
Computing Preferred and Weakly Preferred Answer Sets
by Meta-Interpretation in Answer Set Programming�

Thomas Eiter and Wolfgang Faber
Institut für Informationssysteme 184/3

TU Wien
Favoritenstr. 9-11, 1040 Wien, Austria

�eiter,faber�@kr.tuwien.ac.at

Nicola Leone
Department of Mathematics
University of Calabria
87030 Rende (CS), Italy

leone@unical.it

Gerald Pfeifer
Institut für Informationssysteme 184/2

TU Wien
Favoritenstr. 9-11, 1040 Wien, Austria

pfeifer@dbai.tuwien.ac.at

Abstract

Preferred and Weakly Preferred Answer Sets are extensions
to Answer Set Programming (ASP) which allow the user
to specify priorities for rules. In this paper we present a
first implementation of these formalisms by means of “meta-
interpreters” on top of DLV, an efficient engine for Disjunc-
tive ASP. This approach shows the suitability of ASP in gen-
eral and of DLV in particular for fast prototyping and experi-
menting with new languages and knowledge-representation
formalisms. In addition to two “straightforward” meta-
interpreters, we also present a graph-based meta-interpreter
that often allows for more efficient computations.

Introduction
Handling preference information plays an important role
in applications of nonmonotonic reasoning. A number of
different approaches for adding preferences to logic pro-
grams and related formalisms have been proposed, including
(Baader & Hollunder 1995; Brewka 1994; 1996; Buccafurri,
Leone, & Rullo 2000; Delgrande & Schaub 1997; Gelfond
& Son 1997; Marek & Truszczyński 1993; Rintanen 1998;
Sakama& Inoue 1996; Zhang & Foo 1997). They have been
designed for purposes such as capturing specificity or nor-
mative preference; see (Brewka & Eiter 1999) for a review
and discussion.
The following example shows a classical situation where

preference information should be used.

Example 1 (bird & penguin) Consider the following logic
program:

(1) ����.
(2) ����.
(3) �	
���:-��� 	
���� ����.
(4) 	
���:-��� �	
���� ����.
This program has two answers sets:
� � ������ �����

�	
���� and
� � ������ ����� 	
����. Assume that rule
��� has higher priority than ��� iff � � � (i.e., rule (1) has
the highest priority and rule (4) the lowest). Then,
� is no

�This work was supported by FWF (Austrian Science Funds)
under the projects P11580-MAT, P13871-INF, and Z29-INF.
Copyright c� 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

longer intuitive: indeed, 	
��� is concluded from (4); on the
other hand, (3) has higher priority than (4), and thus �	
���
should be concluded.

In (Brewka & Eiter 1999), the authors presented an ap-
proach to preferred answer sets which refines previous ap-
proaches for adding preferences to default rules in (Brewka
1994; 1996). It is defined for answer sets of extended logic
programs (Gelfond & Lifschitz 1991) and is generalized to
Reiter’s default logic in (Brewka & Eiter 2000). An impor-
tant aspect of this approach is that the definition of preferred
answer sets was guided by two general principles which, as
argued, a preference semantics should satisfy. As shown
in (Brewka & Eiter 1999), preferred answer sets satisfy the
principles, while almost all other semantics do not. Since, in
general, programs having an answer set may lack a preferred
answer set, also a relaxed notion of weakly preferred answer
sets was defined in (Brewka & Eiter 1999).
In this paper, we address the implementation of preferred

and weakly preferred answer sets, announced as future work
in (Brewka & Eiter 1999), on top of the DLV system. To
this end, we use a powerful technique, based on Answer Set
Programming (ASP), which can be seen as a sort of meta-
programming in ASP. A similar technique has been applied
previously in (Gelfond & Son 1997) for defining the seman-
tics of logic programming with defeasible rules (cf. Related
Work).
For implementing the preferred answer set semantics, we

provide a disjunctive logic program (DLP) � �� (the “meta-
program”) such that, given an arbitrary prioritized ground
logic program � encoded by a suitable set of facts � ���,
the answer sets of ��� �� ��� correspond (modulo a simple
projection function) precisely to the preferred answer sets of
� . This way, by running ��� � � ��� on the DLV system
(Faber, Leone, & Pfeifer 1999; Faber & Pfeifer since 1996),
we compute the preferred answer sets of � in a simple and
elegant way.
For implementing weakly preferred answer sets, we adopt

a similar approach, where the meta-interpreter additionally
uses the weak constraints feature (Buccafurri, Leone, &
Rullo 1997) of DLV.
The work reported here is important in several ways:

� We put forward the use of ASP for experimenting new

From: AAAI Technical Report SS-01-01. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

semantics by means of a meta-interpretation technique. The
declarativity of DLPs provides a new, elegant way of writing
meta-interpreters, which is very different from Prolog-style
meta-interpretation. Thanks to the high expressiveness of
DLP and DLV’s weak constraints, meta-interpreters can be
written in a simple and declarative fashion.
� The description of the “meta-programs” for implement-
ing preferred and weakly preferred answer sets has also a
didactic value: it is a good example on the way how meta-
interpreters can be built using ASP.
� Furthermore, the meta-interpreters provided are relevant
per se, since they provide an actual implementation of pre-
ferred and weakly preferred answer sets and allow for easy
experimenting with these semantics in practice. To our
knowledge, this is the first implementation of weakly pre-
ferred answer sets. An implementation of preferred answer
sets (also on top of DLV) is reported in (Delgrande, Schaub,
& Tompits 2000), by mapping programs into the framework
of compiled preferences (Delgrande & Schaub 1997). Our
implementation, as will be seen, is an immediate transla-
tion of the definition of preferred answer sets into DLV code,
and similar for weakly preferred answer sets. Weak con-
straints make the encoding of weakly preferred answer sets
extremely simple and elegant, while that task would have
been much more cumbersome else.
In summary, the experience reported in this paper con-

firms the power of ASP. It suggests the use of the DLV sys-
tem as a high-level abstract machine to be employed also as
a powerful tool for experimenting with new semantics and
novel KR languages.
It is worthwhile noting that the meta-interpretation ap-

proach presented here does not aim at efficiency; rather, this
approach fosters simple and very fast prototyping, which is
useful e.g. in the process of designing and experimenting
new languages.

Disjunctive LPs and Preferred Answer Sets
Disjunctive LPs
Syntax. DLPs use a function-free first-order language. As
for terms, strings starting with uppercase (resp., lowercase)
letters denote variables (resp., constants). A (positive resp.
negative) classical literal
 is either an atom � or a negated
atom ��, respectively; its complementary literal, denoted
�
, is �� and �, respectively. A (positive resp., negative)
negation as failure (NAF) literal � is of the form
 or ���
,
where
 is a classical literal. Unless stated otherwise, by lit-
eral we mean a classical literal.
A disjunctive rule (rule, for short) � is a formula

�� � � � � � �� :- ��� � � � � ��� ��� ����� � � � � ��� ���
(1)

where all �� and �� are classical literals and � 	 �� � 	
� 	 �. The part to the left of “:-” is the head, the part to
the right is the body of �, where “:-” is omitted if � � �.
We let ���� � ���� � � �, ��� be the set of head literals
and ���� � ����� � ����� the set of body literals, where
����� � ����. . . , ��� and����� � ������ . . . , ��� are the
sets of positive and negative body literals, respectively. An
integrity constraint is rule with empty head (� � �).

A weak constraint � is an expression of the form

�
 ��� � � � � ��� ��� ����� � � � � ��� ��� �� �
�

where every �� is a literal and
 	 � is the priority level and
� 	 � the weight among the level. Both
 and� are integers
and set to 1 if omitted. The sets ����, �����, and �����
are defined by viewing � as an integrity constraint.
A disjunctive datalog program (DLP) with weak con-

straints � (simply, program) is a finite set of rules and weak
constraints. ���� � denotes the set of weak constraints in
� . We call � wc-free, if���� � � �; positive, if � is ��� -
free (i.e. ��
 � � ����� � �); and normal, if � is � -free
(i.e. ��
 � � ������ � �).
As usual, a term (atom, rule,...) is ground, if no variables

appear in it. A ground program is also called propositional.

Semantics Answer sets for DLPs with weak constraints
are defined by extending consistent answer sets for DLPs as
introduced in (Gelfond & Lifschitz 1991; Lifschitz 1996).
We proceed in three steps: we first define answer sets (1) of
ground positive wc-free programs, then (2) of arbitrary wc-
free ground programs, and (3) finally (optimal) answer sets
of ground programs with weak constraints. As usual, the
(optimal) answer sets of a non-ground program � are those
of its ground instantiation�������� �, defined below.
For any program � , let �� be its Herbrand universe and

�� be the set of all classical ground literals from predicate
symbols in � over the constants of �� ; if no constant ap-
pears in � , an arbitrary constant is added to �� . For any
clause �, let ��������� denote the set of its ground in-
stances. Then, �������� � �

�
��� ���������. Note

that � is ground iff � � �������� �. An interpretation
is any set � �� of ground literals. It is consistent, if
 � ��
 �

 � � �.
In what follows, let � be a ground program.
(1) A consistent1 interpretation � �� is called closed

under a positive wc-free program � , if ���� � implies
���� � �� � for every �
 � . A set! � �� is an answer
set for � if it is a minimal set (w.r.t. set inclusion) closed
under � .
(2) Let � � be the Gelfond-Lifschitz reduct of a wc-free

program� w.r.t. � �� , i.e., the program obtained from �
by deleting

� all rules �
 � such that ����� � �� �, and

� all negative body literals from the remaining rules.

Then, � �� is an answer set of � iff is an answer set
of � � . By ���� � we denote the set of all answer sets of � .
(3) Given a program � with weak constraints, we are in-

terested in the answer sets of the wc-free part which min-
imise the sum of weights of the violated constraints in the
highest priority level, and among them those which min-
imise the sum of weights of the violated constraints in the

1We only consider consistent answer sets, while in (Lifschitz
1996) also the (inconsistent) set �� may be an answer set.

next lower level, etc. This is expressed by an objective func-
tion for � and an answer set
:

	���� � �
	���� � 	���� �� � ����� �� � ��

�	
 	 �� � " �

��
� �

������

��� �	���� �
�

�

���

�

�
 �

where ��
�	
 and
��	
 denote the maximum weight and

maximum level of a weak constraint in � , respectively;
#���
� denotes the set of weak constraints in level � which

are violated by
; and, �
 denotes the weight of the weak
constraint# . Note that ����� �� ���

�	
	� is greater than
the sum of all weights in the program, and therefore guaran-
teed to be greater than any sum of weights of a single level.
If weights in level � are multiplied by 	����, it is sufficient
to calculate the sum of these updated weights, such that the
updated weight of a violated constraint of a greater level is
always greater than any sum of updated weights of violated
constraints of lower levels.
Then,
 is an (optimal) answer set of � , if

 ���� �

���� �� and ��
� is minimal over ���� ����� ��. Let

������ denote the set of all optimal answer sets.

Preferred Answer Sets
We recall and adapt the definitions of (Brewka & Eiter 1999)
as needed in the current paper. Throughout the rest of this
section, programs are tacitly assumed to be propositional.

Definition 1 A prioritized (propositional) program is a pair
� � ����� where � is a normal logic program without
constraints, and � is a strict partial order on � , i.e., an
irreflexive (� �� �, for all �) and transitive relation.

Informally, �� � �� means “�� has higher priority than
��”. For any � � �����, the answer sets of � are those of
� ; their collection is denoted by����� (� ���� �).

Definition 2 A full prioritization of a prioritized program
� � ����� is any pair � � � ������ where �� is a total
order of � refining �, i.e., �� � �� implies �� �� ��, for all
��� ��
 � . The set of all full prioritizations of � is denoted
by �����. We call � fully prioritized, if ����� � ���.

Fully prioritized programs � � ����� are also referred
to as ordered sets � � ���� � � � � ��� of rules where �� � ��
iff � � �.
We define preferred answer sets first for a particular class

of fully prioritized programs. Call a program� prerequisite-
free, if ����� � � for every rule �
 � holds. Furthermore,
a literal � (resp., a set! � �� of literals) defeats a rule � of
the form (1), if �
 ����� (resp.,! � ����� �� �).

Definition 3 Let � � ���� � � � � ��� be a fully prioritized
and prerequisite-free program. For any set $ � �� of liter-
als, the sequence$� � �� , � � � � �, is defined as follows:
$� � � and

$� �

�
$���� if �%� $��� defeats ��, or �&�

����� � $ and $ defeats ��,
$��� ������� otherwise,

for all � � �� � � � � �. The set ���$� is defined by

���$� �

�
$�� if $� is consistent�
�� otherwise.

An answer set
 (� $) divides the rules of � in Def. 3
into three groups: generating rules, which are applied and
contribute in constructing
; dead rules, which are not ap-
plicable in
 but whose consequences would not add any-
thing new if they were applied, since they appear in
; and
zombies, which are the rules not applicable in
 whose con-
sequences do not belong to
. Only zombies have the poten-
tial to render an answer set non-preferred. This is the case
if some zombie is not “killed” by a generating rule of higher
priority. If
 is a fixpoint of �� , then the inductive con-
struction guarantees that indeed all zombies are defeated by
generating rules with higher preference.

Definition 4 Let � be a fully prioritized and prerequisite-
free program, and let

 �����. Then
 is a preferred
answer set of � if and only if ���
� �
.

In the case where � is not prerequisite-free, a kind of dual
Gelfond-Lifschitz reduct is computed as follows.

Definition 5 Let � � ����� be a fully prioritized program,
and let ! � �� . Then �� � ������� is the fully priori-
tized program such that:

� �� is the set of rules obtained from � by deleting
1. every �
 � such that ����� �� ! , and
2. all positive body literals from the remaining rules.

� �� is inherited from � by the map 	 � �� �� � (i.e.,
���

�� ��� iff 	��
�
�� � 	�����), where 	���� is the first rule

in � w.r.t. � such that �� results from � by step 2.

The definition of ��must respect possible clashes of rule
priorities, as step 2 may produce duplicate rules in general.

Definition 6 Let � � ����� be a prioritized program and

 � �� . If � is fully prioritized, then
 is a preferred
answer set of � iff
 is a preferred answer set of ��; oth-
erwise,
 is a preferred answer set of � iff
 is a preferred
answer set for some � �
 �����. By ������ we denote
the set of all preferred answer sets of � .

Example 2 Reconsider the bird & penguin example. Let us
first check whether
� � ������ ����� �	
���� is a pre-
ferred answer set. We determine the dual reduct ��� which
consists of the following rules:

(1) ����.
(2) ����.
(3) �	
���:- ��� 	
���.
(4) 	
���:- ��� �	
���.

The order ��� coincides with � as in Def. 5. Now, let
us determine
��� (� $�), by constructing the sequence

���, for � � � �
:
��� � �,
��� � ������,

��� � ������ �����,
��� � ������ ������	
����, and

��� �
���. Thus,
��� � ������ ����� �	
���� �
�

and�����
�� �
�; hence, the answer set
� is preferred.
Next consider the answer set
� � ������ ����� 	
����.

The dual reducts ��� and ��� coincide, and thus
��� �

�, which means �����
�� ��
�. Hence,
� is not pre-
ferred, and
� is the single preferred answer set of � .

The following example shows that not every prioritized
program which has an answer set has also a preferred one.

Example 3 Consider the following program:

(1) ':- ��� � .
(2) �:- ��� � .

where ��� � ���. Its single answer set is
 � ���. How-
ever, ����
� � �'� �� and thus
 is not preferred.

Weakly Preferred Answer Sets
The concept of weakly preferred answer set relaxes the pri-
ority ordering as little as necessary to obtain a preferred an-
swer set, if no answer set is preferred. It can be seen as a
conservative approximation of a preferred answer set.

Definition 7 Let �� and �� be total orderings of the same
finite set(. The distance from�� to��, denoted ����� ��

�, is the number of pairs ����
 (such that � �� ��

and�� �� �.2

Clearly, ����� ��� defines a metric on the set of all total
orderings of (. For example, the distance between � ��

� �� ' and ' �� � �� � is ����� ��� � ����� ��� � �.
Note that ����� ��� amounts to the smallest number of suc-
cessive switches of neighbored elements which are needed
to transform �� into ��. This is precisely the number of
switches executed by the well-known bubble-sort algorithm.

Definition 8 Let � � ����� be a prioritized program and
let

 �����. The preference violation degree of
 in
� , denoted �)���
�, is the minimum distance from any full
prioritization of � to any fully prioritized program � � �
������ such that
 is a preferred answer set of � �, i.e.,

�)���
� � �
������� ��� � ������
 ������

 ��������� ��

The preference violation degree of � , �)����, is defined by
�)���� � �
���)���
� �

 ���� ��.

Now the weakly preferred answer sets are those answer
sets which minimize preference violation.

Definition 9 Let � � ����� be a prioritized program.
Then,

 ���� � is a weakly preferred answer set of �
iff �)�� �
� � �)����.

Example 4 In the bird & penguin example,
� is the unique
preferred answer set of � . Clearly, every preferred answer
set
 of any prioritized program � has �)���
� � �, and
thus
 is a weakly preferred answer set of � . Thus,
� is
the single weakly preferred answer set of the program.

Example 5 Reconsider the program in Example 3. Its an-
swer set
 � ��� is not preferred. Switching the two rules,
the resulting prioritized program � � has �����
� � ���,
thus
 is preferred for � �. Hence �)���
� � �)���� � �
and
 is a weakly preferred answer set of � .

Example 6 Consider the following program �:

(1) �:- ��� '.
(2) ':- ��� �.
(3) ��:- ��� �.
(4) �:- ��� ��� �.
2The definition in (Brewka & Eiter 1999) uses ordinals and

deals with possibly infinite� . Ours is equivalent on finite� .

� has the answer sets
� � ��� �� and
� � �'����.
Imposing ��� � ��� iff � � �, none is preferred. We have
�)���
�� � �: (2) and (3) are zombies in the dual reduct
which are only defeatable by (4), which must be moved in
front of them; this takes two switches. On the other hand,
�)���
�� � �: the single zombie (1) in the dual reduct is
defeated if (2) is moved in front of it (here, (4) is a dead rule).
Hence, �)���� � �, and
� is the single weakly preferred
answer set of � .

For further background and examples on preferred and
weakly preferred answer sets, we refer to (Brewka & Eiter
1999).

From Preferred Answer Sets to DLP
All translations in this paper rely on a kind of meta-
interpretation technique: We give a program � �� and a rep-
resentation � ��� of an arbitrary propositional prioritized
program� as a set of facts, such that ������ � �*�
� �

 ������ � � �����, where * is a simple projection
function.

Representing a prioritized program
The translation � ��� is as follows.

� For each rule

':- ��� � � � � ��� ��� ��� � � � � ��� ��.

of the program � , � ��� contains the following facts:

��
����� +����'� ��� ��
���� ��� � � � ��
���� ���
��
���� ��� � � � ��
���� ���

� For each pair of complementary literals ���� occurring in
the program, we add a fact '���
�������

� For each rule preference � � � � that belongs to the transi-
tive reduction of �, we add a fact ����� � ��� to � ���.

Example 7 The program of the bird & penguin example is
represented by the following facts:

��
�����. +��������� ���.
��
�����. +��������� ���.
��
�����. +������� 	
���� ���.

��
������ ���. ��
�	
���� ���.
��
���
�. +����	
���� �
�.

��
������ �
�. ��
���� 	
���� �
�.
'���
�	
���� ��� 	
����.
������ ���. ������ ���. ������ �
�.

Meta-interpreter program
The meta-interpreter ��� consists of two parts: one for rep-
resenting an answer set (���), and another one for checking
preferredness.

Representing an answer set We define a predicate
��
$��� which is true for the literals in an answer set of
� . A literal is in an answer set, if it occurs in the head of a
rule whose body is not false.

��
$�!�:-+����!�, �� ��� ��� ���- 	�
���, ��
��� ��� ���- 	�
���, ��

The positive part of a body is false, if one of its literals is not
in the answer set, while the negative part of a body is false,
if one of its literals is in the answer set.

��� ���- 	�
���, �:- ��
�!�, �� ��� ��
$�!�.
��� ���- 	�
���, �:-��
�!�, �� ��
$�!�.

Each answer set needs to be consistent; we thus add an in-
tegrity constraint which rejects answer sets containing com-
plementary literals.

:- '���
�!�, �� ��
$�!�� ��
$�, �.

This program (call it ���) is all we need for representing
answer sets in ��� . Each answer set of ��� plus � ��� rep-
resents an answer set of � . Let * be defined by *�
� � �� �
��
$���

�. Then we can state the following:

Proposition 1 Let � � ����� be a propositional prior-
itized program. Then, (i) if

 ������ � � ���� then
*�
�
 �����, and (ii) for each

 �����, there exists
a single
�
 ������ � � ���� such that *�
�� �
.

Checking preferredness According to Def. 6, we have to
create all fully prioritized programs ����� of � to deter-
mine its preferred answer sets. To this end, we add code to
guess a total order on the rules which refines �:

���!�, � � ���,�!�:- ��
��!�� ��
��, �� ! �� , .
���!�.�:- ���!�, �� ���,� .�.

:- ���!�!�.

The rules state the axioms of totality, transitivity, and ir-
reflexivity of a total order. Note that it would be possible
to replace the disjunctive guessing rule by two rules involv-
ing unstratified negation. However, the disjunctive version
is more readable.
Next we build the set �� fromDef. 3 where� � �� � . To

this end, we do not compute the sets $� as in the definitions
– clearly one rule can contribute at most one element to ��

and we represent this fact using the predicate
�/��� ��. We
first observe that duplicate rules arising in the dual reduct
� need no special care, since only the first occurrence of
a rule from � � is relevant for the value of ��� ; for later
occurrences of duplicates always $� � $��� will hold.
In Def. 3, a condition when ����� is not added is stated,

while
�/��� �� represents the opposite, so we negate the con-
dition: �&� is actually itself a conjunction 0 � Æ, so the con-
dition we are interested in is

��% � �0 � Æ�� � ��% � �0� � ��% � �Æ��

We call condition % local defeat (by rules of higher priority)
and 0 global defeat (by the answer set).
Def. 3 applies only to prerequisite-free programs, so for

the general case we also have to include the definition of the
dual Gelfond-Lifschitz reduct, which amounts to stating that
a rule having a prerequisite � not in the answer set must not
be considered. The encoding is then straightforward:

�/�!�, �:-+����!�, �� ��� ��� ���- 	�
���, ��
��� ��	��/
�'�
�, �� ��� ��
$�!��

�/�!�, �:-+����!�, �� ��� ��� ���- 	�
���, ��
��� ��	��/
�'�
�, �� ��� ��	��/ �
���
�, ��

��	��/
�'�
�, �:-��
�!�, ��
�/�!�, ��� ���, �� , �.
��	��/ �
���
�, �:-��
�!�, �� ��
$�!�.

The set �� is the union of all literals in
�/��� ��:

�� �� �!�:-
�/�!�, �.

Finally, according to Def. 4, a preferred answer set
 must
satisfy
 � ����
�, so we formulate integrity constraints
which discard answer sets violating this condition:

:- �� �� �!�� ��� ��
$�!�.
:- ��
$�!�� ��� �� �� �!�.

The last constraint is in fact redundant and can be dropped,
because $
 ����� (the first constraint is not violated)
and �� � $ jointly imply that �� � $. Indeed, suppose
�� �� $ werer true. Then, some �
 $ � �� must exist,
which means that a generating rule � w.r.t. $ must exist such
that���� � � and$ �� ����. According to Def. 3, �%���&�
must hold for $�, otherwise �
 �� would hold. Now �&�
cannot hold, since $ cannot defeat � because
 �� ����.
Thus �%� must hold. This implies that some ��
 $���
defeats � such that �� �
 $. Sine $��� � �� , it follows
�� �� $. This is a contradiction.
This completes the meta-interpreter ��� . A compact list-

ing of it is given in the Appendix. We have:

Proposition 2 Let � � ����� be a propositional prior-
itized program. Then, (i) if

 ������ � � ���� then
*�
�
 ������, and (ii) for each

 ������, there
exists some
�
 ������ � � ���� such that *�
�� �
.

Example 8 For the bird & penguin example, ��� �
� ��� has one answer set, which contains ��
$������,
��
$������, and ��
$��	
����.

FromWeakly Preferred Answer Sets to ����

The transition from an interpreter for preferred answer sets
to one for weakly preferred answer sets is simple – just a few
clauses have to be added and one has to be slightly altered.
For weakly preferred answer sets, we have to generate a

second total ordering (called ���), which needs not be com-
patible with the input partial order.

����!�, � � ����,�!�:- ��
��!�� ��
��, �� ! �� , .
����!�.�:- ����!�, �� ����,� .�.

:- ����!�!�.

This ordering should be used to determine the preferred an-
swer sets. Since the given totalization of the input ordering
occurs just in one rule of the original program, we just have
to update this rule:

��	��/
�'�
�, �:-��
�!�, ��
�/�!�, ��� ����, �� , �.

Finally, we want to keep only those orderings which mini-
mize the differences to some totalization of an input order-
ing. To this end, we state a weak constraint, where each
difference in the orderings gets a penalty of one (we don’t
need the levelling concept here).

�
 ���!�, �� ����,�!�� �� � ��

In this way, each answer set
 will be weighted with
�)���
�, and the optimal answer sets minimize this num-
ber, which corresponds exactly to Defs. 7, 8, and 9.
Call the resulting interpreter ��� (a compact listing is

given in the Appendix). We have:

Proposition 3 Let � � ����� be a propositional priori-
tized program. Then, (i) if

 ������� � � ���� then
*�
�
 ������, and (ii) for each

 ������, there
exists some
�
 ������� � � ���� such that *�
�� �
.

Example 9 Reconsider Ex. 3, which does not have any pre-
ferred answer set. ��� � � ��� has one optimal answer set
(with weight 1 in level 1) containing ��
$���, ������ ���,
and ������� ���, which is consistent with Ex. 5.

Example 10 Reconsider Ex. 6, which does not have any
preferred answer set either. ��� � � ��� has one optimal
answer set (with weight 1 in level 1) containing ��
$�'�,
��
$����, ������ ���, and ������� ���, where the pair
���� ��� is the only difference between �� and ���, consis-
tent with Ex. 6.

Deterministic Preferredness Checking
The methodwe provided above non-deterministically gener-
ates, given a prioritized program� � ����� and an answer
set of � , all full prioritizations of � and tests them.
In (Brewka & Eiter 1999) a graph-based algorithm was

described which checks preferredness of an answer set

deterministically without refining� to a total order. In gen-
eral, this method is much more efficient.
This approach works as follows: A labeled directed graph

��� �
� is constructed, whose vertices are the rules � , and
an edge leads from � to � � if � � ��. Each vertex � is la-
beled “g” if � is generating w.r.t
, “z” if it is a zombie, and
“i” (for irrelevant) otherwise. The following algorithm then
performs a kind of topological sorting for deciding whether
an answer set
 is preferred, and outputs a suitable full pri-
oritization of � :

Algorithm FULL-ORDER

Input: A prop. prioritized program � � �����, and an
answer set

 ���� �.

Output: A full prioritization � �
 ����� such that

 ����� �� if

 ������; “no”, otherwise.

Method:

Step 1. Construct the graph � � ��� �
�, and initialize
$ �� �, ���� �.

Step 2. If � is empty, then output � � � ������ and halt.
Step 3. Pick any source of �, i.e., a vertex � with no in-
coming edge, such that either � is not labeled “z” or �
is defeated by $. If no such � exists, then output “no”
and halt.

Step 4. If � is labeled “g”, then set $ �� $ �����.
Step 5. Remove � from�, and continue at Step 2.

A discussion of this algorithm is given in (Brewka & Eiter
1999). Note that it is non-deterministic in Step 3. A deter-
ministic variant of it can be used for merely deciding pre-
ferredness of
: rather than some arbitrary source �, all

sources � satisfying the condition are selected in Step 3 and
then removed in parallel in Step 5. As easily seen, this is
feasible since removability of a source � is monotone, i.e.,
can not be destroyed by removing any other source � � be-
fore. Thus,
 is a preferred answer set iff the algorithm
stops with the empty graph, i.e., all vertices are removed.
This deterministic algorithm can be readily encoded in

DLV. The idea is to use time stamps for modeling the it-
erations through Steps 2–5. Since the number of steps is
bounded by the number of rules in � , we reuse rule-ids as
time stamps:

/����1 �:- ��
��1 �.

Time stamps are ordered by DLV’s built-in order� on con-
stants. The first (least) time stamp is used for the stage after
the first run through Steps 2–5.
We use predicates � and 2 for rule labels “g” and “z”,

respectively, which are attached as follows (label “i” is not
of interest and thus omitted):

��3�:- ��
��3�� ��� ��� ���- 	�
���3��
��� ��� ���- 	�
���3�.

2�3�:- ��
��3�� ��� ��� ���- 	�
���3��
+����!�3�� ��� ��
$�!�.

Initially, only sources which are not zombies can be re-
moved from the graph. We use a predicate ������'���3�,
which informally means that 3 is not a source of �, and
a predicate ����)��3� 1 � which means that at time 1 , the
vertex3 is no longer in �:

������'���3�:- ���3�� 3�.
����)��3� 1 �:- ��
��3�� ��� ������'���3��

��� 2�3�� /����1 �.

At other stages of the iteration, we can remove all rules
satisfying the condition of Step 3. We use a predicate
������'��3� 1 � which expresses that 3 is not a source at
time 1 .

������'��3� 1 �:- ���3�� 3�� /����1 ��
��� ����)��3�� 1 �.

����)��3� 1��:- ��
��3�� ��� ������'��3� 1 ��
/����1 �� /����1��� 1 � 1��
��� 2�3�� ��� ����)��3� 1 �.

����)��3� 1��:- ��
��3�� ��� ������'��3� 1 ��
/����1 �� /����1��� 1 � 1��
2�3�� ��
�!�3�� ��!�1 �.

According to Step 4, we must add the head ���� of a
generating rule which is to be removed in Step 5, to the set
$ there. We represent this using a predicate ��!�1 �, which
informally means that ! belongs to $ at time point 1 , and
add the rule:

��!�1 �:- ����)��3� 1 �� ��3�� +����!�3�.

Finally, according to Step 2 we have to check whether all
rules have been removed in the processing of the graph �.
This is done by using a predicate ����)�� for the projection
of ����)� to rules and the following rule plus a constraint:

����)���3� :- ����)��3� 1 �.
:- ��
��3�� ��� ����)���3�.

The resulting meta-interpreter ��	 is given in the Ap-
pendix. Note that ��	 is in general also more efficient than

��� , since unnecessary totalizations of the partial order can
be avoided with ��	 . By virtue of the results in (Brewka
& Eiter 1999) (in particular, Lemma 7.2), we can state the
follwing result:

Proposition 4 Let � � ����� be a propositional prior-
itized program. Then, (i) if

 �����	 � � ���� then
*�
�
 ������, and (ii) for each

 ������, there
exists some
�
 �����	 � � ���� such that *�
�� �
.

Example 11 Consider the program in Ex. 6 and assume
priorities ��� � ���, ��� � �
�, and �
� � ���. Sup-
pose preferredness of
� � �'���� is checked. Then,
the atoms 2����, �����, and ����� representing labels are
derived, as well as ������'����
� and ������'������.
Both �� and �� are sources, but �� is labeled �2 ��, so only
����)����� ��� and ��'� ��� is derived for � � �� � � � �
.
Thus, ������'����� ��� is derived only for � � �. Since
��'� ��� holds, too, we can derive ����)����� ��� and
����)���
� ��� for � � �� ��
. Neither ���� ��� nor ���� ���
are derived since ����� and ���
� do not hold. Finally,
����)����� ��� and ����� ��� for � � ��
 are derived and
����)������ holds for � � �� � � � �
, satisfying the final con-
straint introduced above. Thus,
� is a preferred answer set.

Usage of the prototype
To experiment with the meta-interpreters we showed in this
paper, a current version of DLV can be obtained through the
DLV project page (Faber & Pfeifer since 1996), where you
will also find detailed documentation and further informa-
tion on the project. At http://www.dbai.tuwien.
ac.at/proj/dlv/preferred/ you will find down-
loadable versions of all meta-interpreters as well as several
examples.
Let us assume that the code from Example 7 is stored

in a file called “penguin” and the meta-interpreter for pre-
ferred answer sets in a file called “pas”. Then the following
command-line will compute and print the single preferred
answer set for our running penguin example:

dlv pas penguin -filter=in_AS

and the output will look like

�in_AS(peng), in_AS(bird), in_AS(neg_flies)�

-filter is a special feature in DLV that allows us to
print only those predicates for each answer that we are ac-
tually interested in. Without this option we would also see
+���, '���, ��	��/
�'�
 and all other auxiliary predicates
in the current example.
Now let us consider weakly preferred answer sets. As-

sume that the program from Example 6 is converted to our
internal representation using +���, ��
 and ��
 and saved in
a file called “weak” and that the meta-interpreter for weakly
preferred answer sets is stored in a file called “wpas”.
When we issue the command

dlv wpas weak -filter=in_AS

we obtain the following output:

Optimal answer set: �in AS(c), in AS(neg d)�
Cost ([Weight:Level]): <[1:1]>

which matches the result that we described in Example 6.
It is worth noting that the weight part of the cost of the opti-
mal answer sets is always equal to �)����.
Consequently, the command

dlv wpas penguin -filter=in_AS

computes the same result as shown in the first example,
with a weight of 0:
Optimal answer set: �in AS(peng), in AS(bird),

in AS(neg flies)�
Cost ([Weight:Level]): <[0:1]>

Related Work
In (Gelfond & Son 1997) the idea of meta-interpretation has
been used for defining the semantics of the language � �.
However, there are some differences w.r.t. the approach pre-
sented here.
First of all, the semantics of �� is defined only by means

of a meta-interpreter, while our approach implements a se-
mantics which has been defined previously without meta-
interpretation techniques.
Second, the interpretation program in (Gelfond & Son

1997) uses lists for representing aggregations of literals and
conditions on them, in particular “for all” conditions. Such
lists cannot be used in datalog programs, as arbitrarily deep
function nesting is required for the list concept. We avoid
these aggregations by using rule identifiers and default nega-
tion.
Third, in our approach we extend a general answer sets

meta-interpreter, thus clearly separating the representation
of answer sets and prioritization. In the meta-interpreter
presented in (Gelfond & Son 1997), this distinction is not
obvious.

Extensions and Further Work
The techniques as presented here work on ground input –
handling non-ground programs is also feasible, but unless
function symbols are allowed at the code level (which is cur-
rently not the case in DLV), this is not completely straight-
forward. Extending our work to deal with such cases and
creating a DLV frontend for prioritized program evaluation
is an interesting research issue, as is investigating whether
we can exploit a variant of the deterministic graph algorithm
also for the computation of weakly preferred answer sets.

References
Baader, F., and Hollunder, B. 1995. Priorities on Defaults with
Prerequisite and their Application in Treating Specificity in Ter-
minological Default Logic. J. Automated Reasoning 15:41–68.
Brewka, G., and Eiter, T. 1999. Preferred Answer Sets for Ex-
tended Logic Programs. Artificial Intelligence 109(1-2):297–356.
Brewka, G., and Eiter, T. 2000. Prioritizing Default Logic. In
Hölldobler, S., ed., Intellectics and Computational Logic – Papers
in Honor of Wolfgang Bibel. Kluwer. 27–45.
Brewka, G. 1994. Adding Priorities and Specificity to Default
Logic. In Proc. JELIA ’94, LNAI 838, 247–260. Springer.
Brewka, G. 1996. Well-Founded Semantics for Extended Logic
Programs with Dynamic Preferences. J. Artificial Intelligence Re-
search 4:19–36.

Buccafurri, F.; Leone, N.; and Rullo, P. 1997. Strong and Weak
Constraints in Disjunctive Datalog. In Dix, J.; Furbach, U.; and
Nerode, A., eds., Proc. LPNMR’97, LNAI 1265, 2–17. Springer.

Buccafurri, F.; Leone, N.; and Rullo, P. 2000. Semantics
and Expressiveness of Disjunctive Ordered Logic. Annals of
Mathematics and Artificial Intelligence. To appear. Abstract in
Proc. KR ’98.

Delgrande, J., and Schaub, T. 1997. Compiling Reasoning With
and About Preferences into Default Logic. In Proc. IJCAI ’97,
168–174.

Delgrande, J.; Schaub, T.; and Tompits, H. 2000. Prioritized De-
fault Logic Revisited: A Compilation of Brewka and Eiter’s Ap-
proach. In Ojeda-Aciego, M.; de Guzmán, I. P.; Brewka, G.; and
Moniz Pereira, L., eds., Proc. JELIA 2000, LNCS 1919. Springer.

Faber, W.; Leone, N.; and Pfeifer, G. 1999. Pushing Goal Deriva-
tion in DLP Computations. Proc. LPNMR’99), LNAI 1730. 177–
191. Springer.

Faber, W., and Pfeifer, G. since 1996. dlv homepage. <URL:
http://www.dbai.tuwien.ac.at/proj/dlv/>.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in Logic
Programs and Disjunctive Databases. New Generation Comput-
ing 9:365–385.

Gelfond, M., and Son, T. C. 1997. Reasoning with Prioritized
Defaults. In Proc. LPKR ’97, 164–223. LNCS 1471. Springer.

Lifschitz, V. 1996. Foundations of logic programming. In
Brewka, G., ed., Principles of Knowledge Representation. Stan-
ford: CSLI Publications. 69–127.

Marek, V., and Truszczyński, M. 1993. Nonmonotonic Logics –
Context-Dependent Reasoning. Springer.

Rintanen, J. 1998. Lexicographic Priorities in Default Logic.
Artificial Intelligence 106:221–265.

Sakama, C., and Inoue, K. 1996. Representing Priorities in Logic
Programs. In Proc. JICSLP’96, 82–96. MIT Press.

Zhang, Y., and Foo, N. 1997. Answer Sets for Prioritized Logic
Programs. In Proc. ILPS 97, 69–83.

Appendix: Meta-Interpreter for Preferred
Answer Sets

% Represent answer sets:
in_AS(X) :- head(X,Y), not pos_body_false(Y),

not neg_body_false(Y).
pos_body_false(Y) :- pbl(X,Y), not in_AS(X).
neg_body_false(Y) :- nbl(X,Y), in_AS(X).
:- compl(X,Y), in_AS(X), in_AS(Y).

% For full prioritization: refine pr to a total ordering.
pr(X,Y) v pr(Y,X) :- rule(X), rule(Y), X != Y.
pr(X,Z) :- pr(X,Y), pr(Y,Z).
:- pr(X,X).

% Check dual reduct: Build sets S_i, use rule ids as indices i.
% lit(X,r) means that the literal x occurs in the set S_r.

lit(X,Y) :- head(X,Y), not pos_body_false(Y),
not defeat_local(Y), not in_AS(X).

lit(X,Y) :- head(X,Y), not pos_body_false(Y),
not defeat_local(Y), not defeat_global(Y).

defeat_local(Y) :- nbl(X,Y), lit(X,Y1), pr(Y1,Y).
defeat_global(Y) :- nbl(X,Y), in_AS(X).

% Include literal into CP(.).
in_CP(X) :- lit(X,Y).
:- in_CP(X), not in_AS(X).

Appendix: Meta-Interpreter for Weakly
Preferred Answer Sets

% Represent answer sets:
in_AS(X) :- head(X,Y), not pos_body_false(Y),

not neg_body_false(Y).
pos_body_false(Y) :- pbl(X,Y), not in_AS(X).
neg_body_false(Y) :- nbl(X,Y), in_AS(X).
:- compl(X,Y), in_AS(X), in_AS(Y).

% For full prioritization: Refine pr to a total ordering.
pr(X,Y) v pr(Y,X) :- rule(X),rule(Y), X != Y.
pr(X,Z) :- pr(X,Y), pr(Y,Z).
:- pr(X,X).

% Weakly preferred answer sets: Create a total ordering pr1,
% as close to pr as possible.
pr1(X,Y) v pr1(Y,X) :- rule(X),rule(Y), X != Y.
pr1(X,Z) :- pr1(X,Y), pr1(Y,Z).
:- pr1(X,X).

% Weak constraint: Minimize violations.
:˜ rule(X), rule(Y), pr(X,Y), pr1(Y,X). [1:1]

% Check dual reduct: Build sets S_i, use rule ids as indices i.
% lit(X,r) means that the literal x occurs in the set S_r.

lit(X,Y) :- head(X,Y), not pos_body_false(Y),
not defeat_local(Y), not in_AS(X).

lit(X,Y) :- head(X,Y), not pos_body_false(Y),
not defeat_local(Y), not defeat_global(Y).

defeat_local(Y) :- nbl(X,Y), lit(X,Y1), pr1(Y1,Y).
defeat_global(Y) :- nbl(X,Y), in_AS(X).

% Include literal into CP(.).
in_CP(X) :- lit(X,Y).
:- in_CP(X), not in_AS(X).

Appendix: Meta-Interpreter for Preferred
Answer Sets Using Deterministic

Preferredness Checking
% Represent answer sets:
in_AS(X) :- head(X,Y), not pos_body_false(Y),

not neg_body_false(Y).
pos_body_false(Y) :- pbl(X,Y), not in_AS(X).
neg_body_false(Y) :- nbl(X,Y), in_AS(X).
:- compl(X,Y), in_AS(X), in_AS(Y).

% Label ’g’ nodes and ’z’ nodes (other labels are uninteresting):
g(R) :- rule(R), not neg_body_false(R), not pos_body_false(R).
z(R) :- rule(R), not pos_body_false(R), head(X,R), not in_AS(X).

% Use rules ids as time stamps.
time(T) :- rule(T).

% Initial step of the algorithm: Consider global source nodes.
% Only non-z nodes can be removed.
nosource0(R) :- pr(R1,R).
remove(R,T) :- rule(R), not nosource0(R), not z(R), time(T).

% Other steps in the algorithm: Remove non-z nodes and, under some
% conditions, also z-nodes.
nosource(R,T) :- pr(R1,R), time(T), not remove(R1,T).
remove(R,T1) :- rule(R), not nosource(R,T), time(T), time(T1),

T < T1, not z(R), not remove(R,T).
remove(R,T1) :- rule(R), not nosource(R,T), time(T), time(T1),

T < T1, z(R), nbl(X,R), s(X,T).

% Add the head if a removed generating rule to the set T.
s(X,T) :- remove(R,T), g(R), head(X,R).

% Check whether all rules are removed.
removed(R) :- remove(R,T).
:- rule(R), not removed(R).

