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Abstract

This paper initiates the use of vector fields to design, optimize,
and implement reactive schedules for safe cooperative robot pat-
terns on planar graphs. We consider Automated Guided Vehicles
(AGV'’s) operating upon a predefined network of pathways. In
contrast to the case of locally Euclidean configuration spaces, reg-
ularization of collisions is no longer a local procedure, and issues
concerning the global topology of configuration spaces must be
addressed. The focus of the present inquiry is the achievement of
safe, efficient, cooperative patterns in the simplest nontrivial ex-
ample (a pair of robots on a Y-network) by means of a state-event
heirarchical controller.

1 Introduction

This paper, an extension of earlier work [9] explores the
use of vector fields for reactive scheduling of safe coopera-
tive robot patterns on graphs. The word “safe” means that
obstacles — designated illegal portions of the configuration
space — are avoided. The word “cooperative” connotes situ-
ations wherein physically distributed agents are collectively
responsible for executing the schedule. The word “pattern”
refers to tasks that cannot be encoded simply in terms of a
point goal in the configuration space. The word “reactive”
will be interpreted as requiring that the desired pattern reject
perturbations.

An automated guided vehicle (AGV) is an unmanned
powered cart “capable of following an external guidance
signal to deliver a unit load from destination to destination”
where, in most common applications, the guidepath signal is
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buried in the floor [5]. Thus, the AGV’s workspace is a net-
work of wires — a graph. The motivation to choose AGV
based materials handling systems over more conventional
fixed conveyors rests not simply in their ease of reconfigura-
bility but in the potential they offer for graceful response to
perturbations in normal plant operation. In real production
facilities, the flow of work in process fluctuates constantly in
the face of unanticipated workstation downtime, variations
in process rate, and, indeed, variations in materials transport
and delivery rates [6]. Of course, realizing their potential ro-
bustness against these fluctuations in work flow remains an
only partially fulfilled goal of contemporary AGV systems.
Choreographing the interacting routes of multiple AGVs
in a non-conflicting manner presents a novel, complicated,
and necessarily on-line planning problem. Nominal routes
might be designed offline but they can never truly be tra-
versed with the nominal timing, for all the reasons described
above. Even under normal operating conditions, no single
nominal schedule can suffice to coordinate the workflow as
the production volume or product mix changes over time:
new vehicles need to be added or deleted and the routing
scheme adapted. In any case, abnormal conditions — un-
scheduled process down times; blocked work stations; failed
vehicles — continually arise, demanding altered routes.
The traffic control schemes deployed in contemporary
AGYV systems are designed to simplify the real-time route
planning and adaptation process by “blocking zone control”
strategies. The workspace is partitioned into a small number
of cells and, regardless of the details of their source and
destination tasks, no two AGVs are ever allowed into the
same cell at the same time [5]. Clearly, this simplification
results in significant loss of a network’s traffic capacity.
The contemporary robotic motion planning literature
does not seem to offer much in the way of an alterna-



tive. Starting with pioneering work of Alami [1] there has
been a small literature on muitiple coordinated robots, but
almost all papers seem to be concerned with offline ver-
sions of the problem. Latombe, in his excellent monograph
[10] distinguishes between “centralized” and “decoupled”
approaches to this problem. In the latter case, motion plan-
ning proceeds using multiple copies of the configuration
space within which to situate a set of non-interacting robot
vehicles. For a recent example of what Latombe terms
a “coordinated” view of the decoupled case, Svestka and
Overmars [14] introduce a “supergraph” on which multiple
vehicles can be stepped through their individually specified
paths, and vehicle-vehicle collisions prohibited by detain-
ing one or another vehicle. For a recent example of what
Latombe terms a “prioritized” view of the decoupled case,
Lee et al. [11] compute k-shortest paths for each vehicle’s
source-destination pair, and work their way down the list
of prefences based upon a vehicle’s priority. It should be
clear that in neither of these approaches has the recourse
to blocking zone control been eliminated. Thus, while the
decentralized approach side steps the inevitable curse of di-
mensionality, passing to the underlying configuration space
seems to be required if the rigidity and inefficiency of block-
ing zone control strategies is to be eliminated.

The Industrial Engineering AGV literature seems chiefly
concerned with higher level issues of layout and capacity
[12] or dispatching and more general scheduling {2]. One
interesting approach to layout seeks to avoid the subsequent
traffic control problem entirely by clustering pickup and de-
livery stops in decoupled single vehicle loops [3]. In general,
modeling the real-time factory floor is challenging enough
that even the most recent treatments of these higher level
layout and dispatching problems seem to rely on simulation
rather than analysis for understanding the implications of
one or another policy [4]. Here, again, is an indication that
a dynamical systems point of view might shed additional
light. For recent years have witnessed increasingly success-
ful efforts to characterize such ensemble properties as the
“mean transit time” induced by a flow. Thus, it seems to us
entirely possible that a dynamics based network traffic con-
trol strategy might yield more readily to statistical analysis
than present practice affords.

In this paper, we will consider a centralized approach that
employs dynamical systems theory to focus on real-time re-
sponsiveness and efficiency as opposed to computational
complexity or average throughput. No doubt, beyond a cer-
tain maximum number of vehicles, the necessity to compute
in the high dimensional configuration space will limit the ap-
plicability of any algorithms that arise. However, this point
of view seems not to have been carefully explored in the
literature. For the sake of concreteness we will work in the
so-called “pickup and delivery” (as opposed to the “stop and
go” [3]) paradigm of assembly or fabrication, and we will
not be concerned with warehousing style AGV applications.
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For additional background on this problem and the con-
figuration space constructions associated to the Y -graph, see
[9]. For details and proofs of all theorems stated here, see

[8].

2 Notation and Background

A graph, T, consists of a finite collection of 0-dimensional
vertices V:={v;}, and 1-dimensional edges &:={e;}
assembled as follows. Each edge is homeomorphic to the
closed interval [0, 1] attached to V along its boundary points
{0} and {1}.

The configuration spaces we consider in the following
are self-products of graphs. The topology of I' x I is easily
understood in terms of the topology of I' as follows [13].
Let (z,y) € T' x I" denote an ordered pair in the product.
Then any small neighborhood of (z,y) within I" x T is the
union of neighborhoods of the form A (u) x N(v), where
N () denotes neighborhood within I". In other words, the
products of neighborhoods form a basis of neighborhoods
in the product space [13].

Given a graph, I, outfitted with a finite number n of non-
colliding AGV’s constrained to move on I', the configuration
space of safe motions is defined as

C:=( x ... xT) — N(A),

where A:={(z;) € ' x ... x ' : z; = x;, for some j #
k} denotes the pairwise diagonal and M(-) denotes (small)
neighborhood.

We do not treat the general aspects of this problem com-
prehensively in this paper; rather, we restrict attention to
the simplest nontrivial example which illustrates nicely the
relevant features present in the more general situation.

3  The Y-Graph
V1

€1

€2

U3 V2

Figure 1: The Y-graph T.

For the remainder of this work, we consider the simplest
example of a non-trivial configuration space: that associated
to the Y-graph, Y, having four vertices {v;}§ and three



edges {e;}3, as illustrated in Figure 1. Although this is
a simple scenario compared to what one finds in a typical
setting, there are several reasons why this example is in
many respects canonical.

1. Simplicity: Any graph may be constructed by gluing
K-prong graphs together for various K. The K =
3 model we consider is the simplest nontrivial case
and is instructive for understanding the richness and
challenges of local cooperative dynamics on graphs.

2. Genericity with respect to graphs: Graphs
which consist of copies of T glued together, the triva-
lent graphs, are generic in the sense that any nontrivial
graph may be perturbed in a neighborhood of the vertex
set so as to be trivalent. For example, the 4-valent graph
resembling the letter ‘X’ may be perturbed slightly to
resemble the letter ‘H’ — a trivalent graph. An in-
duction argument shows that this is true for all graphs.
Hence, the dynamics on an arbitrary graph are approx-
imated by patching together dynamics on copies of Y.

3. Genericity with respect to local dynamics:
Finally, pairwise local AGV interactions on an arbitrary
graph restrict precisely to the dynamics of two agents
on Y as follows. Given a vertex v of a graph I, assume
that two AGV'’s, x and y, are on different edges e; and
e2 incident to v and moving towards v with the goal
of switching positions. A collision is immanent unless
one AGV “moves out of the way” onto some other edge
es incident to v. The local interactions thus restrict to
dynamics of a pair of AGV’s on the subgraph defined by
{v;e1, €2, e3}. Hence, the case we treat in this paper is
the generic scenario for the local resolution of collision
singularities in cooperative dynamics on graphs.

The configuration space of N points on Y is a subset of
the N-fold cartesian product T x T x --- x Y. Since each
graph which is physically relevant to the setting of this paper
is embedded in a factory floor or ceiling and thus planar, the
configuration space CV () embeds naturally in R?N, We
wish to modify this embedding to facilitate both analysis on
and visualization of the configuration space. We will present
alternate embeddings in both higher and lower dimensional
euclidean spaces for these purposes.

We begin with representing the configuration space
within a higher-dimensional euclidean space via a coor-
dinate system which is best described as intrinsic: it is
independent of how the graph is embedded in space. We
illustrate this coordinate system with the Y-graph T, noting
that a few simple modifications yields a coordinate scheme
for more general graphs.

Let {e;}3 denote the three edges in Y, parametrized so
that e; is identified with [0, 1] with each {0} at the center vo
of Y. Any pointz € Y is thus given by a vector (21, 2, Z3)
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in the {e;} frame, where z; € [0, 1] and at least two of these
coordinates is zero. In other words, we are embedding Y as
the positive unit axis frame in R>.

Likewise, a point in C is given as a pair of distinct vectors
(x,y), i.e., as the positive unit axis frame in R* cross itself
sitting inside of R® x R3 = R®. We have thus embedded
the configuration space of two distinct points on Y in the
positive orthant of RS. It is clear that one can embed the
more general configuration space of N points on Y in R3Y
in this manner.

This coordinate system is particularly well-suited to de-
scribing vector fields on C and in implementing numerical
simulations of dynamics, as the coordinates explicitly keep
track of the physical position of each point on the graph.

More useful for visualization purposes, however, is the
following construction which embeds C within R3,

Figure 2: The configuration space C embedded in R3.

Theorem 1 The configuration space C associated to a
pair of AGV’s restricted to the Y -graph Y is home-
omorphic to a punctured disc with six 2-simplices at-
tached as in Figure 2.

Denote by D that portion of the configuration space which
corresponds to the AGV’s being on distinct edges of the
graph: as proven earlier, D is homeomorphic to a punctured
disc. The intrinsic coordinates on the configuration space C
is illustrated in Figure 3, where only D is shown for illustra-
tion purposes. The reader should think of this as a collection
of six square coordinate planes, attached together pairwise
along axes with the origin removed. The six triangular fins
are then attached as per Figure 2.

4 Tuning Limit Cycles

In order to proceed with the construction of vector fields
which realize monotone cycles, we work with vector fields
on the smooth unit disc in B2 and map these to the annular
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Figure 3: The coordinate system on the unfinned region D
of C.

region D of the configuration space via the push-forward in-
duced by the natural homeomorphism. It will be convenient
to keep track of which “wedge” of the annular region a point
(r,8) is. To do so, we introduce a parity function

P(8) := (—1){130/m]+160/m]} (1)
where |t] is the integer-valued floor function. Recall the
notation for the intrinsic coordinates for a point z on the
graph T: x = |z|é,(y), where |z| € [0,1] is the distance
from z to the central vertex, and €,(;) is the unit tangent
vector pointing along the direction of the +(z)-edge. Here
the index, ¢(z) is an integer (defined modulo 3) and will be
undefined in the case when |z| = 0, i.e., z is at the central
vertex.

Lemma 1 The following is a piecewise-linear homeo-
morphism from the punctured unit disc in R? to the
subset D given by the collection of points which are not
on (the interior of ) identical edges:

F(r,0) = (z,y) where
| = T P(6) = +1
T rlcot 26| P(B)=-1
ly| = r|tan 50| P(6) = +1 (2)

, r JP(G) =-1
Wz) = |- 20— m)
4w=ﬁ§ﬂ
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The inverse of this homeomorphism is given by

F~Yz,y) = (r,0) where

,_ ) BT F T 20
) —3tan~! {8 — 22 (y(z) — 1) L(ml;lgjl(y—j ;)i— 1
_ | lz| P(O) =+1

T‘{WIP@=—1 ,

Note that all 6 values are defined modulo 27, all index values
are integers defined modulo 3, and |-| denotes the integer-
valued floor function.

Proof: Begin by working on the region D; 2 of D
where «(z) = 1 and ¢(y) = 2. We need to map this to the
subset {(r,8) : r € (0,1],6 € [0, 7/3]}. The simplest such
homeomorphism is to first shrink along radial lines, leaving
the angle invariant; hence

o

Next, we squeeze the quarter-circle into a sixth of a circle by
multiplying the angle by 2/3, leaving the radial coordinate
invariant:

el <yl
Hyl < =

||

] “)

2 -1yl
0= 3 tan o] (5)
This gives the basic form of F~! as per Equation (3). To
extend this to the remainder of D, it is necessary to carefully
keep track of ¢(z) and ¢(y) and subtract off the appropriate
angle from the computation of 6. Also, the condition of
|z| < |y, etc., in Equation (4) is incorrect on other domains
of D, since the inequalities flip as one traverses from square
to square: the parity function P(8) keeps track of which
“wedge” one is working on.

To determine F from F~1 is a tedious but unenlightening
calculation, made more unpleasant by the various indices to
be kept track of. Briefly, given r and € on the first sixth
of the unit disc, one knows from Equation (4) that either
|z| = r or |y| = r, depending on whether 6 is above or
below w/4. To solve for the other magnitude, one inverts
Equation (5) to obtain |y| = r [tan 36| or |z| = ¢ |cot %01
respectively. To generalize this to the other D; ; domains
of D, it is necessary to take absolute values and to use the
parity function P(8) as before. Finally, the computation
of the index is obtainable from the combinatorics of the
coordinate system as illustrated in Figure 3. 0O

Hence, by taking the push-forward of a vector field X =
(#,0) with respect to F', one obtains the piecewise smooth



vector field,

|z| = 7

lyl =7 ,tan(%0)| + %Tésec2(%9) P6) = +1
o1 =7 |eot(360)| + 3réesc(30) | gy
lyl| =7+
(6)
which simplifies to yield:

| = P

=l Wty | 7O ™)

|z| =72l 4 26—lul

‘ v 20 () PO) = -

ly| =7

Given a simple closed curve 7 in R? which has nonzero
winding number with respect to the origin, v may be
parametrized as {(r,0) : r = f(6)} for some periodic posi-
tive function f. To constructa vector field on R? whose limit
sets consist of the origin as a source and v as an attracting
limit cycle, it suffices to take the push-forward of the vector
field

F=r(l-r) 6=w

under the planar homeomorphism
¢ : (r,0) = (f(0)r,0),

which rescales linearly in the angular component. The cal-
culations follow:

T
m<é) _ D¢
[f f
0 1

'l‘l--)'~

J(’"“;”)
(~6-=))

(8)

r

’I"——)T

w

Hence, given f(6), we may tune a vector field to trace out
the desired limit cycle and then use Equations (2) and (3) to
map it into intrinsic coordinates.

To design optimal cycles with winding number zero, then,
we turn to constructing customized portions of limit cycles,
or chords which can be pieced together via a state-actuated
hybrid controller. In other words, instead of building a
simple fixed vector field with a limit cycle, we will use a set
of vector fields which vary discretely in time and which may
be pieced together so as to tune a limit cycle to the desired
specifications.

Let G denote a word representing a desired monotone
limit cycle on the configurations space C. Choose points
{g:} on the boundary of D which correspond to the attaching
zones for the cycle given by G. Choose arcs «; on D which
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connect g; to ¢; 1 (using cyclic index notation). The arcs o;
are assumed given in the intrinsic coordinates on D, as would
be the case if one were determining a length-minimizing
curve.

In the case where the limit cycle a := U; v, is an embed-
ded curve of nonzero index, the procedure of the previous
subsection determines a vector field X, on C which realizes
« as an attracting limit cycle with the appropriate dynam-
ics on the complementary region. Recall: one translates
a to a curve on the disc model via the homeomorphism
of Equation (3). Then, representing the limit cycle « as a
function f,(6), one takes the vector field of Equation (8)
and, if desired, takes the image of this vector field under
Equation (7).

If, however, this is not the case, consider the arc a;
for a fixed j and construct an index %1 cycle f7 = Uiﬂf
which has attaching zone {g¢;} such that ﬂg = a;. Then the
vector field X7 as constructed above has 3 as an attracting
limit cycle. Denote by &/ the Lyapunov function which
measures proximity to 3: &7 (p) : || p— || (with distance
measured in say the product metric on C). Then, consider
the modified Lyapunov function

Wi (p) == (p) + lp — gj+1, 9)

which measures the distance to the endpoint of the arc ﬂg in
addition to the proximity to 37.

Repeat this procedure for each j, yielding the vector
fields {X7} which attract respectively to limit cycles 37.
It follows that X7 prepares X711 since the goal point of
X3, gj+1 lies on the attracting set of X7+1. The Lyapunov
functions {7} serve as a set of funnels which channel the
orbit into the sequence of arcs «;, forming a.. One scales
the ¥7 so that a ¥/ < e event triggers the switching in the
hybrid controller from X7 to X7+1:

=

By construction, the hybrid controller (10) realizes a limit
cycle within € of « as the attracting set.

Xl
X7

®7 > eVj

b <ecand VI > ¢ (10)

5 Future Directions

A point of primary concern is the adaptibility of the global
topological approach to systems which increase in complex-
ity, either through more intricate graphs or through increased
numbers of AGV’s. The latter is of greater difficulty than
the former, since the dimension of the resulting configura-
tion space is equal to the number of AGV’s. Hence, no
matter how simple the underlying graph is, a system with
ten independent AGV’s will require a dynamical controller
on a (topologically complicated) ten-dimensional space: a



formidable problem both from the topological, dynamical,
and computational viewpoints.

However, there are some approaches which may facilitate
working with such spaces. Consider the model space C with
which this paper is concerned: although a two-dimensional
space, C can be realized as the product of a graph (a circle
with six radial edges attached) with the interval (0, 1].

A similar approach may work for arbitrary graphs. The
following result has recently been proven [7]:

Theorem 2 Given a graph I', the configuration space
of N distinct points on I’ can be deformation retracted
to a subcomplexr whose dimension is bounded above by
the number of vertices of I' of valency greater than two.

This theorem implies the existence of low-dimensional
spines which carry all of the topology of the configura-
tion space. For example, the above theorem implies that the
configuration space of NV points on the Y-graph can be con-
tinuously deformed to a one-dimensional graph, regardless
of the size of N. Since the full space can be deformation
retracted onto the spine, a vector field defined on the spine
can be (in theory) pulled back continuously to the full con-
figuration space, thus opening up the possibility of reducing
the control problem to that on a simpler space.

We believe that the benefits associated with using the full
configuration space to tune optimal dynamical cycles justi-
fies an exploration into the feasability of these challenging
spaces.
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