Transitive Closure, Answer Sets and Predicate Completion

Esra Erdem and Vladimir Lifschitz
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712, USA
Email: {esra,vl}@cs.utexas.edu

Abstract
We prove that the usual logic programming definition of transitive closure is correct under the answer set semantics, and investigate under what conditions it is correct under the completion semantics. That definition is allowed here to be combined with an arbitrary set of rules that may contain negation as failure, not merely with a set of facts. This work is motivated by applications to answer set programming.

Introduction
In logic programming, the transitive closure tc of a binary predicate p is usually defined by the rules

$$\text{tc}(x, y) \leftarrow p(x, y),$$
$$\text{tc}(x, y) \leftarrow p(x, v), \text{tc}(v, y).$$

If we combine this definition Def with any set Π of facts (that is, ground atoms) defining p, and consider the minimal model of the resulting program, the extent of tc in this model will be the transitive closure of the extent of p. In this sense, Def is a correct characterization of the concept of transitive closure. We know, on the other hand, that the completion of $\Pi \cup \text{Def}$ in the sense of Clark (1978) may have models different from the minimal model. In these "spurious" models of completion, tc is weaker than the transitive closure of p. The existence of such models is often considered a blemish on the completion semantics. The absence of "spurious" models can be assured, however, by requiring that facts Π define relation p to be acyclic.

In this paper we consider the more general situation when Π is a logic program, not necessarily a set of facts. This program may define several predicates besides p. Even tc is allowed to occur in Π, except that all occurrences of this predicate are supposed to be in the bodies of rules, so that all rules defining tc in $\Pi \cup \text{Def}$ will belong to Def. The rules of Π may include negation as failure, and, accordingly, we talk about answer sets (Gelfond & Lifschitz 1990) instead of the minimal model. Program $\Pi \cup \text{Def}$ may have many answer sets. Is it true that, in each of them, the extent of tc is the transitive closure of the extent of p? Theorem 1 gives a positive answer to this question. Next, we would like to know under what conditions the completion of a program containing Def has no "spurious" models. Such conditions are provided in Theorem 2.

The questions discussed in this paper are important from the perspective of answer set programming. The idea of this programming method is to represent solutions to a computational problem by answer sets of a logic program, and to solve the problem using systems for generating answer sets, such as DLV\(^1\) and SMODELS\(^2\).

In the next section, we prove the correctness of the definition of transitive closure under the answer set semantics. After a review of the concept of a tight programs, the correctness of the definition of transitive closure relative to the completion semantics is investigated. After that, this theory is illustrated by applying it to a formalization of the blocks world.

Transitive Closure and Answer Sets
The syntax of the class of logic programs studied in this paper is defined as follows. We begin with a set of propositional symbols, called atoms. A literal is an expression of the form A or $\neg A$, where A is an atom. A rule element is an expression of the form L or $\neg L$, where L is a literal. The symbol \neg is called classical negation, and the symbol not is negation as failure. A rule is a pair $\text{Head} \leftarrow \text{Body}$ where Head is a literal or the symbol \bot, and Body is a finite set of rule elements. Thus a rule has the form

$$\text{Head} \leftarrow L_1, \ldots, L_m, not L_{m+1}, \ldots, not L_n \quad (1)$$

where $n \geq m \geq 0$; we drop $\{$} around the elements of the body. A rule (1) is a constraint if $\text{Head} = \bot$. A

\(^1\)http://www.dbai.tuwien.ac.at/proj/dlv/
\(^2\)http://www.tcs.hut.fi/Software/smodels/
program is a set of rules.

For the definition of an answer set for programs of this kind see (Lifschitz & Turner 1999), Section 3.

The syntax of logic programs defined above is propositional. Expressions containing variables, such as Def, can be treated as schematic: we select a non-empty set C of symbols ("object constants") and view an expression with variables as shorthand for the set of all its ground instances obtained by substituting these symbols for variables. It is convenient, however, to be a little more general. In the theorem below, p and tc are assumed to be functions from C × C to the set of atoms such that all atoms p(z, y) and tc(z, y) are pairwise distinct.

Theorem 1 Let II be a program that does not contain atoms of the form tc(z, y) in the heads of rules. If X is an answer set for II ∪ Def then

\[\{ (x, y) : tc(x, y) \in X \} \]

is the transitive closure of

\[\{ (x, y) : p(x, y) \in X \}. \]

If atoms of the form tc(z, y) do not occur in II at all then the answer sets for II ∪ Def are actually in a 1-1 correspondence with the answer sets for II. The answer set for II ∪ Def corresponding to an answer set X for II is obtained from X by adding a set of atoms of the form tc(x, y). This is easy to prove using the splitting set theorem (Lifschitz & Turner 1994).

Proof of Theorem 1. We will first prove the special case of the theorem when II doesn’t contain negation as failure. Let X be an answer set for II ∪ Def; denote set (3) by R, and its transitive closure by R∞. We need to prove that for all x and y, tc(x, y) ∈ X iff (x, y) ∈ R∞.

Left-to-right. Since there is no negation as failure in II, X can be characterized as the union \(\bigcup_i X_i \) of the sequence of sets of literals defined as follows: \(X_0 = \emptyset \); \(X_{i+1} \) is the set of all literals L such that II ∪ Def contains a rule \(L \leftarrow \text{Body} \) with Body ⊆ X i. We will show by induction on i that tc(x, y) ∈ X i implies (x, y) ∈ R∞. If i = 0, the assertion is trivial because \(X_0 = \emptyset \). Assume that for all x and y, tc(x, y) ∈ X i implies (x, y) ∈ R∞, and take an atom tc(x, y) from \(X_{i+1} \). Take a rule \(tc(x, y) \leftarrow \text{Body} \) in II ∪ Def such that Body ⊆ X i. Since II doesn’t contain atoms of the form tc(x, y) in the heads of rules, this rule belongs to Def. Case 1: \(\text{Body} = \{ p(x, y) \} \). Then p(x, y) ∈ X i, so that (x, y) ∈ R ⊆ R∞. Case 2: \(\text{Body} = \{ p(x, v), tc(v, y) \} \). Then p(x, v) ∈ X i, so that (x, v) ∈ R ⊆ R∞; also, tc(v, y) ∈ X i, so that, by the induction hypothesis, (v, y) ∈ R∞. By the transitivity of R∞, it follows that (x, y) ∈ R∞.

Right-to-left. Since R∞ = \(\bigcup_{j \geq 0} R^j \), it is sufficient to prove that for all \(j > 0 \), (x, y) ∈ R^j implies tc(x, y) ∈ X. The proof is by induction on j. When \(j = 1 \), (x, y) ∈ R, so that p(x, y) ∈ X; since X is closed under Def, it follows that tc(x, y) ∈ X. Assume that for all x and y, (x, y) ∈ R^j implies tc(x, y) ∈ X, and take a pair (z, y) from R^j+1. Take v such that (x, v) ∈ R and (v, y) ∈ R^j. Then p(x, v) ∈ X and, by the induction hypothesis, tc(v, y) ∈ X. Since X is closed under Def, it follows that tc(x, y) ∈ X.

We have proved the assertion of the theorem for programs without negation as failure. Now let II be any program that does not contain atoms of the form tc(x, y) in heads of rules, and let X be an answer set for II ∪ Def. Clearly, the reduct \(\Pi^X \) is a program without negation as failure that does not contain atoms of the form tc(x, y) in the heads of rules, and X is an answer set for \(\Pi^X \cup \text{Def} \). By the special case of the theorem proved above, applied to \(\Pi^X \), (2) is the transitive closure of (3).

Tight Programs

The second question we want to investigate is under what conditions the completion of a program of the form \(\Pi \cup \text{Def} \) has no "spurious" models, that is to say, no models different from the program’s answer sets. Early work on the relationship between completion and answer sets was done by Fages (1994). We will review here the generalization of his theorem given in (Babovich, Erdem, & Lifschitz 2000).

A program II is said to be tight on a set X of literals if there exists a function \(\lambda \) from X to ordinals such that for every rule (1) in II, if Head, L1, ..., Lm ∈ X then

\[\lambda(L_1), ..., \lambda(L_m) < \lambda(\text{Head}). \]

As proved in (Babovich, Erdem, & Lifschitz 2000), for any consistent set X of literals such that II is tight on X, X is an answer set for II iff X is closed under and supported by II. In the special case when II is a finite program without classical negation, this theorem shows that X is an answer set for II iff X satisfies the completion of II.

For instance, program

\[p \leftarrow \neg q, \]
\[q \leftarrow \neg p, \]
\[p \leftarrow p, \]

is tight on each of the two models \{p\}, \{q\} of its completion

\[p \equiv \neg q \lor (p \land \tau), \]
\[q \equiv \neg p, \]
\[\tau \equiv \bot \]

(and even on their union: take \(\lambda(p) = \lambda(q) = 0 \)). Accordingly, both models are answer sets for this program.

This observation is due to Hudson Turner (personal communication, October 3, 2000).
Theorem 2, discussed in the next section, tells us under what conditions the tightness of a program is preserved when the definition of transitive closure is added to it.

The proposition below gives a simple characterization of tightness that does not refer to ordinals (and is actually close to Fages' original formulation). For any program II and any set X of literals, we say about literals L, L' ∈ X that L is a parent of L' relative to II and X if there is a rule (1) in II such that

- L₁, ..., Lₘ ∈ X,
- L ∈ {L₁, ..., Lₘ}, and
- L' = Head.

For instance, the parents of p relative to (5) and {p, q, r} are p and r; on the other hand, p has no parents relative to (5) and {p, q}.

Proposition 1 A program II is tight on a set X of literals iff there is no infinite sequence L₀, L₁, ..., of elements of X such that for every i, Lᵢ₊₁ is a parent of Lᵢ relative to II and X.

In other words, II is tight on a set X iff the parent relation relative to II and X is well-founded.

Proposition 1 is a special case of the following general fact of set theory:

Lemma 1 A binary relation R is well-founded iff there exists a function λ from the domain of R to ordinals such that, for all x and y, xRy implies λ(x) < λ(y).

Proof (outline). The "if" part follows from the well-foundedness of < on sets of ordinals. To prove the "only if" part, consider the following transfinite sequence of subsets of the domain of R:

\[S₀ = \emptyset, \]
\[Sα₊₁ = \{ z : \forall y (yRx ⇒ y ∈ Sα) \}, \]
\[Sα = \bigcup_β < α Sβ \quad \text{if} \ α \text{ is a limit ordinal.} \]

For any x ∈ \bigcupα Sα, define λ(x) to be the smallest α such that x ∈ Sα. From the well-foundedness of R we can conclude that \bigcupα Sα is the whole domain of R.

Transitive Closure and Completion

For any program II and any set X of literals, we say about literals L, L' ∈ X that L is an ancestor of L' relative to II and X if there exists a finite sequence of literals L₁, ..., Lₙ ∈ X (n > 1) such that L = L₁, L' = Lₙ and for every i (1 ≤ i < n), Lᵢ is a parent of Lᵢ₊₁ relative to II and X. In other words, the ancestor relation is the transitive closure of the parent relation.

Theorem 2 Let II be a program that does not contain atoms of the form tc(x, y) in the heads of rules. For any set X of literals, if

(i) II is tight on X,
(ii) \{ (x, y) : p(y, x) ∈ X \} is well-founded, and
(iii) no atom of the form tc(x, y) is an ancestor of an atom of the form p(x, y) relative to II and X,
then II U Def is tight on X. If, in addition,
(iv) X is a consistent set closed under and supported by II U Def
then X is an answer set for II U Def, and
\{ (x, y) : tc(x, y) ∈ X \}
is the transitive closure of
\{ (x, y) : p(x, y) ∈ X \}.

The first part of the theorem tells us that, under some conditions, the tightness of a program is preserved when the definition of the transitive closure of a predicate is added. The second part, in application to finite programs without classical negation, tells us that, under some conditions, the answer sets for II U Def can be characterized as the models of this program's completion, so that, in any model of completion, the extent of tc is the transitive closure of the extent of p.

Condition (ii) is similar to the acyclicity property mentioned in the introduction. In fact, if the underlying set C of constants is finite then (ii) is obviously equivalent to the following condition: there is no finite sequence x₁, ..., xₙ ∈ C (n > 1) such that

\[p(x₁, x₂), ..., p(xₙ₋₁, xₙ), p(xₙ, x₁) ∈ X. \] (6)

For an infinite C, well-foundedness implies acyclicity, but not the other way around.

Here is a useful syntactic sufficient condition for (ii):

Proposition 2 If II contains constraint

\[\bot \leftarrow tc(x, y) \] (7)

and C is finite then, for every set X of literals closed under II U Def, set \{ (x, y) : p(y, x) ∈ X \} is well-founded.

Without condition (ii), the assertion of the theorem would be incorrect. Program II that consists of one fact p(1, 1), with C = \{1, 2\} and

\[X = \{ p(1, 1), tc(1, 1), tc(1, 2) \}, \]

provides a counterexample.

Condition (iii) can be verified by checking, for instance, that p does not depend positively on tc in the dependency graph of II. This condition is essential as well. Indeed, take II to be

\[p(x, y) \leftarrow tc(x, y). \]

With C = \{1, 2\}, set X = \{ p(2, 1), tc(2, 1) \} is closed under and supported by II U Def, but is not an answer set for II U Def: the only answer set for this program is empty.

Proof of Theorem 2. Assume (i)–(iii). To prove the first assertion of the theorem, suppose that II U Def is not tight on X. By Proposition 1, there is an infinite sequence L₀, L₁, ..., ∈ X such that for every i, Lᵢ₊₁ is
a parent of \(L_i \) relative to \(\Pi \cup \text{Def} \) and \(X \). Consider two cases.

Case 1: Sequence \(L_0, L_1, \ldots \) contains only a finite number of terms of the form \(tc(x, y) \). Let \(L_n \) be the last of them. Then for every \(i > n \), \(L_{i+1} \) is a parent of \(L_i \) relative to \(\Pi \) and \(X \). Proposition 1, applied to sequence \(L_{n+1}, L_{n+2}, \ldots \), shows that \(\Pi \) is not tight on \(X \), contrary to (i).

Case 2: Sequence \(L_0, L_1, \ldots \) contains infinitely many terms of the form \(tc(x, y) \). By (iii), it follows that this sequence has no terms of the form \(p(x, y) \). The examination of rules \(\text{Def} \) shows that every \(tc(x, y) \) in this sequence is immediately followed by a term of the form \(tc(v, y) \) such that \(p(x, v) \in X \). Consequently, sequence \(L_0, L_1, \ldots \) consists of some initial segment followed by an infinite sequence of literals of the form

\[
\text{tc}(v_0, y), \text{tc}(v_1, y), \ldots
\]

such that, for every \(i \), \(p(v_i, u_{i+1}) \in X \). This is impossible by (ii).

The second assertion of Theorem 2 follows from the first, in view of the theorem from (Babovich, Erdem, & Lifschitz 2000) reviewed above, and by Theorem 1.

Proof of Proposition 2. Let \(\Pi \) be a program containing constraint (7), with finite \(C \), and let \(X \) be a set of literals closed under \(\Pi \cup \text{Def} \). Assume that \(\{(x, y) : p(y, x) \in X\} \) is not well-founded. Take \(x_1, \ldots, x_n \in C \) that satisfy (6). Since \(X \) is closed under \(\text{Def} \), \(\text{tc}(x_1, x_1) \in X \). But this is impossible because \(X \) is closed under (7).

Example: The Blocks World

As an example of the use of Theorem 2, consider a "history program" for the blocks world—a program whose answer sets represent possible "histories" of the blocks world over a fixed time interval. A history of the blocks world is characterized by the truth values of atoms of two kinds: \(\text{on}(b, l, t) \) ("block \(b \) is on location \(l \) at time \(t \)) and \(\text{move}(b, l, t) \) ("block \(b \) is moved to location \(l \) between times \(t \) and \(t+1 \)). Here

- \(b \) ranges over a finite set of block constants,
- \(l \) ranges over the set of location constants that consists of the block constants and the constant \(\text{table} \),
- \(t \) ranges over the symbols representing an initial segment of integers \(0, \ldots, T \),

except that in \(\text{move}(b, l, t) \) we require \(t < T \). One other kind of atoms used in the program is \(\text{above}(b, l, t) \): "block \(b \) is above location \(l \) at time \(t \)." These atoms are used to express constraint (16) that requires every block to be "supported by the table" and thus eliminates stacks and circular configurations of blocks flying in space.

The program consists of the following rules: 6

\[
\text{on}(b, l, 0) \leftarrow \neg \text{on}(b, l, 0) \\
\text{on}(b, l, 0) \leftarrow \neg \text{on}(b, l, 0) \\
\text{move}(b, l, t) \leftarrow \neg \text{move}(b, l, t) \\
\text{move}(b, l, t) \leftarrow \neg \text{move}(b, l, t)
\]

\[
\text{on}(b, l, t) \leftarrow \text{move}(b, l, t) \\
\text{on}(b, l, t+1) \leftarrow \text{on}(b, l, t), \neg \text{on}(b, l, t+1) \\
\text{move}(b, l, t) \leftrightarrow \text{move}(b', l, t) \quad (l \neq l')
\]

\[
\text{above}(b, l, t) \leftrightarrow \text{move}(b, l, t), \text{move}(b', l, t) \quad (b \neq b' \text{ or } l \neq l')
\]

To illustrate the use of Theorem 2, we will prove the following proposition:

Proposition 3 Program (8)-(16) is tight on every set of literals that is closed under it.

Since program (8)-(16) contains classical negation, the completion process is not applicable to it directly. But classical negation can be eliminated from the program by replacing \(\neg \text{on} \) with the auxiliary predicate \(\text{on}' \) and adding the constraint

\[
\bot \leftarrow \text{on}(b, l, t), \text{on}'(b, l, t).
\]

Proposition 3 tells us that, after this transformation, the program's answer sets can be computed by using a propositional solver to find models of the program's completion, as described in (Babovich, Erdem, & Lifschitz 2000).

The idea of the proof is to check first that program (8)-(13), (15), (16) is tight, and then use Theorem 2 to conclude that tightness is preserved when we add the definition (14) of \(\text{above} \). There are two complications, however, that need to be taken into account.

First, \(\text{on} \) and \(\text{above} \) are ternary predicates, not binary. To relate them to the concept of transitive closure, we can say that any binary "slice" of \(\text{above} \) obtained by fixing its last argument is the transitive closure of the corresponding "slice" of \(\text{on} \). Accordingly, Theorem 2 will need to be applied \(T + 1 \) times, once for each slice.

Second, the first two arguments of \(\text{on} \) do not come from the same set \(C \) of object constants, as required in the framework of Theorem 2: the set of block constants is a proper part of the set of location constants.

\[\text{on}(b, l, 0) \leftarrow \neg \text{on}(b, l, 0)\]

\[\text{on}(b, l, 0) \leftarrow \neg \text{on}(b, l, 0)\]

\[\text{move}(b, l, t) \leftarrow \neg \text{move}(b, l, t)\]

\[\text{move}(b, l, t) \leftarrow \neg \text{move}(b, l, t)\]

\[\text{on}(b, l, t) \leftarrow \text{move}(b, l, t)\]

\[\text{on}(b, l, t+1) \leftarrow \text{on}(b, l, t), \neg \text{on}(b, l, t+1)\]

\[\neg \text{on}(b, l, t) \leftarrow \text{on}(b', l', t) \quad (l \neq l')\]

\[\bot \leftarrow \text{on}(b, l, t), \text{on}'(b, l, t)\]

6This program is similar to the history program for the blocks world from (Lifschitz 1999). Instead of rules (8), the program in that paper contains a pair of disjunctive rules; according to Theorem 1 from (Erdem & Lifschitz 1999), this difference does not affect the program's answer sets. The intuitive meaning of rules (9)-(12) is discussed in (Lifschitz 1999), Section 6. Rule (13) prohibits concurrent actions. Rules (14) and (15) were suggested to us by Norman McCain and Hudson Turner on June 11, 1999; similar rules are discussed in (Lifschitz 1999), Section 8.
We need to introduce a program similar to (8)–(16) in which, syntactically, table is allowed as the first argument of both on and above.

Proof of Proposition 3. Let II be the program that differs from (8)–(16) in that

- its underlying set of atoms includes, additionally, expressions of the forms on(table, l, t) and above(table, l, t), and
- rules (14) and (15) are replaced by

\begin{align}
\text{above}(l, l', t) & \leftarrow \text{on}(t, l', t), \\
\text{above}(l, l', t) & \leftarrow \text{on}(t, l'', t), \text{above}(l'', l', t)
\end{align}

and

\begin{align}
\bot & \leftarrow \text{above}(l, l, t).
\end{align}

Let X be a set of literals that does not contain any of the newly introduced atoms or their negations and is closed under the original program (8)–(16). We will prove that II is tight on X. It will follow then that the original program is tight on X as well, because that program is a subset of II.

For every k = 0, ..., 2+1, let \(\Pi_k \) be the subset of the rules of II in which rules (17) are restricted to \(t < k \). Since \(\Pi_{k+1} = \Pi \), it is sufficient to prove that, for all k, \(\Pi_k \) is tight on X. The proof is by induction on k. Basis: \(k = 0 \). The rules of \(\Pi_0 \) are (8)–(13), (16), and (18). To see that this program is tight, define

\[\lambda({\text{on}}(l, l', t)) = t+1, \]
\[\lambda({\text{on}}(l, l', t)) = t+2, \]
\[\lambda({\text{move}}(b, l, t)) = \lambda({\text{move}}(b, l, t)) = 0, \]
\[\lambda({\text{above}}(l, l', t)) = \lambda({\text{above}}(l, l', t)) = 0. \]

Induction step: Assume that \(\Pi_k \) is tight on X. Let C be the set of location constants, and let functions p and tc be defined by

\[p(l, l') = {\text{on}}(l, l', k+1), \]
\[tc(l, l') = {\text{above}}(l, l', k+1). \]

Then \(\Pi_{k+1} = \Pi_k \cup \text{Def} \). Let us check that all conditions of Theorem 2 are satisfied. Condition (i) holds by the induction hypothesis. Since X is closed under the original program (8)–(16) and does not contain any of the newly introduced literals, it is closed under \(\Pi_{k+1} \) as well; in view of the fact that \(\Pi_{k+1} \) contains constraint (18), condition (ii) follows by Proposition 2. By inspection, (iii) holds also. By Theorem 2, it follows that \(\Pi_{k+1} \) is tight on X.

Conclusion

To prove that the completion of a program has no models other than the program's answer sets, we can check that the program is tight. When the program contains the definition of the transitive closure of a predicate, it may be difficult to check its tightness directly. But our Theorem 2 can be sometimes used to show that the tightness of a program is not lost when such a definition is added to it.

Essential for the applicability of that theorem is the presence of the "irreflexivity" constraint from Proposition 2, such as constraint (15) from the blocks world example. There are cases, however, when such constraints cannot be included without distorting the meaning of the program, as, for instance, when the concept of transitive closure is used to talk about paths in an arbitrary graph.

Acknowledgments

We are grateful to Norman McCain and Hudson Turner for their suggestion, mentioned in Footnote (s), which served as a starting point for our work on this paper, and for other useful discussions related to the problem of transitive closure in logic programming. This work was partially supported by the National Science Foundation under Grant No. IIS-9732744. The first author was also supported by a NATO Science Fellowship.

References

