
Cognitive Mastery Learning in the ACT Programming Tutor

Albert Corbett

Human-Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA 15213
corbett+@cmu.edu

Abstract
The ACT Programming Tutor (APT) is a problem solving
environment constructed around an executable cognitive
model of the programming knowledge students are acquiring.
This cognitive model supports two types of adaptive
instructional processes.  First, it enables the tutor to follow
each student’s solution path through complex problem
solving spaces, providing appropriate assistance as needed.
Second, it enables the tutor to implement cognitive mastery
learning in which fine-grained inferences about student
knowledge are employed to adapt the problem sequence.
This paper outlines the assumptions and procedures of
cognitive mastery learning and describes evidence of its
success in promoting student achievement.  The paper also
explores the limits of cognitive mastery as implemented in
APT and begins to examine new directions.

Introduction

Mastery learning was proposed more than thirty years ago
as an early form of adaptive curriculum sequencing
(Carroll, 1963).  Mastery learning has two guiding
assumptions. First, that domain knowledge can be
decomposed into a hierarchy of component skills.  Second,
that students should be allowed to progress at their own
rate through this knowledge hierarchy, mastering
prerequisite knowledge before tackling higher level
knowledge.  Mastery learning lends itself most readily to
individualized instruction (Keller, 1968), but the
fundamental principles were also adapted to whole-class
instruction (Bloom, 1968).  Meta-analyses confirm that
mastery learning yields higher mean achievement levels
(Guskey and Pigott, 1988; Kulik, Kulik and Bangert-
Drowns, 1990; Kulik, Kulik and Cohen, 1979) although
the impact is smaller than anticipated (Resnick, 1977;
Slavin, 1987) and the underlying assumptions concerning
knowledge decomposition are controversial (Resnick and
Resnick, 1992; Shepard, 1991).

Over the past decade we have been developing an
educational technology at Carnegie Mellon called cognitive
tutors that brings artificial intelligence to bear on the goals
of mastery learning.  Each cognitive tutor is constructed
around an executable cognitive model of the domain

knowledge students are acquiring.  As the student works,
these tutors monitor the student’s growing knowledge state
and adapt the sequence of problem solving tasks
accordingly.  This paper examines cognitive mastery in the
ACT Programming Tutor.  The underlying cognitive model
of programming knowledge is briefly described along with
the simple learning and performance assumptions that
guide cognitive mastery learning.  The paper reviews
empirical evidence that cognitive mastery promotes
efficient learning, describes some empirical data on the
limitations of the process and concludes with a brief
discussion of new directions.

The ACT Programming Tutor (APT)

APT is a problem solving environment in which students
learn to write short programs in Lisp, Pascal or Prolog.
We have employed these three tutor modules to teach a
self-paced introductory programming course at Carnegie
Mellon since 1984.   Figure 1 displays the tutor interface
midway through a Lisp exercise.  The student has read on-
line text in the window at the lower right and is now
completing a corresponding set of problems.  The current
problem statement appears in the window at the upper right
and the student’s solution appears in the code window
immediately below.  The interface is similar to a structure
editor.  The student selects operator templates and types
identifiers and constants in the user action window to the
right of the code window.  In this example, the student has
selected the defun template to define a new Lisp function,
has typed the function name,  last-item,  declared a
parameter variable lis and coded the first operator in the
function body, car. The three angle-bracket symbols in the
figure, <EXPR1>, <PROCESS1> and <EXPR0> are
placeholders which the student will either replace with
additional Lisp code or delete.  Communications from the
tutor appear in the Hint window in the lower left.  In this
figure the student has asked for a hint on how to proceed
and the tutor has provided advice on an operator to
accomplish the student’s current goal.

From: AAAI Technical Report SS-00-01. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



Figure 1.  The APT Lisp Module interface.

The Cognitive Model
APT is constructed around a cognitive model of
programming knowledge that  reflects the ACT-R theory
of skill knowledge (Anderson, 1993).  ACT-R assumes
that a cognitive skill can be modeled as a set of
independent production rules that associate problem states
and problem solving goals with problem solving actions
and subgoals.  For example, a simplified version of the first
production that fires in coding the Lisp program in Figure
1 would be:

    If the goal is to define a lisp function
    Then code the operator defun,

set a goal to code the function name,
set a goal to code the parameter list,
set a goal to code the function body.

The three productions that fire in coding the body of the
function might be:

    If the goal is to return the last element of a list

    Then code the function car,
set a goal to move the last element
     to the front of the list.

    If the goal is to move the last element of the list
   to the front of the list

    Then code the function reverse,
set a goal to code the list.

    If the goal is to code a list,
       and the list is bound to a variable
    Then code the variable.

The APT Lisp module is constructed around a set of
several hundred language-specific rules for writing
programs called the ideal student model.  This cognitive
model is used to follow the student’s solution path through
the problem solving space, interpreting each problem
solving action action and providing assistance in a process
called model tracing.  The model is also used to monitor
the student’s growing knowledge state in a process we call
knowledge tracing.



Model Tracing
In model tracing the cognitive model is employed to follow
the student’s individual solution path through a complex
problem solving space, interpreting each problem solving
action and responding appropriately.  In each problem
solving cycle the student selects a goal node and performs
a problem solving action.  The tutor applies its problem
solving knowledge to the same goal and generates one or
more applicable rules that satisfy the goal.  If the student’s
action matches a production rule action it is assumed the
student has fired the same cognitive rule. As a result, the
production rule is fired and both the internal problem
representation and tutor interface are updated.  If not, the
student action is not accepted.  At any time the student can
select a goal node and ask for help, in which case an
applicable rule is identified and associated help messages
provided.  Three levels of help are generally available:  A
reminder of the current goal, general advice on how to
achieve the goal and finally, a description of exactly what
problem solving action to perform.  In Figure 1, the student
has asked for help on the node <EXPR1>.

This model tracing process has been shown to speed
problem solving by as much as a factor of three and
increase achievement levels compared to students
completing the same problems on their own (Anderson,
Corbett, Koedinger, and Pelletier, 1995).

Knowledge Tracing
In addition to tracing the student’s solution path for each
problem, the tutor draws inferences about the student’s
knowledge of each production rule in the cognitive model.
Each time the student has an opportunity to apply a
production rule in problem solving, the tutor updates its
estimate of whether the student knows the rule.  This
knowledge tracing process assumes a very simple learning
model; each rule is either in the learned state or the
unlearned state.  That is, the student either knows the rule
or does not know it.  A rule can make the transition from
the unlearned to the learned state each time there is an
opportunity to apply the rule in problem solving. There is
no forgetting in the model, so rules do not make the
transition from the learned state back to the unlearned
state.  The model also makes simple performance
assumptions.  Performance in applying a rule is determined
by its learning state, but only probabilistically.  If a rule is
in the learned state there is a small chance the student
nevertheless will slip and make a mistake.  If the rule is in
the unlearned state, there is still some chance the student
will correctly guess the correct action to perform.

The following equation is used in knowledge tracing to
update the estimate of the student's knowledge state:

          p(Ln) =   p(Ln-1|evidence)
                       + (1 - p(Ln-1|evidence)) * p(T)     [1]

The probability that a rule is in the learned state following
the nth opportunity to apply the rule, p(Ln), is the sum of

two probabilities:  (1) the posterior probability that the
ideal rule was already in the learned state contingent on the
evidence (whether or not the nth action is correct) and (2)
the probability that the rule will make the transition to the
learned state if it is not already there.  We use a Bayesian
inference scheme to estimate the posterior probability that
the rule is already in the learned state p(Ln-1|evidence).

Following Atkinson (1972) the probability p(T) of a
transition from the unlearned to the learned state during
problem solving is independent of whether the student
applies the rule correctly or incorrectly.

Knowledge tracing employs two learning parameters and
two performance parameters, as displayed in Figure 2.  The
tutor is seeded with a set of best fitting empirical estimates
of these four probabilities for each rule.  These estimates
reflect average performance for the student population.
Individual differences among students are also
incorporated into the model in the form of four weights per
student, one for each of the four parameter types, wL0, wT,

wG and wS. In adjusting the model for a student, each of
the four probability parameters for each rule is converted
to odds form (p/(1-p)), multiplied by the corresponding
student-specific weight and the resulting odds are
converted back to a probability. As the student works
through the tutor curriculum, these four weights are re-
estimated in each curriculum section, by means of
regression equations based on raw cumulative error rates
and the production rule parameters are readjusted
accordingly.

Cognitive Mastery and the Skill Meter
Knowledge tracing is employed to implement cognitive
mastery learning in APT.  Each lesson in the tutor is
divided into sections that introduce a set of related
programming production rules.  The student reads
corresponding text that describes the section topic, then
completes a fixed set of required programming problems.
This set is typically sufficient to provide at least two
opportunities to apply each programming rule introduced
in the section.  Following this fixed set of problems,
individual difference weights are estimated based on the
student’s cumulative errors across sections and the
production rule learning and performance parameters
adjusted accordingly.  The tutor then presents remedial
problem in the section until the probability that the student
has learned each rule in the section has reached a criterion
value, typically 0.95.  As long as any rules remain below
this mastery criterion, the tutor will select a problem from
among remaining problems whose solution contains the
highest proportion of “sub-mastery” productions.



p(L0)

p(T)

p(G)

p(S)

Initial Learning

Acquisition

Guess

Slip

the probability a rule is in the learned state prior to

the first opportunity to apply the rule

the probability a rule will move from the unlearned to

the  learned state at each opportunity to apply the rule

the probability a student will guess correctly if a rule

is in the unlearned state

the probability a student will slip (make a mistake)

if a rule is in the learned state

Figure 2.  The learning and performance parameters in knowledge tracing.

The Skill Meter, as shown in the upper right corner of
Figure 1, displays the tutor’s estimate of the student’s
current knowledge state.  Each entry represents a
production rule in the underlying model and the shaded
histogram displays the tutor’s estimate of the probability
that the student has learned the rule.  When this probability
reaches the mastery criterion, the rule is checked off.  In
cognitive mastery, students complete problems in each
curriculum section until all the rules are checked.

Empirical Evaluations of Knowledge Tracing
Knowledge tracing and cognitive mastery learning have
been evaluated in a series of experiments.  In each of these
studies students work through the first lesson in the APT
Lisp curriculum, much as students do in our self-paced
programming course.  As described earlier, the lesson is
divided into sections that essentially introduce a set of
related productions.  In each section the student reads a
section of text, then completes a fixed set of programming
problems with the tutor.  Students in cognitive mastery
conditions then continue completing remedial problems
until mastering all the rules introduced in the section, i.e.,
until p(L) has reached the criterion value (typically 0.95)
for each production in the set.  Students also complete one
or more quizzes during a study.  Each quiz requires the
students to complete additional programming exercises
similar to the tutor exercises, but with no tutorial
assistance.

The following sections summarize empirical results
concerning several aspects of cognitive mastery learning:
(1) adaptivity to students and impact on test performance,
(2) external validity in predicting test performance,  and (3)
some evidence of the limits of cognitive mastery learning.

Adaptivity:  Practical Impact on Problem Solving
and Test performance
To examine the practical consequences of cognitive
modeling, we have measured both the amount of remedial
problem solving and the impact on test performance.

Remedial Problem Solving.  The cognitive mastery
procedure is fairly reactive to differences in student
problem solving performance in the tutor.  Across three
studies with an average of 28 required problems,  students
in the cognitive mastery condition averaged 17.33 remedial
problems, or about 64% more problems than the minimum
required set.  The minimum number of  remedial problems
required by any students averaged 0.33 across the three
studies and the maximum number of remedial problems
required by any student averaged 62.33.  Total time to
complete the required and remedial problems in these
studies averaged 53.6 minutes.  The minimum time
required by any student averaged 22.6 across the three
studies and the maximum time averaged 132.7 minutes.

Test Performance Comparison.  We initially examined
the impact of cognitive mastery learning on test
performance in the context of a  full-semester self-paced
programming course.  Half the students in the class
completed a fixed set of problems with the tutor while the
other half worked to cognitive mastery.  Students in the
baseline condition averaged 87% correct across six quizzes
while students in the cognitive mastery condition averaged
95% correct.  On the final exam students in the baseline
condition scored 72% correct while students in the
cognitive mastery condition scored 85% correct.  The first
effect was significant and the second marginally
significant.



We were able to conduct the same comparison for the
final cumulative quiz in two of our lab studies.  In one
study the students in the baseline (fixed curriculum)
condition scored 55% correct on the quiz and students in
the cognitive mastery condition scored 66%.  In the second
study students in the baseline condition scored 68% correct
while students in the cognitive mastery condition scored
81% correct.  These effects are both reliable.  In summary,
across these four comparisons, students in the cognitive
mastery condition are averaging about a letter grade better
on tests than students in the baseline fixed curriculum
condition.

Learning Effort Comparison. We have directly
comparable learning time data for the fixed curriculum and
cognitive mastery conditions in two of our laboratory
studies.  Across these two studies students in the fixed
curriculum condition completed 27 tutor problems on
average, while the cognitive mastery students completed an
average of 43 total problems.  Students in the baseline
condition spent an average of 41.2 minutes completing
their problems while students in the cognitive mastery
condition spent 49.0 minutes.  Thus, while students in the
cognitive mastery condition completed 59% more
problems than students in the baseline condition, they only
spent 19% more time completing the tutor lesson.  This
suggests that students are adapting to the tutor at the same
time the tutor is adapting to students.  Students in the
cognitive mastery condition who have an unknown and
theoretically unlimited number of problems to complete
may be hurrying through the problems more than the
students in the fixed curriculum condition.

External Validity:  Predicting Test Performance
In addition to examining the practical impact of knowledge
tracing, we have empirically validated the predictive
validity of the modeling process.  Students receive
immediate feedback at each problem solving step in the
tutor, so we can assume the student is always on a
recognizable solution path.  Under these conditions we can
predict the probability of a correct action at each step with
the equation:

p(Cis) = p(Lrs) * (1 - p(Sr))
+ (1 -  p(Lrs)) * p(Gr)          [2]

That is, p(Cis), the probability that a student s will perform
a correct action at goal i is the sum of two products:  (1)
the probability that an appropriate rule r is in the learned
state for student s times the probability of a correct
response if the rule is in the learned state (p(Sr) is the slip
parameter in Figure 2), and (2) the probability that an
appropriate rule r is not in the learned state for student s
times the probability of a correct guess if the rule is not in
the learned state (p(Gr) is the guess parameter in Figure 2).

Students may deviate from recognizable solution paths in
the test environment, but we can compute the probability
of completing an entire test problem correctly with the
expression:

                                  Πp(Cis)                        [3]

the product of the probabilities that the student will
respond correctly at each successive step in the problem.
We have completed two assessments of the predictive
validity of the knowledge tracing model and it has proven
quite successful (Corbett and Anderson, 1995; Corbett and
Knapp, 1996).  In the first study the model slightly
overestimated average student test accuracy (86%
predicted test vs 81% actual performance) and the
correlation across students of actual and predicted scores
was 0.66. In the second study the model again slightly
overestimated average test accuracy (71% predicted vs
62% actual) and the correlation across students of actual
and predicted scores was 0.74.

Cognitive Mastery:  Summary of Successes
and Evidence of Limitations

In summary, cognitive mastery has proven successful by
several measures.  Average posttest scores are reliably
higher for students who work to cognitive mastery than for
students who complete a fixed set of required tutor
problems. In addition,  up to twice as many cognitive
mastery students reach “A” level performance (defined as
90% correct) on tests as students in the baseline fixed
condition.  While time on task is greater in the cognitive
mastery than baseline condition, the individualized
remediation of cognitive mastery nevertheless reduces total
time invested by a group of students in reaching mastery.
(The number of remedial problems varies substantially
across students and, in the absence of such
individualization, mastery could only be ensured if all
students complete the greatest number of problems any
student needs).  Finally, the knowledge tracing model that
guides mastery learning in the tutor reliably predicts
individual differences in posttest performance across
students.

Despite these successes there are some shortcomings in
cognitive mastery learning.   First, a substantial proportion
of students in the cognitive mastery condition fail to reach
mastery or “A” level performance.  Second, there is
typically an inverse correlation between (a) the number of
remedial problems students require to reach mastery in the
tutor and (b) student’s test accuracy.  The students who
struggle the most in the tutor lesson and require more
remedial problems to reach mastery tend to perform worse
on the test.  Finally, the tutor’s knowledge tracing model
slightly but systematically overestimates average test
performance and empirical evidence indicates that the
magnitude of this overprediction is strongly correlated with



the depth of each student’s domain knowledge (Corbett
and Knapp, 1996; Corbett and Bhatnagar, 1997).  These
shortcomings provide converging evidence that  there are
diminishing education benefits of simply providing more
and more remedial problems.

Future Directions
More recently, we have begun to develop “perspicuous”
problem solving interfaces that are intended improve
learning efficiency by helping students make more sense of
problem solving as they work.  We have introduced two
instructional interventions in the Lisp Programming tutor
that have very difference impacts on learning, (a) animated
graphical feedback, designed to help students understand
subtle representational distinctions and (b) subgoal
scaffolding, designed to help students formulate plans.
Plan scaffolding dramatically reduces learning time
without changing test performance, while augmented
feedback substantially increases test accuracy without
affecting learning time (Corbett and Trask, in press).  Two
current questions are how to generalize these interface
modifications and whether we can further enhance their
effectiveness by making them adaptively available to some
students and not others.

Acknowledgements
This research was supported by the Office of Naval
Research grant number N00014-95-1-0847 and by NSF
grant number 9720359 to CIRCLE:  Center for
Interdisciplinary Research on Constructive Learning
Environments

References

Anderson, J. R. 1993. Rules of the mind.  Hillsdale, NJ:
Lawrence Erlbaum.

Anderson, J. R.; Corbett, A.T.; Koedinger, K.R.; and
Pelletier, R. 1995. Cognitive tutors:  Lessons learned.
Journal of the Learning Sciences. , 4:167-207.

Atkinson, R.C. 1972. Optimizing the learning of a second-
language vocabulary.  Journal of Experimental
Psychology, 96:124-129.

Bloom, B. S. 1968. Learning for mastery.  In Evaluation
Comment, 1.  Los Angeles:  UCLA Center for the Study of
Evaluation of Instructional Programs.

Carroll, J. B. 1963. A model of school learning.  Teachers
College Record, 64:723-733.

Corbett, A.T.; and Anderson, J.R. 1995.  Knowledge
tracing:  Modeling the acquisition of procedural

knowledge.  User modeling and user-adapted interaction,
4:253-278.

Corbett, A.T.; and Bhatnagar, A. 1997.  Student modeling
in the ACT Programming Tutor: Adjusting a procedural
learning model with declarative knowledge.  Proceedings
of the Sixth International Conference on User Modeling.
New York:  Springer-Verlag Wein.

Corbett, A.T.; and Knapp, S. 1996.  Plan scaffolding:
Impact on the process and product of learning.  In C.
Frasson, G. Gauthier, & A. Lesgold, (Eds.) Intelligent
tutoring systems:  Third international conference , ITS ‘96.
New York:  Springer.

Corbett, A.T.; and Trask, H.J. in press. Instructional
Interventions in Computer-Based Tutoring:  Differential
Impact on Learning Time and Accuracy.  Proceedings of
ACM CHI’96 Conference on Human Factors in Computing
Systems.

Guskey, T. R.; and Pigott, T.D. 1988. Research on group-
based mastery learning programs:  A meta-analysis.
Journal of educational research, 81:197-216.

Keller, F. S. 1968. "Good-bye teacher...."  Journal of
applied behavioral analysis, 1:79-89.

Kulik, C. C.; Kulik, J.A.; and Bangert-Drowns, R.L. 1990.
Effectiveness of mastery learning programs:  A meta-
analysis.  Review of Educational Research, 60:265-299.

Kulik, J. A.; Kulik, C.C.; and Cohen, P.A. 1979. A meta-
analysis of outcomes studies of Keller's Personalized
System of Instruction.  American Psychologist, 34:307-
318.

Resnick, L. B. 1977. Assuming that everyone can learn
everything, will some learn less?  School Review, 85:445-
452.

Resnick, L. B.; and Resnick, D.P. 1992. Assessing the
thinking curriculum:  New tools for educational reform.  In
B. Gifford & M. O'Connor (eds.)  Changing assessments:
Alternative views of aptitude, achievement and instruction.
Boston:  Kluwer.

Shepard, L. A. 1991. Psychometrician's beliefs about
learning.  Educational Researcher, 20:2-16.

Slavin, R. E. 1987. Mastery learning reconsidered. Review
of educational research, 57:175-213.


