we explain below.

The specific task we examine is different in one im-
portant aspect from the cognitive task of composing
counterpoint melodies: our system creates both parts of
the melody. The computation performed by the system
is quite similar to the process that a composer would
go through, but it differs from it in at least two major
respects. First, we do not incorporate any backtracking
process, whereas the composer may freely go back and
forth. Second, our system has a very myopic view of the
melody it is creating. When it decides on the next ele-
ment, it has no knowledge of the overall structure of the
piece, it has only knowledge of the last element, some
vague knowledge (decayed) about the previous part of
the melody and no knowledge about its continuation.

In spite of the simplicity of the problem, our approach
can serve as a basis for further investigation of more
complex musical problems. This simple domain could
have been formulated in a rule based system. Never-
theless, our aim was to choose a starting domain that
we could evaluate and in which we could control the
complexity of the process.

Artificial Intelligence and Music

We shall describe extant work on those aspects of Al
techniques in Music that apply directly to this work.
A detailed overview of music systems that use AI tools
can be found in (Camurri 1993).

The Sub-symbolic Approach

Knowledge learned by the machine is expressed by the
states and the connections between simple processing
units (neurons).

Listening, performing, and some other musical ac-
tivities can be represented using a sequential stream
of information. The choice of Jordan’s sequential net
(Jordan 1986) is appealing in such cases. Jordan’s se-
quential net is a version of the back-propagation algo-
rithm. Using the learning algorithm, the sequential net
is able to learn and predict sequential elements (such as
the sequence of a melody’s notes or harmonic progres-
sion). The sequential net contains three fully-connected
layers. The first layer contains a pool of state units and
plan units. The second layer is the hidden layer, and
the third layer is the output layer. The output layer
and the state units contain the same number of units.
The output layer is fed back into the state units of the
first layer for the computation of the next sequential
element. The value of a state unit at time ¢ is the sum
of its value at time ¢t — 1 multiplied by some decay pa-
rameter (the value of the decay parameter is between 0

60

to 1) and the value of the corresponding output unit at
time ¢ — 1. The state units represent the context of the
current sequential element, and the output layer repre-
sents the prediction of the net for the next sequential
element.

Peter Todd (Todd 1991) suggested exploiting the Jor-
dan sequential net for predicting sequential musical el-
ements. His neural network model presented a connec-
tionist approach for algorithmic composition. In the
learning phase, the net learns a set of melodies’ notes.
Each melody is associated with a unique label encoded
in the plan units. In the genecralization phase, new
melodies are produced by interpolation and extrapola-
tion of the labels’ values encoded in the plan units. The
resulting melodies share similarities with the melodies
within the learning set. These similarities are unique
and different from those resulting from other methods,
and they are interesting from the compositional aspect.

The Hybrid Approach

In the hybrid approach, knowledge about the world is
represented by an integration of a sub-symbolic system
and a symbolic system (e.g., a neural net can be inte-
grated with a rule-based agent system).

A key motivation for the hybrid approach is the as-
sumption that handling the complexity of Al tasks is
beyond the reach of a single paradigm. Melanie Hi-
lario (Hilario 1995) distinguishes among various hy-
brid approaches (in her terminology, neurosymbolic in-
tegration). She suggests classifying approaches into two
strategies: unified strategies and hybrid strategies.

Unified strategies enrich neural networks with sym-
bolic capabilities. Hybrid strategies combine neural
networks and symbolic approaches at different levels.
Hybrid neurosymbolic models can be either transla-
tional or functional hybrids. Translational hybrid sys-
tems use neural networks as the processors. The sym-
bolic approach is applied on the network input and tar-
gets. Functional hybrid systems exploit both the neural
network and symbolic components equally.

The system we present in this work is functional hy-
brid. Moreover, it is loosely coupled, since each of the
components (i.e., the symbolic and sub-symbolic) act
locally in time and space, and the interaction between
them is always initiated by one of them. In our case,
the integration of both components is appropriate to the
chain-processing integration mode as explained in (Hi-
lario 1995). Specifically, we can look at one of the pro-
cesses as doing the main task, and the other as pre/post
processing the relevant information. In NetNeg, either
of the two modules can be viewed as the main module,
and in charge of the other.

To the best of the authors’ knowledge, the integration
of a symbolic system with a sub-symbolic system, and in
particular the integration of a rule-based agent module
with a neural network module for representing musical
knowledge, is novel.

Software Agents

Agents are functional, independent software modules
that are programmed to act on behalf of the user.
Among the salient features of software agents are au-
tonomy, adaptation, and sociability.

One of the main research areas DAI is concerned with
regards applying coordination protocols to multiagent
systems. The agents programmed to follow these pro-
tocols, or agents that are able to learn how to behave,
coordinate with other agents in the same system in or-
der to achieve global goals, or to avoid conflicts.

One way used by agent designers to quantify the
agents’ performance is to let the agents compute a util-
ity function. The algorithms that describe the agents’
behavior take into consideration the utility values, and
according to them, the agents choose their actions.
Therefore, the actions that the agents will perform are
strictly related to the computation of the utility func-
tion, which specifies the agents’ interests.

In our case we deal with two part melody of first
species counterpoint . We chose to represent each part
of the melody with a separate agent. In this way each
agent is able of evaluating the quality of its part. This
will be computed with a utility function as described
in this paper. Then, the agents negotiate to get the
maximal utility possible given the constraints of the
other agent (and its correspondent voice).

NetNeg’s Architecture

In many musical styles, the composer creates differ-
ent sequences of notes (i.e., melody lines) that will be
played simultaneously. In contrapuntal styles, each se-
quence, taken in isolation, should follow some aesthetic
criterion, and in addition the sequences should sound
appropriate when combined. The musician achieves his
overall result by compromising between the perfection
of a single component and the combination of sequences
as a whole. Thus, in this activity there is a constant
tradeoff between the quality of a single sequence versus
the quality of the combined group of sequences. When
a musician is faced with such a task, he is involved in
a cognitive process, that we suggest might be seen as a
negotiation process. He has to compromise between the
melodies’ notes by choosing from among the permitted
notes those that are preferable. A general view of the
architecture of NetNeg is shown in Figure 1. NetNeg
is composed of two sub-systems: a connectionist sub-
system and a DAI-based subsystem. The role of the
connectionist subsystem is to learn and generate indi-
vidual parts of the polyphonic melody. In our imple-
mentation, the network learned to reproduce a series
of learning examples that were taken from (Jeppesen
1992). Based on this learning process and the set of
learning examples, the neural net is able to produce in
the generalization phase new individual melody parts.
In this phase, the network predicts in the output layer
a vector of expectations for the next note in each part
of the melody.

61

mapping to

{Do,Re)

1
' Agentt
4,

(La,Fa)
State Units Plan Units

\/_/ Agent2

Figure 1: The NetNeg Architecture

Each agent represents one of the voices of the poly-
phonic music. It is responsible for choosing the tone
that will be inserted in its voice at each unit of time.
Each agent receives a different output vector from the
network. On the one hand, each agent has to act ac-
cording to its voice’s aesthetic criteria; and on the other
hand, it has to regard the other voice-agent such that
both together will result in a two-part counterpoint.
Both agents have to negotiate over all the other pos-
sible combinations to obtain a globally superior result.
Thus, they influence the context with their agreement.
Given this new context and the initial values of the plan
units, the network will predict another output vector.
This process continues sequentially until the melodies
are completed. '

We describe each of these modules separately and
then present results from experiments performed with
NetNeg.

The Connectionist Subsystem

Each part of the melody is produced independently by
a neural network implemented in Planet (Miyata 1991).
Todd (Todd 1991) previously suggested a sequential
neural network that can learn and generate a sequence
of melody notes. Currently, our neural network is based
on the same idea, although we have extended it to in-
clude the representation of the contour of the melody.

We built a three-layer sequential net, that learns se-
ries of notes. Each series is a one part melody. Each
sequence of notes is labeled by a vector of plan units.
The net is a version of a feed-forward back-propagation
net with feedback loops from the output layer to the
state units (in the input layer). The state units in the
input layer and the units in the output layer represent
the pitch and the contour. The state units represent
the context of the melody, which is composed of the
notes produced so far. The output unit activation vec-
tor represents the distribution of the predictions for the
next note in the melody for the given current context.

The role of the plan units is to label different se-
quences of notes. In the generalization phase, we can
interpolate and extrapolate the values of the plan units

so as to yield new melodies. At each step, the net is fed
with the output values of the previous step in the state
units together with the values of the plan units. These
values will cause the next element in the sequence to
appear in the output layer and it will be propagated
as feedback into the state units (these connections do
not appear in Figure 1). The current values of the state
units are composed of the previous values multiplied by
a decay parameter and the current output values.

Each note is represented by a vector of 19 bits con-
taining 16 zeros and 3 ones: 8 bits represent the pitch
and each note of the scale (here, the Dorian mode) is
represented by 7 zeros and a single one, 9 bits for rep-
resenting the size of the interval with the previous note
(again a single one) and 2 bits for its direction, i.e.,
movement: ascending or descending (a single one).

In order to exploit the information encoded in the
output units’ activations, the pitch activations were
combined with the interval and the movement activa-
tions. The interval and the movement units were used
to support which pitch to choose. The activations of
the output units were mapped into a vector of thirteen
activations corresponding to the notes in more than an
octave and a half.

Each agent receives the 13-length vector, and feeds
the state units with their agreement (see Figure 1).
Then, the network predicts another output vector given
this new context and the initial values of the plan units.
This process continues sequentially until the melodies
are completed.

The DAI-Based Subsystem

The agent module was implemented by using the Mice
testbed (Montgomery et al. 1992). In the implementa-
tion presented in this work, each voice of the bicinia is
represented by an agent. Since we are dealing with two
counterpoint melodies, then in DAI terms we design a
multiagent system composed of two agents. The global
goal of the system is to compose the two part melody
following the rules of the style. In addition, each single
agent has its own individual goal, i.e., to compose its
melody by choosing the right notes. In particular, each
agent has to act according to the aesthetic criteria that
exist for its voice; at the same time, it has to compose
the voice in a manner compatible with the other voice-
agent such that both together will result in a two-part
counterpoint.

At every time unit in our simulations, each agent
receives from the network a vector of activations for
all the notes among which it can choose. Were the
agent alone in the system, it would have chosen the note
that got the highest activation from the neural network,
meaning that this note is the one most expected to be
next in the melody. Both agents’ choices might con-
flict with respect to the rules of the style and their own
preferences. Therefore, we apply a negotiation proto-
col (Rosenschein & Zlotkin 1994) to allow the agents to
coordinate and achieve their mutual goals. The agents
will negotiate over all the other possible combinations

62

to obtain a globally superior result.

In principle, each agent can suggest any of the n pos-
sible notes received from the network. Not all of these
pairs of note combinations are legal according to the
rules of the species. In addition, there are specific com-
binations that are preferred over others in the current
context. This idea is expressed in this module by com-
puting a utility function for each pair of notes. In this
sense, the goal of the agents is to agree on the pair of
notes that is legal and also achieves the maximal utility
value among all options.

At each time unit, for each pair of notes, the agents
start a negotiation process at the end of which a new
note is added to each of the current melodies. Fach
agent sends to the other all of its notes, one at a time,
and saves the pair consisting of its note and the other
agent’s note that a) is legal according to the first species
style rules and b) has yielded the maximal utility so far.
At the end of this process, the pair that has achieved
maximal utility is chosen. Both agents feed their net-
works with this result as the current context so that
the networks can predict the next output. Each agent,
then, receives a new input based on this output, and the
negotiation step is repeated until the melody is com-
pleted.

The term in the utility function that encodes the
rules of a given style expresses (in our implementation)
the rules of the polyphonic vocal style of the sixteenth
century as they appeared in (Jeppesen 1992). A pair
of notes is considered legal according to the following
rules: : '

1. The intervals between pairs of notes in the two part
melodies should not be dissonant (i.e., the second,
fourth, and seventh intervals are not allowed).

2. There should be perfect consonance (i.e., unison, oc-
tave, and perfect fifth intervals) in the first and last
places of the melody.

3. Unison is only permitted in the first or last places of
the melody.

4. Hidden and parallel fifths and octaves are not per-
mitted.!

5. The difference between the previous and the current
interval (when it is a fifth or an octave) should be
two (this is our modification).

6. The interval between both tones cannot be greater
than a tenth.

7. At most four thirds or sixths are allowed.

8. If both parts skip in the same direction, neither of
them will skip more than a fourth.

9. In each part, the new tone is different from the pre-
vious one.

'Following (Randel 1996), “parallel motion of perfect in-
tervals is forbidden, nor may any perfect interval be ap-
proached by similar motion”.

10. No more than two perfect consonants in the two part
counterpoint, not including the first and last notes,
are allowed (this is our modification).

The utility function we chose is one example of a func-
tion that computes all the aspects we described in the
Section on NetNeg’s architecture. In words, the utility
(i.e., the quality) of a pair of notes T} and T% at time
t will be zero when this combination does not match
any rules of those explained above. In the other cases,
the quality of this pair is given by a value computed
from both tones’ activations produced by the neural
net. The final result of this utility is updated with a
term representing how much each agent prefers con-
trary motion between the two candidate tones, Tf and
T}. The formal definition of the utility function may be
found in (Goldman et al. 1999).

Experiments

We first ran each subsystem separately to examine the
ability of each one of the two approaches (i.e, Neural
Nets and agents) to cope with the general problem. We
then ran the integrated system; we present results from
all of these simulations. In this way, we show the ability
of the whole system to produce results superior to the
performance of either of the subsystems. Combining the
modules gave us a more natural way of dealing with the
processing of and representation of our task.

Running the Net Module

The task of the net was to learn to produce new two-
part melodies. This case is different from the one faced
by the whole system, in which only one-part melodies
were taught. Therefore, we needed to represent both
parts of the melody simultaneously. We used the same
sequential net that was described above. In this case,
we doubled the number of the units in each layer to
represent two notes simultaneously, one for each part.
In the learning phase the net was given four melodies,
containing the two parts. Since our notes are taken
from one and a half octaves, we represent the notes by
their names (i.e., re), and those in the higher octave
have an 8 concatenated to their names (i.e., re8). In
this phase, the net learned the examples in the set with
high accuracy. After short training? the net was able to
completely reproduce the sequences without mistakes.
In the generalization phase we chose to interpolate
the values of the plan units to produce new melodies.
An example of a typical result follows:
V2:7e8 fa8* sol8 la8 sol8 fa8 mi8 re8
Vi:re8 sol si do8** mi re*** do8 re8

This resulting sequence reflects typical problems we
encountered when dealing with this simple approach.
The examples in the learning set imposed two differ-
ent constraints on the net. The constraints regard the

*For 20 hidden units it took less than 100 epochs to
achieve an average error around 0.0001.

63

.melodic intervals between the pitches in each part, and

the combinations of pitches in both parts. The net is
not able to cope with both constraints consistently, and
thus it satisfies each, one at a time. For example in ,
the combination chosen is not allowed in the specific
style, although the melodic interval is fine. In %% the
descending skip is not permitted, as well as the ascend-
ing skip in * % %, but both combinations are fine.

Running the Agent Module

The agents in our system know the rules of the specific
style of the melodies we want to compose. They also
know how to compute the system utility for a given
pair of notes. We have run experiments with the agent
module alone.

We run the module with the utility function de-
scribed above, where the net’s advice was assigned
zero. Since we choose the pair of notes that get the
maximal utility value at each step, the result is as
follows:

V2:7e8 mi8 fa8 sol8 fa8 sol8 fa8 re8
Vi:re8 do8 la sol la mi la re8

The melody lacks the the aesthetics features that are
learned by the net and are requested from each part.
In both voices there are redundant notes (i.e, the ap-
pearance of note la in V1, and the series of notes in V2
from the third place to the seventh). There is no unique
climax in any of the voices. There are two continuous
skips in the last three notes in V1. There are too many
steps in V2 (i.e., there is no balance between the skips
and the steps).

We also observed that melodies can come to a dead
end, when there is no pair of notes that can satisfy the
rules of the specific style. In such cases, we have tested
additional results that can be produced by the system
when the agents are allowed to choose pairs with utility
values smaller than the maximum.

Running NetNeg

In this section we present the main simulation per-
formed on the whole system. In the training phase,
the network learned to reproduce four melodies that
were taken from (Jeppesen 1992). We have tested the
performance of the network with different learning pa-
rameters, such as the number of hidden units and the
values of the plan units.

In the generalization phase, given a specific vector of
plan units, the network produces a new cantus firmi.
We have chosen two different plan vectors for the net
that will output the notes for each agent. We run the
net, each time with the corresponding plan vectors, and
mapped their outputs to two different thirteen activa-
tion values. Then, we run the DAI-based module with
these inputs. The agents negotiate over the different
pairs of possible combinations, computing for each the
system utility. Finally, the agents agree upon a legal
pair of notes that has yielded the maximal utility; alter-

natively, the agents might decide that no combination
is legal, given the previous note in the melody.

In our current case, the nets are fed with the agents’
agreement and the system continues to run. This pro-
cess is executed until the two-part melodies are com-
pleted. Currently, the length of the melodies is fixed.

The following is an example of a resulting melody:
V2: re8 fa8 sol8**** fa8 mi8 re8 do#8 re
Vi: re8 la* sol re*™ mi fa la*** re

In this example, we can observe that the system gives
aesthetic results, quite appropriate for the species style
with which we have experimented. Both parts are con-
sistent with the combination constraint, as opposed to
the simulation we ran solely with the neural network,
where this constraint was not satisfied. Comparing with
the simulation run with the agents alone, no redun-
dancy was found in this example. Nevertheless, there
is a contour problem as pointed out in (*) and (**) in
Al’s melody (V1). According to Jeppesen (Jeppesen
1992), it is preferred to descend by a step and then per-
form a descending skip. After a descending skip, we are
expected to have a compensating ascending movement.
In (***), we prefer to approach the last note by a step.
A2’s melody (V2) is perfect with regard to the contour.
There is a single climax as shown in (****).

By running both modules together, we see the com-
bined effect of all the aspects taken into consideration
in the utility function. The melody of agent A, is per-
fect. This reflects the melodies learned by the neural
net. The contrary motion term expressed in our heuris-
tic is revealed in the relation between both melodies.
The neural network was not trained with melodies such
as the one created by agent A;. The rules are ex-
pressed, for example, in the consonance of the parts
of the melody.

Summary and Future Work

We have presented a novel and powerful computational
approach for encoding the knowledge, intuitions, and
aesthetic taste of a musician in different modules. In
this work, we presented an example of an implementa-
tion that enables a human to flexibly guide the system
to compose music in a style he chooses, under real-time
constraints. The user might express multiple views and
levels of knowledge to this system. For example, if he
knows examples of the music he wants the system to
compose, he can train the neural network with these
examples. If he wants the music to follow specific rules
he might formulate them in the agent module. In addi-
tion, he can regard other factors in the computation of
the utility function.

Issues to be further investigated include other ways to
integrate both modules, the study of other species (sec-
ond, third, and fourth species), and polyphonic music
in more flexible and more abstract styles. We are also
interested in examining how other representations and
coordination protocols influence the performance of the
system.

64

Acknowledgments

We would like to thank Gil Broza for implementing a
C++ version of NetNeg. Dan Gang would like to thank
to U.S.-Israel Educational Foundation for supporting
him as Fulbright Post-Doctoral Fellow. Thanks for the
Center for Computer Research in Music and Acoustics
and to the Center for Computer Assisted Research in
the Humanities at Stanford University, for the facilities
and the pleasant atmosphere.

References

Berger, J., and Gang, D. 1997. A neural network model of
metric perception and cognition in the audition of func-
tional tonal music. In Proceedings of the International
Computer Music Association.

Bharucha, J. J., and Todd, P. M. 1991. Modeling the
perception of tonal structure with neural nets. In Todd,
P. M., and Loy, D. G., eds., Music and Connectionism.
M.I.T.

Camurri, A. 1993. Applications of artificial intelligence
methodolo gies and tools for music description and pro-
cessing. In Haus, G., ed., Music Processing. A-R Editions,
Inc. 233-266.

Goldman, C. V.; Gang, D.; Rosenschein, J. S.; and
Lehmann, D. 1999. Netneg: A connectionist-agent inte-
grated system for representing musical knowledge. Annals
of Mathematics and Artificial Intelligence. in print.

Hilario, M. 1995. An overview of strategies for neu-
rosymbolic integration. In Workshop on Connectionist-
Symbolic Integration:From Unified to Hybrid Approaches
at the Fourteenth International Joint Conference on Arti-
ficial Intelligence. '

Jackendoff, R. 1991. Musical parsing and musical affect.
Music Perception 9(2):199-229.

Jeppesen, K. 1992. Counterpoint The Polyphonic Vocal
Style of the Sixteenth Century. New York: Dover.

Jordan, M. 1986. Attractor dynamics and parallelism in
a connectionist sequential machine. In Proceedings of The
Eighth Annual Conference of the Cognitive Science Society.
Miyata, Y. 1991. A User’s Guide to PlaNet Version 5.6.
Computer Science Dept., University of Colorado, Boulder.
Montgomery, T. A.; Lee, J.; Musliner, D. J.; Durfee, E. H.;
Damouth, D.; and So, Y. 1992. MICE Users Guide. Ar-
tificial Intelligence Laboratory, Department of Electrical
Engineering and Computer Science, University of Michi-
gan, Ann Arbor, Michigan.

Randel, D., ed. 1996. The New Harvard Dictionary of
Music. Belknap Press of Harvard University Press.
Rosenschein, J. S., and Zlotkin, G. 1994. Rules of En-
counter. Cambridge, Massachusetts: MIT Press.

Todd, P. M. 1991. A connectionist approach to algorithmic
composition. In Todd, P. M., and Loy, D. G., eds., Music
and Connectionism. M.1.T.

