Well Founded Semantics as Two-dimensional Here-and-There

Pedro Cabalar
AI Lab. - Dept. of Computer Science
University of Corunna
Corunna, Galicia, SPAIN
cabalar@dc.fi.udc.es

Abstract
This work presents a new logical characterization of well founded semantics that provides, as interesting innovation, a fully semantic-oriented treatment of program connectives without relying on any syntactic restriction or transformation. Our work is inspired by a recent research line which has established a nice correspondence between stable models and a particular minimization for the monotonic logic of here-and-there. We identify a generalization of the latter (we have called two-dimensional here-and-there) that captures Przymusinski's 3-valued stable models and show that, as in the 2-valued case, the here-and-there version is more economical in the set of models involved in the minimization process.

Introduction
The main goal of declarative logic programming is to provide a semantic interpretation of a logic program following, as close as possible, standard logical definitions. However, the two most successful declarative semantics for logic programs, stable models (Gelfond & Lifschitz 1988) and well founded semantics (WFS) (van Gelder, Ross, & Schlipf 1991), achieve this goal only up to a partial extent. Both cases have been traditionally defined in terms of a syntactic transformation (called the modulo or reduct of the program) and under the assumption of a particular shape for program rules.

Fortunately, this lack of declarativeness has been practically overcome for the stable models semantics, thanks to two different contributions. The work in (Lifschitz 1994) introduced the logic of Minimal Belief and Negation as Failure (MBNF), a simplification of (Lin & Shoham 1992), that allows encoding propositional Default Logic in a modal framework. Since stable models can be seen as a subset of Default Logic, MBNF indirectly provided a semantic specification for them that was, in fact, later used for studying properties of logic programs (see for instance (Lifschitz, Tang, & Turner 1999)).

A different research line (Pearce 1997) established an interesting identification of stable models as particular minimal models under Heyting's monotonic logic of here-and-there (a stronger version of intuitionistic logic). The result provides the advantages of MBNF, avoiding syntactic dependence, but fits better for stable models, since MBNF uses more complex structures for encoding Default Logic. Besides, as recently proved in (Lifschitz, Pearce, & Valverde 2000), it provides the nice property of capturing strong equivalence of logic programs, that is, two programs behave in the same way, with respect to addition of rules, iff they have the same set of here-and-there models.

Despite of all this work on "declarativeness" for stable models, there is, however, practically no similar approach for WFS. In fact, due to the availability of an efficient computation algorithm for WFS, great part of the literature describes the semantics as the execution of the algorithm itself, which clearly strays from the declarative point of view. The strong relation between stable models and WFS, as proved for instance in (Przymusinski 1994), seems to point out that the achievements of the here-and-there and MBNF encodings could be also obtained for the WFS case. In fact, in (Pearce 1998) a first characterization of WFS using here-and-there was proposed, although, as explained in the conclusions of that work, it was not completely successful, since it finally needed the use of the modulo operation.

In this paper we go one step further, presenting a semantic characterization of WFS that definitively avoids the use of syntactic transformations. To this aim, we use as monotonic basis what we have called the two-dimensional extension of here-and-there. The definition of well founded model is then reduced to a simple minimization process among models of this logic. We also show that, as happens with stable models, the here-and-there formulation for WFS is more economical, in the sense of considering less models for the minimization that yields the well founded models.

The methodology we have followed is to extrapolate the study done in (Przymusinski 1994), which shows that WFS can be obtained by generalizing stable models to the 3-valued case, and apply this result to here-and-there, which can also be somehow considered as a 3-valued approach. This informally explains the term
of “two-dimensional”: we apply 3-valuation to two different “directions.”

The paper is organized as follows. In the next section, we present the basic concepts of 3-valued logic used in the paper. After that, we recall the original definition of 3-valued stable models and propose a slight variation which will be more useful for comparison purposes. Next, we present our main contribution, two-dimensional here-and-there, specifying the minimization process that captures WFS. The last two sections respectively include a brief comparison to “usual” here-and-there, and the conclusions and future work.

Three valued logic: L₃

Given a set of atoms Σ, called the signature, L₃ syntax is formally defined as follows. If φ, ψ are L₃ formulas and p is any atom then:

\[p, \neg \phi, \phi \lor \psi, \top, \bot, u, \bot \phi \]

are also L₃ formulas. The only additions with respect to propositional syntax are the constant u (read as “undefined”) and the unary operator 1. The formula 1φ is never undefined and points out whether φ is evaluated to true or not. We will intuitively read it as “φ is believed.” Let us include the derived operators ∧, ⊃, =, defined in the usual way, and the new conditional:

\[\psi \leftarrow \phi \overset{\text{def}}{=} (1 \phi \lor 1 \neg \psi) \land (1 \neg \psi \lor 1 \neg \phi) \]

A literal is any atom p or its negation \(\neg p \). Given a set of atoms I, by \(\overline{I} \) we denote \(\Sigma - I \). A 3-valued interpretation, or belief set, is a pair of sets of atoms \((I^h, I^t)\) satisfying \(I^h \subseteq I^t \). Intuitively, atoms in \(I^h \) are “believed,” atoms in \(I^t \) are “disbelieved” and all the rest are “undefined.” Notice that in the literature, it is perhaps more usual to find the alternative shapes:

- a pair of sets of atoms \((I^+, I^-)\), where \(I^+ \cap I^- = \emptyset \),
- a set \(L \) of literals which is consistent (it contains no pair \(p, \neg p \)).

It is clear that we may indistinctly use any of the three representations, since they satisfy the correspondence:

\[I^+ = I^h = \{ p : p \in L \} \]
\[I^- = \overline{I^t} = \{ p : \neg p \in L \} \]

However, our choice has not been casual, since \((I^h, I^t)\) is precisely the structure used by here-and-there, and so, will be better for comparison purposes. We say that \(I^h \) and \(I^t \) are respectively the “here” and “there” components of the belief set.

Two ordering relations among belief sets, \(\leq \) and \(\preceq_F \), will be defined:

i) \((I^h, I^t) \preceq_F (J^h, J^t) \iff I^h \subseteq J^h \text{ and } I^t \subseteq J^t \).

ii) \((I^h, I^t) \leq (J^h, J^t) \iff I^h \subseteq J^h \text{ and } J^t \subseteq I^t \).

In (Przymusinski 1994), these relations receive the names of standard and Fitting’s ordering respectively. The \(\leq \) relation intuitively represents that one belief set is “less believing” than the other, i.e., it has less believed atoms and more disbelieved ones. The other relation, \(\preceq_F \), measures the degree of knowledge, so that one belief set contains less knowledge, i.e., more undefined atoms than the other. Therefore, belief sets with shape \((I, I)\), which receive the name of complete, are \(\preceq_F \)-maximal, since they contain no undefined atom.

Definition 1 (L₃ valuation)

The valuation of a formula φ with respect to the belief set \(B = (I^h, I^t) \), denoted as \(\phi^B \), is a value among \(\{0, 1/2, 1\} \) (false, unknown or true, respectively), assigned following the next conditions:

1) \(p^B = \begin{cases} 1 & \text{if } p \in I^h \\ 0 & \text{if } p \in I^t \\ 1/2 & \text{otherwise} \end{cases} \)

2) \((\neg \phi)^B = 1 - \phi^B \)

3) \((\phi \lor \psi)^B = \max(\phi^B, \psi^B) \)

4) \(T^B = 1, \bot^B = 0 \text{ and } u^B = 1/2 \)

5) \((1\phi)^B = \begin{cases} 1 & \text{if } \phi^B = 1 \\ 0 & \text{otherwise} \end{cases} \)

Examining the valuation for the derived ‘ϕ’ operator, it can be easily seen that coincides with the conditional presented in (Przymusinski 1994):

\((\psi \leftarrow \phi)^B = \begin{cases} 1 & \text{if } \phi^B = 1 \\ 0 & \text{otherwise} \end{cases} \)

A belief set \(B \) satisfies a formula \(\phi \) when \(\phi^B = 1 \). We say that \(B \) is a model of a theory \(T \) when it satisfies all its formulas.

The following proposition asserts that L₃ collapses into classical propositional logic when we only consider complete belief sets.

Proposition 1 Let \(T \) be a L₃ theory and \(T' \) a propositional theory, result of replacing in \(T \) any expression \(\phi \) by \(\phi \). Then, for any set of atoms \(I \), the complete belief set \((I, I)\) is a model of \(T \) iff \(I \) is a 2-valued model of \(T' \).

Three-valued stable models

In order to deal with logic programs, L₃ syntax needs to be extended with a new unary pseudo-operator \(\neg \) used for default negation. This pseudo-operator is not directly interpreted as the rest of connectives, but needs to be ruled out by a particular syntactic transformation, which is only applicable on theories with a restricted shape: logic programs.

A logic program is defined as a collection of rules which are in their turn defined as follows. If \(a_1, \ldots a_k, \ldots \)
\(b_1, \ldots, b_n, c_1, \ldots, c_m \) denote atoms, a general rule is an expression:
\[
a_1 \lor \cdots \lor a_k \leftarrow b_1 \land \cdots \land b_n \land \text{not } c_1 \land \cdots \land \text{not } c_m \quad (1)
\]
with \(k > 1, n \geq 0, m \geq 0 \). A program is said to be normal if \(k = 1 \) for all rules and, moreover, is said to be positive if \(m = 0 \) for all rules.

Definition 2 (Modulo)
Given a program \(\Pi \) and a belief set \(B \), we define \(\Pi^B \) (read "\(\Pi \) modulo \(B \)") as the program resulting from replacing in \(\Pi \) each expression \(\text{not } c_i \) by \(T \) (resp. \(\bot \), resp. \(u \)) if \(c_i^B = 0 \) (resp. 1, resp. 1/2).

The program \(\Pi^B \) does not contain default negation, and so, it is a \(L_3 \) theory. Therefore, it is possible to study the set of \(L_3 \) models of \(\Pi^B \) and define a particular models selection among them.

Definition 3 (3-valued stable model)
A 3-valued stable model \(B \) of a program \(\Pi \) is any \(\leq^f \)-minimal model of \(\Pi^B \).

In (Przymusinski 1994) it is shown that a positive program has a unique 3-valued stable model. When the program \(\Pi \) is normal, \(\Pi^B \) is positive, and so, it is possible to define the function \(\Gamma(B) \) that denotes the unique 3-valued stable model of \(\Pi^B \). So, for normal programs, 3-valued stable models can be characterized as fixpoints of \(\Gamma: B = \Gamma(B) \).

Definition 4 (Well founded model)
A well founded model \(B \) of a program \(\Pi \) is any \(\leq^f \)-minimal 3-valued stable model.

Again, for the case of normal programs, it has also been proved that there exists a \(\leq^f \)-minimum 3-valued stable model, i.e., a unique well founded model.

Avoiding the modulo operation: NF3
As we have seen, the previous definitions do not provide an actual semantic treatment for the default negation. Informally speaking, the reason for this is that the minimization process actually handles two different interpretations: one which we may call the \textit{a priori} assumption (used for ruling out the \(\text{not } \)'s), and the other for interpreting the resulting \(L_3 \) theory and making the minimization. Therefore, a possibility for providing a semantics for \(\text{not } \) is simultaneously handling two belief sets, rather than one\(^2\). Let us define a new framework, NF3 (standing for 3-valued negation as failure), for capturing this idea\(^4\).

The syntax of NF3 is the one from \(L_3 \) plus the unary operator \(\text{not } \). Notice that we allow now full nesting of this operator with respect to any connective. A NF3 interpretation, \(M \), is defined as a pair of belief sets \((B^h, B^t) \). Intuitively, \(B^t \) will be used for interpreting default negation, whereas \(B^h \) will correspond to models of the modulo program. Again, the choice for the superindices is not casual: we say that \(B^h \) and \(B^t \) are respectively the "here" and "there" components of \(M \). Notice that each belief set is in its turn decomposed into two sets of atoms also superindexed by \(h \) and \(t \).

For clarity sake, we will reserve the letters \(B \) and \(I \) for respectively representing belief sets and sets of atoms, using the notation:
\[
B = (B^h, B^t) \quad \text{and} \quad I = (I^h, I^t)
\]
and the rest of operators are directly obtained from \(L_3 \) valuation (after properly replacing \(B \) by \((M, w) \)).

In NF3, a model of a theory \(T \) is defined as any interpretation \(M \), such that \(\phi^{(M,x)} = 1 \) for all \(\phi \in T \). As we can see, all the atoms are initially valuated in the \(B^h \) belief set. When we reach a \(\text{not } \) subformula, the selected component changes to \(t \), and so, all the atoms in the scope of \(\text{not } \) are valuated in the \(B^t \) belief set.

Proposition 2
An interpretation \((B^h, B^t) \), with \(B^h = (I^h, I^{ht}) \) and \(B^t = (I^h, I^{tt}) \), satisfies a general rule like (1) if the following two conditions:
\[
\begin{align*}
\forall b_i \in I^{hh} \land \forall c_i \in I^{ht} & \Rightarrow \exists a_i \in I^{hh} \quad (C1) \\
\forall b_i \in I^{ht} \land \forall c_i \in I^{th} & \Rightarrow \exists a_i \in I^{ht} \quad (C2)
\end{align*}
\]
are true\(^5\).

Proof
Conditions C1 and C2 correspond to the unfolding of any \(\psi \leftarrow \phi \) into \(I\phi \supset I\psi \) and \(I\neg \psi \supset I\neg \phi \), respectively. After examining the valuation of formulas, we directly obtain C1 from the first formula and, from the second we one obtain:
\[
\begin{align*}
\forall a_i \notin I^{hh} & \Rightarrow \exists b_i \notin I^{ht} \text{ or } \exists c_i \in I^{ht} \quad \text{which is simply C2, expressed in its contrapositive shape.}
\end{align*}
\]
We prove now that we have actually captured the effect of the modulo transformation:

Lemma 1
The \(L_3 \) models \(B^h \) of the program \(\Pi B^t \) correspond to the NF3-models \((B^h, B^t) \) of \(\Pi \) fixing \(B^t \).

Proof
In NF3, when we study models \(B = (B^h, B^t) \) fixing \(B^t \), the valuation of \(\text{not } \) formulas is always known. Thus, we have:
\[
\forall, \exists \text{ and } \Rightarrow \text{ are handled here as metalogical symbols with their usual meaning.}
\]
1. \((\text{not } c_i)^B = 0 = (\perp)^B\) if \(c_i \in I^h\)

2. \((\text{not } c_i)^B = 1 = (\top)^B\) if \(c_i \notin I^t\)

3. \((\text{not } c_i)^B = 1/2 = (u)^B\) if \(c_i \in I^{tt} - I^h\)

which allow making the modulo replacements in \(\Pi\) as a NF3 theory. Then, the formulas in \(\Pi^B\) are exclusively valuated in the \(B^h\) component, following exactly the same valuation as in \(L_3\).

For commodity sake, we reconsider the \(\leq\) and \(\leq_F\) orderings for NF3-interpretations and define:

i) \((B^h,B^t) \leq_h (C^h,C^t)\) iff \(B^t = C^t\) and \(B^h \leq C^h\),

ii) \((B^h,B^t) \leq_t (C^h,C^t)\) iff \(B^t \leq_F C^t\).

that is, in \(\leq_h\), we fix the \(B^t\) part (the set used for the modulo) and get the \(\leq\)-minimal belief set. A minimal model wrt \(\leq_h\) (resp. \(\leq_t\)) is said to be \(h\)-minimal (resp. \(t\)-minimal).

Finally, the following result shows that 3-valued stable models and well founded models can be identified as a particular kind of NF3 minimal models, using the \(\leq_h\) and \(\leq_t\) orderings.

Theorem 1 A belief set \(B\) is a 3-valued stable model of \(\Pi\) iff \((B,B)\) is \(h\)-minimal among NF3-models of \(\Pi\). Moreover, \(B\) is well founded model of \(\Pi\) iff \((B,B)\) is \(t\)-minimal among total \(h\)-minimal models of \(\Pi\).

Proof

It is straightforward from lemma 1 and the definitions of \(\leq_h\) and \(\leq_t\).

From now on, when talking about 3-valued stable models and well founded models we will use their NF3 characterization obtained above, rather than their original \(L_3\) shape.

Two-dimensional Here-and-There: HT2

An HT2 formula is recursively defined as follows. If \(p\) is an atom and \(\phi, \psi\) are HT2 formulas, then the following expressions are also HT2 formulas:

- \(\perp, \top, p, \neg \phi, \phi \lor \psi, \neg \phi, \phi \rightarrow \psi\)

A one-dimensional world is any element of the set \((h, t)\). We define the accessibility relation \(R\) so that \(R h h, t R t\) and \(h R t\). A two-dimensional world is a pair \(x y\) where \(x, y\) are one-dimensional worlds. Two accessibility relations among worlds, \(R_1\) and \(R_2\), will be defined as follows:

i) \(xy R_1 x'y'\) iff \(x R x'\) and \(y R y'\)

ii) \(xy R_2 x'y'\) iff \(y \neq y'\)

iii) \(hy R_2 ty'\) iff \(y \neq y'\)

Figure 1 graphically shows the three relations, \(R, R_1\) and \(R_2\). Notice that if we make the \(y\) components to coincide, that is \(hh = ht = h\) and \(tt = tt = t\), \(R_1\) and \(R_2\) collapse into \(R\).

Definition 6 (HT2-Interpretation)

An HT2-interpretation is defined as the pair \(M = (B^h, B^t)\) where \(B^h = (I^h, I^h)\) and \(B^t = (I^t, I^t)\) are belief sets satisfying \(B^h \leq B^t\).

Figure 1 Accessibility relations among worlds.

Notice that the only difference with respect to a NF3-interpretation is that we additionally require \(B^h \leq B^t\). Thus, we will sometimes use HT2-interpretations in the role of NF3 ones. The intuition behind the additional requirement, \(B^h \leq B^t\), is that we have further incremented the uncertainty of a belief set \(B\), unfolding it into a skeptical set \(B^h\) and a credulous set \(B^t\). Thus, requiring \(B^h \leq B^t\) means that the skeptical set must be “less believing” than the credulous.

An interpretation of shape \((B, B)\) is said to be total (our skeptical and credulous viewings coincide). Note that there exists a certain analogy between total interpretation (associated to \(x\)-coordinate) and complete belief set (associated to \(y\)-coordinate). Anyway, it is possible to have a total interpretation \((B, B)\) for which \(B\) is not complete, and vice versa, to have \(B^h, B^t\) complete, but \((B^h, B^t)\) not total. In fact, as we will see later, this last case corresponds to the reduction to 2-valued stable models.

From the definitions of belief set and \(\leq\) it follows:

\(I^w \subseteq I^{w'}\) iff \(w R_1 w'\)

for any \(w, w'\) two-dimensional worlds.

Definition 7 (Satisfaction of a formula)

We recursively define the satisfaction of a formula \(\phi\) by an interpretation \(M = (B^h, B^t)\) and a two-dimensional world \(w\), written \((M, w) \models \phi\), in the following way:

1. \((M, w) \models p\) iff \(p \in I^w\)

2. \((M, w) \models \neg \phi\) iff \((M, w) \not\models \phi\)

3. \((M, w) \models \phi \lor \psi\) iff \((M, w) \models \phi\) or \((M, w) \models \psi\)

4. \((M, w) \models \phi \rightarrow \psi\) iff for all \(w'\) such that \(w R_1 w'\), \((M, w') \models \phi \rightarrow \psi\)

5. \((M, w) \models \neg \phi\) iff for all \(w'\) such that \(w R_2 w'\), \((M, w') \not\models \phi\)

Notice that although the semantic structures are almost identical to NF3, the satisfaction relation relies on the usual two truth values – given \(M\) and \(w\), any formula \(\phi\) is either satisfied or not satisfied. We say that
an HT²-interpretation M is a model of a theory T iff
(M, hh) = φ for all φ in T.

Lemma 2 An HT²-interpretation (B^h, B^t), with
B^h = (I^h, I^t) and B^t = (I^h, I^t), is model of a general
rule like (1) iff the following four conditions:
\[\forall b_i \in I^h \text{ and } \forall c_i \in I^t \Rightarrow \exists a_i \in I^h \] (D1)
\[\forall b_i \in I^h \text{ and } \forall c_i \notin I^t \Rightarrow \exists a_i \in I^t \] (D2)
\[\forall b_i \in I^t \text{ and } \forall c_i \notin I^h \Rightarrow \exists a_i \in I^h \] (D3)
\[\forall b_i \in I^t \text{ and } \forall c_i \notin I^t \Rightarrow \exists a_i \in I^t \] (D4)

are true.

Proof
It is obtained by inspecting the satisfiability of ‘→’ and ‘not’. Conditions D1, D2, D3 and D4 respectively cor-
respond to the propagation of the implication to worlds hh, ht, th, tt, all of them R₁-accessible from hh. As for each negation not cₙ, it would strictly correspond to
(cₙ \notin I^t \text{ and } cₙ \notin I^h) for D1 and (cₙ \notin I^h \text{ and } cₙ \notin I^h) for D2. However, since I^h \subseteq I^t \text{ and } I^h \subseteq I^h, the ad-
ditional conditions on I^h \text{ and } I^t have been removed from the antecedents, since they are redundant.

We first directly notice that conditions D1 and D2 are re-
spectively identical to conditions C1 and C2 we ob-
tained for NF₃ satisfaction of (1). This directly means that:

Proposition 3 If an HT²-interpretation M =
(B^h, B^t) is an HT²-model of a logic program Π then M
is a NF₃-model of Π.

Besides, it can be observed that, for any total inter-
pretation (B, B), conditions D1 and D2 respectively collapse into D3 and D4. This allows proving the fol-
lowing useful result:

Lemma 3 Given a general logic program Π, if (B^h, B^t)
is an HT²-model of Π, then (B^t, B^t) is also HT²-model
of Π.

Proof
First, given any rule (1), from conditions D1-D4 we ob-
serve that the atoms cₙ are valuated in the there component of the HT²-interpretation. Therefore, interpre-
tations (B^h, B^t) and (B^t, B^t) will valuate them in the
same way. Second, since (B^h, B^t) is model of (1), it
satisfies conditions D3 and D4, which are also valuated
using exclusively B^t. Finally, since (B^t, B^t) is total,
D3 and D4 respectively collapse into D1 and D2, and so
(B^t, B^t) also satisfies D1 and D2, which means that
is model of (1).

Given a logic program Π let us define SUBTOTAL(Π) as
the set of NF₃-models (B^h, B^t) such that B^h \leq B^t
and (B^t, B^t) is NF₃-model of Π. As we can see, the
first restriction (B^h \leq B^t) directly implies that NF₃-
models in SUBTOTAL(Π) have the shape of HT²-
interpretations. Another important remark is that any
NF₃-model M \notin SUBTOTAL(Π) is irrelevant for com-
puting the 3-valued stable models. The following the-
orem identifies the set of HT²-models of Π exact as
SUBTOTAL(Π).

Theorem 2 The pair of belief sets (B^h, B^t) is
HT²-model of a logic program Π iff (B^t, B^t) \in
SUBTOTAL(Π).

Proof
\[\Rightarrow \]

It is straightforward. From Lemma 3 we have that (B^t, B^t) is also HT²-model. From proposition
3, any HT²-model is NF₃-model. Then, both
(B^h, B^t) and (B^t, B^t) are NF₃-models and, since any
HT²-interpretation satisfies B^h \leq B^t, we conclude
(B^h, B^t) \in SUBTOTAL(Π).

First note that (B^h, B^t) has the shape of an HT²-
interpretation, since B^h \leq B^t. As (B^h, B^t) is a NF₃-
model, for any rule (1), it satisfies conditions C1 and
C2, i.e., D1 and D2. However, as (B^t, B^t) is also NF₃-
model, it also satisfies D1 and D2 which, since we han-
dle a total interpretation, collapse in their turn into D3
and D4. Finally, this implies that (B^h, B^t) also satisfies
D3 and D4, since it has the same there component than
(B^t, B^t).

Theorem 3 The total h-minimal HT²-models of Π are
exactly its 3-valued stable models.

Proof Since HT²-models of Π exactly correspond
to SUBTOTAL(Π), and any NF₃-interpretation M \notin
SUBTOTAL(Π) is irrelevant for computing 3-valued
stable models, we conclude that the sets of models in-
volved in the minimization are identical in both cases.
Then, requiring to be total and h-minimal is exactly the
definition of the minimization done for 3-valued stable
model.

As a direct result from this theorem, we can apply
exactly the same minimization as in NF₃ for obtaining
well founded models in HT²: they correspond to
t-minimal models among total h-minimal models.

Relation to “one-dimensional”
Here-and-There

In this section we briefly comment what happens when
we add to HT²-interpretations the restriction of com-
pleteness of the belief sets. We say that any HT²-
interpretation (B^h, B^t) is complete iff both belief sets
are complete, that is, it has the shape B^h = (I^h, I^h),
B^t = (I^t, I^t). This restriction can also be identified
with reducing the set of worlds so that hh = ht = h
and th = tt = t which, as explained before, makes both
accessibility relations R₁ and R₂ collapse into the rela-
tion R from “one-dimensional” here-and-there.

The condition B^h \leq B^t directly becomes the more
usual I^h \subseteq I^t, present in here-and-there. With
respect to the ordering relations, notice that h-minimality
and t-minimality become exactly the ones defined in
(Pearce 1997) under the same name. Therefore, the
h-minimality definition allows identifying our total h-
minimal models as a generalization of the equilibrium
models presented there, which were proved to be the
2-valued stable models. As for the t-minimality, it was
also shown in (Pearce 1997) that 2-valued stable models are t-minimal. This means that, our second minimization, required for obtaining the well founded models, does not yield any effect on complete stable models.

Notice that, since complete interpretations satisfy $R = R_1 = R_2$, an important property verified for this case is the equivalence:

\[(M, w) \models \phi \rightarrow \bot \iff (M, w) \models \neg \phi \quad (2)\]

which for the two-dimensional case is not necessarily true. In fact, in usual here-and-there, this equivalence allows defining \neg as an operator derived from the implication \rightarrow. In HT2, however, it is necessary to separate the accessibility relations for both operators if we wish to capture WFS. For instance, if we redefine R_2 to be equal to R_1, a simple logic program like:

\[p \leftarrow \neg p \quad (3)\]

leads to two total models, $B^1 = B_1 = (\{p\}, \{p\})$ and $B^2_2 = B_2^2 = (\emptyset, \{p\})$, but none of them are h-minimal. Therefore, with R_2 made equal to R_1, this program would not have “well founded model.” Using the R_2 relation proposed in this work, the models below (B^1_2, B^2_2) are ruled out, and so, this model becomes the unique total h-minimal model, i.e., the unique well founded model.

Conclusions and future work

We have presented a fully declarative semantics for WFS that relies on a two-dimensional extension of the logic of here-and-there. As a result, we are able, not only to capture well founded semantics for normal programs, but also for any theory with full nesting capability for all the program connectives. The definition of WFS has been reduced to a simple minimization process among models for two-dimensional here-and-there. Besides, the models involved in the minimization process are less than the pairs (B_1, B_2), B_1 model of ΠP_2, involved in computing the well founded models, under its traditional definition.

There are, however, some open topics not covered yet. For instance, it remains to be done a comparison between the obtained extension of WFS and other proposed extensions based on the modulo transformation. Besides, we have not covered the case of extended logic programs, that is, programs with “classical” or “explicit” negation, although this extension is currently under study.

Another interesting question that is left open is whether the set of HT2-models characterize the property of strong equivalence, as happens in the 2-valued case, or not. It is clear that two programs with the same set of HT2-models will be strongly equivalent. However, the opposite may not necessarily hold and remains to be proved. Finally, one more open line to be studied is how slight changes in the accessibility relations R_1 and R_2 (respectively used for rule implication and default negation), affect the set of models, since this could lead to alternative semantics different from stable models and WFS.

Acknowledgements I would wish to thank to Vladimir Lifschitz for his comments and explanations on his recent joint work with Pearce and Valverde about strong equivalence. Thanks also to Ale Provetti for his review of an early version of this document, and to Ramon P. Otero and David Lorenzo for their useful discussions. This research is partially supported by the Government of Spain, grant FB97-0228, and by a research grant of the Government of Galicia for a stay of the author at the University of Texas at El Paso (April-June, 2000) with the KR group, to which I want to express my gratitude for their kind hospitality.

References

