
Correlated-Q Learning

Amy Greenwald
Department of Computer Science

Brown University, Box 1910
Providence, RI 02912

amy@cs, brown, edu

Keith Hall
Department of Computer Science

Brown University, Box 1910
Providence, RI 02912

kh@cs, brown, edu

Abstract

Bowling named two desiderata for multiagent learning
algorithms: rationality and convergence. This paper
introduces co~elated-Q learning, a natural generaliza-
tion of Nash-Q and FF-Q that satisfies these criteria.
NashoQ satisfies rationality, but in general it does not
converge. FF-Q satisfies convergence, but in general
it is not rational. Correlated-Q satisfies rationality by
construction. This papers demonstrates the empirical
convergence of correlated-Q on a standard testbed of
general-sum Markov games.

Introduction

This paper introduces eorrelated-Q learning, a multi-
agent learning algorithm that learns equilibrium poli-
cies in Markov games, just as Q-learning learns to opti-
mal policies in Markov decision processes. Correlated-
Q learning is named for correlated equilibria (Aumann
1974), which generalize Nash equilibria by allowing for
possible dependencies in strategic choices. A Nash equi-
librium is vector of independent probability distribu-
tions over actions, in which all agents optimize with re-
spect to one another’s probabilities. A correlated equi-
librium is a probability distribution over the joint space
of actions, in which all agents optimize with respect to
one another’s probabilities, conditioned on their own.

Recently, there have been several attempts to design
a multiagent learning algorithm that converges to equi-
librium policies in general-sum Markov games. Hu and
Wellman (1998) propose an algorithm called Nash-Q
that converges to Nash equilibrium policies in restricted
classes of Markov games. Littman’s (2001) friend-
or-foe-Q (FF-Q) algorithm always converges, but foe-
Q (i.e., minimax-Q (Littman 1994)) only learns equi-
librium policies in (two-player, constant-sum) Markov
games that exhibit aclversarial equilibria, and friend-Q
only learns equilibrium policies in coordination games
with uniquely-valued equilibria. Correlated-Q (CE-Q),
which strictly generalizes both Nash-Q and FF-Q, con-
verges empirically to correlated equilibrium policies on
a standard testbed of Markov games.
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This paper is organized as follows. In the next sec-
tion, we define Markov games. Next, we define multi-
agent Q-learning, and show how CE-Q, Nash-Q, and
FF-Q are all special cases of this generic algorithm.
Next, we compare CE-Q learning with Q-learning and
FF-Q in grid games. In the following section, we ex-
periment with the same set of algorithms in a soccer-
like game. Overall, we demonstrate that CE-Q learning
converges to (correlated) equilibrium policies on a stan-
dard testbed of general-sum Markov games.

Markov Games

Stochastic games generalize repeated games and
Markov decision processes (MDPs). stochastic game
is a tuple (I,S, (Ai(s))ses, l<i<,, (Ri)l_<i_<,), whe
I is a set of n players, S is a set of states, Ai(s) is the
ith player’s set of actions at state s, P is a probability
transition function that describes state transitions, con-
ditioned on past states and joint actions, and Ri(s, g)
is the ith player’s reward for state s E S and joint
actions t~ E A(s) = Al(s) x ... x A,(s). Stochastic
games for which the probability transitions satisfy the
Markov property are called Markov games: i.e., for t~t =
(al,..., a,)t, V[St+l]St, ¯ ̄ , so, g0] = P[st+11st,

An MDP is a one-player Maxkov game. Recall Bell-
man’s equations that characterize the optimal state-
and action-values for a single agent and an MDP: for
0_’7<1,

Q*(s,a) = r(s,a) +7y~P[s’[s, alV*(s’) (1)
St

V’(s) = max Q’(s, (2)
aeA(s)

In words, the value Q*(s, a) is the immediate reward
obtained at state s for taking action a plus the ex-
pected discounted value of the future rewards obtained
by following the optimal policy thereafter. The value
function V*(s) at state s is defined as the value that
maximizes Q*(s, a) over all actions a. The actions that
maximize Q*(s,a) at each state s describe the (deter-
ministic) optimal policy r*: i.e.,

~r" i s) E arg max Q* i s, a) (3)
aEA(s)
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In Markov games, player i’s optimal Q-values are de-
fined over states and action-vectors, rather than state-
action pairs:

Q;Cs,~) = R~(s,~) + 7 ~’-~ P[s’ls, a-]V?Cs’) (4)
St

Intuitively, the notion of state-value function also car-
ries over from MOPs to Markov games. But the obvious
analogue of Eq. 2, in which all players maximize their
respective rewards with respect to one another’s actions
is not adequate, since (deterministic) actions that sat-
isfy these simultaneous equations need not exist. (As
a consequence, Markov games need not exhibit deter-
ministic equilibrium policies: e.g., Rochambeau--Rock-
paper-scissors.)

Several alternative definitions of the value function
have been proposed. Littman (1994) studied two-
player, zero-sum Markov games and the minimax value
function (yon Neumann & Morgenstern 1944). Let
Ei(s) be the probabilistic action space of player i 
state s. Now

VI*(s) m " *LaX, mln . Ql(S, al,a2)=-V;(s ) (5)
al EX;t {sJ a2EA2{$)

Q*(S, al,a2) ~’~otEAt al (al)Q*(s, al ,a2). Attheop-
posite extreme, Littman’s friend-Q (2001) value func-
tion is suited to coordination games--games for which
all the players’ reward functions are equivalent--with
uniquely-valued equilibria:

V~*(s) = max Q~(s,a’) (6)
~eA(s)

For the general case of n-player, general-sum games,
Hu and Wellman (1998) proposed the following defini-
tion of the value function:

V/*(s) E NASHi(Q~(s) ,Q~(S)) (7)

where NASHi(R1,... ,Rn) denotes the ith player’s re-
ward according to some Nash equilibrium in the
general-sum game determined by reward matrices
ri,..., rn. Note that existence in this case, which is
implied by Nash’s theorem (1951) relies on probabilis-
tic actions (see Filar and Vrieze (1996)). This defini-
tion generalizes the minimax value function, since Nash
equilibria and minimax strategies coincide in zero-sum
games. But this value function need not be well-defined:
in general there are multiple Nash equilibrium policies.

We propose an alternative definition of the value
function in Markov games:

Vi*(s) E cEiCQ~(s),... ,Q:Cs)) (8)

where CEi(R1,..., R,) denotes the ith player’s reward
according to some correlated equilibrium in the general-
sum game determined by the rewards R1,..., P~. Eq. 8
generalizes Eq. 7, since a Nash equilibrium is a corre-
lated equilibrium that can be factored into independent
distributions over each individual player’s action space.
Thus, equilibria that are consistent with Eq. 8 exist,
but this value function, too, need not be well-defined.

Correlated Equilibrium

In contrast to Nash equilibria, for which no efficient
method of computation is known, correlated equilibria
can be computed easily via linear programming. As an
example, consider an arbitrary state in a two-player,
two-action, general-sum Markov game, where rewards
are as in the game of "Chicken":

L R
T 6,6 2,7
B 7,2 0,0

The linear program that computes the correlated
equilibrium that maximizes the sum of the players’ re-
wards in this game is given by: max 12~rTL + 97rTR %
9~rBL, subject to the probability constraints Irrn +
?rTR + 7rBL + 7rBR = 1 and ?rTL,TFTR, TrBL,~BR ~ O,

and four rationality constraints that characterize the
players disincentive to deviate:

--llrTL + 2rTR ~_ 0 --I~rTL + 27rBL ~_ 0
I~rBL -- 2?rBR >_ 0 I~rTR -- 2~rBR >_ 0

These constraints have a natural interpretation via con-
ditional probabilities. Let Ir(y[z) denote the conditional
probability of y given z, and let lr(y) = ~’-~z 7r(y[z) 
note the marginal probability of y. Now for players
A and B, 7rTL = r(L[T)Tr(T) 7rTR= r(R]T)r(T).
Thus, the first constraint can be restated as -Dr(LIT)+
2r(R[T) > 0, or equivalently, Or(LIT)+ 2r(R[T) 
7r(L[T) + O~r(RIT). Intuitively, the expected reward to
the row player of action T is at least that of action B
whenever he in fact plays action T. The other three
constraints have analogous interpretations. This linear
program has value 10.5, with #TL = 0.5, 7rTR = 0.25,
rBL = 0.25, and 7rBR = 0.

Multiagent Q-Learning

MULTIQ (MarkovGame, 7, a, S, T)
Inputs discount factor 7

learning rate a
decay schedule S
total training time T

Output action-value functions Q~
Initialize s, al,...,aa and Q1,...,Qn

for t = I to T
1. simulate actions al,..., an in state s
2. observe rewards rl,..., rn and next state d
2. fori=lton

Ca) compute Vi(s’)
(b) update O,i(S, al,...,an)

i. Qi(S, al,...,an)=
(1 - a)Qi(s, al,.. . ,an) + a[ri 7Vi(s’)]

4. agents choose actions a~,...,ak
5. s=s’,al =a~,...,att =a~
6. decay a according to S

Table 1: Multiagent Q-Learning.
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Figure 1: Grid games. Initial States.
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(c) Grid Game 

In principle, it is straightforward to generalize dy-
namic programming and reinforcement learning from
MDPs to Markov games. A template for multiagent
Q-learning is presented in Table 1. In this generic for-
mulation, the means of computing the value function IF/
is not made explicit (step 3(a)). Littman’s FF-Q algo-
rithm computes V~ according to either Eq. 5 or Eq. 6,
as appropriate. Hu’s and Wellman’s Nash-Q algorithm
computes Vi according to Eq. 7. Corrdated-Q com-
putes Vi in accordance with Eq. 8, using, for example,
the utilitarian objective function described above, or
perhaps an egalitarian or republican objective function
described presently.

In this paper, we report on simulation experiments
of a variant of correlated-Q learning that we call utili-
tarian, since we define the value function in terms of a
correlated equilibrium that maximizes the sum of the
players’ rewards. Thus, CEi(Q~(s),..., Q*(s)) 

(~e~Aa*(g)Qi(s,g) [ ~* satisfies Eq. /
(9)

where

(10)

In ongoing work, we are also experimenting with cor-
related equilibria that maximize the minimum of the
players’ rewards:

(ii)

and correlated equilibria that maximize the maximum
of the players’ rewards:

(12)

We call these latter two algorithms egalitarian and re.
publican correlated-Q learning, respectively.

Grid Games

The first set of ’experimental results we report pertain
to grid games (Hu & Wellman 2000). Fig. 1 depicts
the initial states of the three games of interest. In grid
game I (GG1), there are two agents and two goals. The
agents’ action set includes one step in any of the four
compass directions. Actions are executed simultane-
ously. If both agents attempt to move into the same
square, they cannot; instead, they both lose 1 point in
GG1 and GG2, and 50 points in GG3. If ever an agent
reaches its goal, it scores 100 points and the game is
over. Note that it is possible for both agents to score
100 points since moves are executed simultaneously.

Other than the board setup, grid game 2 (GG2) 
identical to GG1. In GG2, there are two agents, one
goal, and two barriers: if an agent attempts to move
through one of the barriers, then with probability 1/2
this move fails. Finally, we introduce grid game 3
(GG3), where like GG2 there is one goal, but in ad-
dition there are bonus points to be earned: (i) an agent
that successfully enters the center square at the bottom
of the grid earns 25 bonus points, or if both agents si-
multaneously move from their initial positions up the
sides, they both earn 20 bonus points. The equilibrium
policies of these games are described presently.

In all three of these grid games there exist determin-
istic equilibrium policies for both agents. In GG1, there
are several pairs of deterministic equilibrium policies in
which the agents coordinate their behavior (see Hu and
Wellman (2000) for graphical depictions), all of which
yield equivalent rewards. In GG2, there are exactly two
deterministic equilibrium policies: one agent moves up
the center and the other attempts to pass through the
barrier, and the same again with the agents’ roles re-
versed. Note that these equilibria are asymmetric: the
agent that moves up the center scores 100, but the agent
that attempts to move through the barrier scores only
50 on average. The deterministic equilibrium policies
of GG2 carry over to GG3.

In addition, all the grid games exhibit nondetermin-
istic correlated (and Nash) equilibrium policies. For
example, in GG2, there exists a continuum of sym-
metric, nondeterministic, correlated equilibrium poll-
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Figure 2: Convergence in the grid games: all algorithms are converging.

Grid Games GG1 GG2 GG3
Algorithm Score Gaines Score Gaines Score Gaines

Q 100,100 2500 49,100 3333 100,125 3333
Foe-Q 0,0 0 67,68 3003 120,120 3333
Friend-Q 100, 100 2500 .--00, --00 0 --CO, --00 0
Correlated-Q 100,100 2500 50,100 3333 117,117 3333

Table 2: Grid Games played repeatedly, allowing 104 moves. The number of games played varied with the agents’
policies: some move directly to the goal, while others digress.

cies: i.e., for all probabilities p, with probability p one
agent moves up the center and the other attempts to
pass through the barrier, and with probability 1 -p
the agents’ roles are reversed. More interestingly, in
GG3, there exist symmetric, nondeterministic, corre-
lated equilibrium policies in which both agents move
up the sides with high probability and each of the de-
terministic equilibria is played with low probability (as-
suming utilitarian objectives).

Our experiments reveal that correlated-Q, foe-Q,
friend-Q (a -+ 0.001 and 7 = 0.9.) and on-policy 
learning (i.e., e-greedy, with e ~ 0.001, a ~ 0.001,
and ~/-- 0.9) all converge empirically in the three grid
games. Littman (2001) proves that FF-Q converges 
general-sum Markov games. Fig. 2 shows that in fact
ordinary Q-learning (on-policy) and correlated-Q (off-
policy) also converge in these games.

The values plotted in Fig. 2 are computed as follows.
The error ERR~ at time t for agent i is the difference
between Q(s,~) at time t and Q(s,~) at time t - 1:
ERR~ ---- [Q~(8,~)- Q~-l(8,~)I. The values on the x-
axis represent time, and the corresponding y-values are
the means of the distributions of the errors ERR~ for all
t = 0,...,x. This mean is converging to zero for all
algorithms in all grid games.1

Since all the learning algorithms converge, we played
the equilibrium policies that the agents learned against
one another. Our results are depicted in Table 2. On-
policy Q-learning is successful in grid games: it consis-

1In fact, the actual Q-value differences are converging at
all state-action pairs. The mean is simply a useful statistic
for summarizing this collective behavior.

tently converges to equilibrium policies in which the two
agents coordinate their behavior perfectly. In GG1, this
leads to symmetric scores, but in GG2 and GG3 their
policies and their scores are asymmetric.

Foe-Q learners perform poorly in GG1. Rather than
progress toward the goal, they cower in the corners,
avoiding collisions, but simultaneously avoiding the
goal. In GG2 and GG3, the principle of avoiding col-
lisions leads both foe-Q learners straight up the sides
of the grid. These are not equilibrium policies, since
both agents have an incentive to deviate to the center,
but they do yield reasonable scores in GG2, and Pareto
optimal scores in GG3.

Friend-Q learning can perform even worse than foe-
Q learning in GG1. This result may appear surprising,
since GG1 satisfies the conditions under which friend-Q
is guaranteed to converge to equilibrium policies. In-
deed, friend-Q learns Q-values that correspond to equi-
librium policies, but during play, friends lack the abil-
ity to coordinate their policy choices. Whenever one
friend chooses a policy that collides with the policy of
its so-called friend, both agents obtain infinitely neg-
ative scores in one never-ending game. But friend-Q
learners do sometimes get lucky and choose coordinated
equilibrium policies, as the numbers in Table 2 indi-
cate. Friend-Q’s performance is always poor in GG2
and GG3: both friends learn to play the equilibrium
policy that uses the center passage, which causes friends
to collide repeatedly.

In our implementation of the learning phase of CF_,-
Q, a central coordinator computes an equilibrium policy
for each agent. Similarly, in the testing phase, CE-Q
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play is coordinated. Thus, unlike friend-Q, correlated-
Q learners coordinate their play in the grid games. The
present comparison is therefore unfair; but in our con-
clusions, we allude to ongoing research geared towards
eliminating CE-Q’s dependence on this coordinator.

In GG1, CE-Q learns Q-values that coincide exactly
with those of friend-Q (i.e., those Q-values associated
with equilibrium policies). CE-Q learns policies much
like ordinary Q-learners in GG2. In both GG1 and
GG2, utilitarian correlated-Q learning is indifferent be-
tween all correlated equilibrium policies, deterministic
and nondeterministic, since they all yield equal sums
of rewards. In GG3, however, CE-Q learns the particu-
lar nondeterministic correlated equilibrium policies that
yield symmetric scores, because the sum of rewards at
this equilibrium exceeds that of any deterministic equi-
librium policies. Consequently, the sum of the scores
of CE-Q exceeds that of Q-learning. CE-Q’s rewards
do not exceed the sum of the foe-Q learners’ scores,
however; but the foe-Q learners are not rational--they
ignore the fact that the reward for using the center pas-
sage exceeds that of moving up the sides, given that
one’s opponent is moving up the side. Utilitarian CE-
Q learning converges to rational policies that maximize
the sum of the agents’ rewards.

Like Nash-Q, correlated-Q learning strictly general-
izes friend-Q, since it converges to precisely the same Q-
values as friend-Q in games where friend-Q converges.
In the next section, we show that correlated-Q learning
also appears to generalize foe-Q.

Soccer Game
The grid games are general-sum games for which there
exist deterministic equilibria. In this section, we con-
sider soccer (Littman 1994), a zero-sum game for which
there do not exist deterministic equilibrium policies.

The soccer field is a grid (see Fig. 3). The circle rep-
resents the ball. There are two players, whose possible
actions are N, S, E, W, and stick. The agents’ actions
are executed in random order. If this sequence of ac-
tions causes the players to collide, then neither moves.
But if the player with the ball moves second, then the
ball changes possession.2 If the player with the ball
moves into a goal, then he scores +100 if it is in fact his
own goal and the other player scores -100, or he scores
-100 if it is the other player’s goal and the other player
scores +100. In either case, the game ends.

In this simple soccer game, there do not exist deter-
ministic equilibrium policies, since at some states there
do not exist deterministic equilibria. For example, at
the state depicted in Fig. 3 (hereafter, state s), any de-
terministic policy for player B is subject to indefinite
blocking by player A. But if player B employs a non-

2In other words, if the player without the ball moves
into the player with the ball, attempting to steal the ball,
he cannot. But if the player with the ball moves into the
player without the ball, the former loses the ball to the
latter. This form of the game is due to Littman (1994).

A
B
B

A ® R
B

A B
A B

Figure 3: Soccer Game. State s.

deterministic policy, then player B can hope to pass
player A on his next move.

We experimented with the same set of algorithms
in this soccer game as we did in the grid games. As
expected, FF-Q converges at all state-action pairs.
Correlated-Q also converges everywhere. In fact, CE-
Q learns Q-values (and policies) that coincide exactly
with those of foe-Q. But Q-learning does not converge.
Intuitively, the rationale for this outcome is clear: Q-
learning seeks deterministic optimal policies, but in this
game no such policies exist.

Fig. 4 presents an example of a state-action pair
at which Q-learning does not converge. In this fig-
ure, the values on the z-axis represent time, and the
corresponding y-values are the error terms ERR~ =

[Q~(s,~)-Q~-l(s,~)[. The error values shown 
Figs. 4(a), (b), and (c) reflect player A’s Q-values 
responding to state s, with player A taking action S
and player B sticking. These three graphs, correspond-
ing to CF_,-Q, foe-Q, and friend-Q, respectively, depict
converging sequences of error values.

Q-learning agents compute Q-values for each of their
own possible actions, ignoring their opponents’ actions.
The error values shown in Fig. 4(d) reflect player A’s
Q-values, corresponding to state s and action S. In this
figure, although the Q-value differences are decreasing,
they are not converging. They are decreasing only be-
cause the learning rate ~ ~ 0.001. At all times, the
amplitude of the oscillations in error values is as great
as the envelope of the learning rate.

At state s, CF_,-Q and foe-Q converge to nondeter-
ministic policies for both players, where each one ran-
domizes between sticking and heading south.

Friend-Q, however, converges to a deterministic pol-
icy for player B at state s, namely E. Learning accord-
ing to friend-Q, player B (fallaciously) anticipates the
following sequence of events: player A sticks at state
s, and then player A takes action E. Thus, by taking
action E, player B passes the ball to player A, with the
intent that player A score for him. Player A is indif-
ferent among her actions, since she assumes player B
plans to score a goal for her immediately.

In this soccer game, Q-learning does not converge.
The friend-Q algorithm converges but its policies are
irrational. Correlated-Q learning, however, converges
to the same solution as foe-Q learning--the Q-values
learned by the two algorithms are identical. Thus,
CE-Q learns minimax equilibrinm’policies in this two-
player, zero-sum game.
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(a) Correlated-Q (b) Foe-Q

r-~-O°| . .
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(c) Friend-Q

Figure 4: Convergence in the soccer game. All algorithms--except Q-learning--converge.

Conclusion
Bowling (2001) put forth two desiderata for multiagent
learning algorithms: rationality and convergence. Ra-
tional agent policies are optimal with respect to one
another: i.e., there is no incentive for any agent to de-
viate from the prescribed behavior. Convergence in this
setting refers to Q-values. In this paper, we introduced
correlated-Q learning, a natural generalization of ex-
isting algorithms that satisfies these criteria. Nash-Q
satisfies rationality, but in general it does not converge.
FF-Q satisfies convergence, but in general it is not ratio-
nal. Correlated-Q satisfies rationality by construction,
and the experiments described in this paper demon-
strate empirical convergence on a standard testbed of
general-sum Markov games. It remains to prove con-
vergence of correlated-Q learning in general.

One awkward aspect of correlated-Q learning is that
agents must collaborate to jointly learn equilibrium
policies. However, there exist adaptive algorithms for
individual agents which generate joint play that con-
verges to correlated equilibria (Foster & Vohra 1997).
In ongoing work, we are implementing correlated-Q
learning without explicit collaboration by replacing the
linear programming call with such an adaptive proce-
dure. Similarly, we are implementing an adaptive ver-
sion of minimax-Q by replacing its linear programming
call with an adaptive algorithm that converges to min-
imax strategies (Freund & Schapire 1996). Preliminary
tests suggest that such adaptive algorithms are capa-
ble of learning correlated equilibrium policies without
relying on any explicit coordination device.
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