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Abstract

MEMS (microelectronic mechanical systems) sensors make
a rich design space of distributed networked sensors viable.
They can be deeply embedded in the physical world and
spread throughout our environment like “smart dust”.
Today, networked sensors called Smart Dust motes can be
constructed using commercial components on the scale of a
square inch in size and a fraction of a watt in power. High-
density distributed networked sensors have recently been
targeted for use in research devoted to the efficient use of
energy.  Such networks require a large number of sensors
for control at different levels. However, in reality, sensor
information is always corrupted to some degree by noise
and degradation, which vary with operating conditions,
environmental conditions, and other factors. To overcome
these shortcomings, sensor validation is needed to assess the
integrity of the sensor information and adjust or correct as
appropriate. Sensor fusion of both disparate and redundant
(physical and functional) sensors is essential for control and
to achieve high sensor data fidelity. In this paper we have
isolated a specific domain within the built environment, and
present an influence diagram model by which to answer the
decisions concerning how to most efficiently condition that
space throughout the day. Key issues include the
aggregation of heterogeneous information, management of
uncertainty at various levels, appropriateness assessment of
current validation and fusion algorithms, temporal changes
and decision-making strategies.

1. Distributed MEMS Sensors – Smart Dust

The goal of the Smart Dust project is to build a self-
contained, millimeter-scale sensing and communication
platform for a massively distributed sensor network
[16,24]. These devices will ultimately be around the size of
a grain of sand and will contain sensors, computational
ability, bi-directional wireless communications, and a
power supply, while being inexpensive enough to deploy
by the hundreds.

There exist endless possibilities for the applications of
these devices. The wireless sensing capabilities of Smart
Dust, combined with its microscopic size give everything
in the physical world the potential to be “smart.” As the
cost of the devices decreases, and the number of sensors
collated into a network increases, the need for sensor
fusion and validation techniques becomes increasingly
necessary. Similarly, as the real-world applications of these
sensor webs become increasingly sophisticated, the
integrity of the information conveyed within the web, and
the decisions that can be executed merit increasing levels
of attention. Before turning to the details of the research
questions afforded by Smart Dust applications, we review
the basic architecture and design of the macroscale motes
available today.
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1.1 Architecture and Operation of Smart Dust
Motes

While dust-sized sensing and communication units are the
goal of the project, macro-scale units called motes have
been successfully developed and are in use for a variety of
research projects. The motes are based on a common
architecture, but each mote has a unique set of
communication and sensor capabilities [10,26,30,31].
Smart motes consist of a microcontroller, sensors and a
communication unit. The communication unit is one of the
following: an RF transceiver, a Laser Module, or a corner
cube reflector. The sensors measure a number of physical
or chemical stimuli such as temperature, humidity, ambient
light, vibration, acceleration, or air pressure.

Periodically the microcontroller receives a reading from
one of the sensors, processes the data, and stores it in
memory. A receiver is used to receive incoming
communications from other motes or from the base station.
Sensor data and messages can be transmitted back to the
base station or to other motes in the network with the use
of the corner cube retroreflector, laser or RF transceiver.

The microcontroller determines the tasks performed by the
mote, and controls power distribution to the various
components of the system in order to minimize total
consumption. Power conservation is achieved largely
through the use of timers. When a timer expires, it signals
a part of the mote to carry out a task, then powers off.
Upon completion of the task, everything is powered down
and the timer begins counting again. The microcontroller
can receive several types of packets, including new
program code that is stored in the program memory. This
capability enables remote modification of the mote’s
behavior. Incoming packets may also contain messages
from the base station or other motes. The message may
contain specific instructions for the mote, or it may simply
be a message that is in transit to some other destination.

Some of the timers mentioned above are dedicated to
control of the sensors. When one of these timers expires, it

powers up the corresponding sensor, takes a sample, and
converts it to a digital word. If data are interesting, the
microcontroller can assemble it into a packet for
transmission. Alternatively, the sensor data may be stored
directly in the mote’s SRAM.

1.2 Current Applications of Smart Dust Motes

Returning to the idea that with Smart Dust anything has the
potential to be made ‘smart’, we can appreciate the variety
of applications for which that these devices have been
considered: inventory control and product monitoring,
surveillance and security, internal spacecraft monitoring,
and weather modeling and monitoring [16].

Smart Dust motes have already been used, or are currently
being used in research experiments at U.C. Berkeley to
develop motion-tracking webs for vehicle surveillance
[30]. Also developed was an acceleration-sensing glove
that can be used as a virtual keyboard [31].

Improvements to the efficiency of energy use have also
been targeted as one of the major impact areas for
distributed MEMS sensors. Research currently being
conducted by U.C. Berkeley’s Center for the Built
Environment [5] and the UC Berkeley Center for
Information Technology Research in the Interest of Society
(CITRIS) [7,11] are beginning to explore the potential uses
for Smart Dust motes in energy applications within
buildings. Research based upon the use of Smart Dust
motes for energy conservation and efficiency is expanded
upon and further explored in the remainder of this paper.

2. The Efficient use of Energy

Energy efficiency has recently come to the forefront of
energy debates, especially in the state of California
(“energy efficiency” referring to both the total energy
required over time, as well as the peak power demand at
any given instant of time.) This focus on efficiency has
been driven by the deregulation of electrical-energy
distribution, the increasing price of electricity, and the
implementation of rolling blackouts. It has been
determined that a 1% reduction in peak electricity demand
can lead to a 10% reduction in wholesale prices, and that a
5% reduction can cut the price in half [4,25].

2.1 Energy Use in the Built Environment

Currently, approximately one third of all primary energy
consumption can be attributed to buildings. Of this third,
two thirds of the primary energy use is in the form of
electricity used for water heating, lighting, HVAC, and

Fig.1: Smart Dust Mote [32].
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operation of electrical machinery. In addition, two thirds of
the electrical energy produced in the United States is used
in buildings [4,25].

In spite of the significant proportion of energy that is
consumed within buildings, the use of this energy is not
very efficient. A study conducted by the Interlaboratory
Working Group in 2000 championed efforts to reduce
energy consumption in buildings, arguing that savings of
up to 18% in primary energy use could be gained [4,25].
Although it is widely accepted that energy efficiency
improvements are economically and environmentally
beneficial, we have not yet as a nation made large strides in
this direction with respect to the built environment.

A significant obstruction in solving electrical consumption
and efficiency problems in buildings has been a lack of
information – we currently don’t know,  to much accuracy,
the  costs to run individual appliances at various times
throughout the day, how much electricity individual
appliances consume, or what causes the inefficiencies of
individual appliances and systems of energy consuming
devices. The Interlaboratory Working Group 2000 has
identified gaps in the information loop between supplier
and end-user as the critical barrier to technological
innovation in these areas [4,25].

2.2 Improving Efficiency with Advanced
Information Technologies

One approach toward improving the efficiency of the
energy distribution and consumption infrastructure within
the built environment involves the development of large-
scale integrated information technology systems [25]. For
example, the Center for Information Technology Research
in the Interest of Society (CITRIS), a research center
established under the California Institutes on Science and
Innovation (CISI), has made the development of Societal-
scale Information Systems (SISs) a prime research agenda
[7]. These systems rely on high-density sensing and
actuating networks that will allow existing environmental
control technologies to operate in more sophisticated and
energy-efficient ways. High-density sensing and actuating
networks systems also have the potential to enable new
energy-efficient control technologies to become feasible
for the first time [25]. In the remainder of this paper we
isolate a domain within the built environment, and outline
a research program that leverages the sensing, size and
communication advantages offered by Smart Dust motes in
order to improve the efficiency of energy consumption
within that domain. To analyze, simulate and
experimentally validate our research, we have developed a
three-tiered hierarchical model of the sensor validation,
fusion and decisions under consideration.

3. Heating, Ventilating and Lighting of Shared
Indoor Space

Indoor space that is shared by multiple persons throughout
the day offers a promising domain in which to focus our
efficiency improvement efforts. In the discussions that
follow we will limit ourselves to shared spaces in which
there are multiple sources of artificial light with the
capacity to be dimmed, as well as windows that receive
varying levels of light during the day. Let us further
assume that the shared space under consideration has both
space heating and ventilation and multiple sources of local
radiant heat and fans.  In this paper, we will focus on the
lighting scenario as it can be implemented with readily
available building technologies.  The heating and
ventilating example is more complex and will require
significant changes in the built environment [3].  However,
the lighting model can be extended to heating and
ventilating in order to analyze the cost/benefit trade-offs
for these design changes.

3.1 Modeling the Lighting Problem as a
Hierarchical Influence Diagram

With a focus on improved energy efficiency with lighting,
we are concerned with how Smart Dust motes can be used
in parallel with outside ambient and artificial light sources
to most efficiently light the space throughout the day with
varying use patterns? We develop an influence diagram
model [29] (Bayes’ nets [21,22] with the addition of
decision or control nodes) to model the uncertain
influences and information available to the system control.
Each sensor in the net provides data on ambient
temperature and light conditions, as well as patterns of
human occupancy. The sensors throughout the room can be
grouped into regional clusters based upon their proximity
to the artificial sources of light and heat/ventilation
throughout the space. These regions of the room that
correspond to the locations of the clustered sensors
interact, resulting in the global light and heat /cooling
conditions associated with the entire space.

Our influence diagram model of the environmental
conditions, sensors, and points of control in the room is a
three-tiered hierarchical arrangement of the information
necessary to perform sensor validation, sensor fusion and
decision-making at various levels – local, regional, and
global [18,35]. For example, from a local perspective, the
model must be able to distinguish between individual
sensors, and evaluate the integrity of the data from each.
Thus sensor validation can occur at the individual sensor
level. From a regional perspective, the model must be able
to incorporate the data from multiple, many of them
redundant, sources in order to determine spatially
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distributed patterns as well as average conditions for a
given actuating zone within the environmental control
system; thus sensor validation and fusion can be performed
at the regional level [6,9,10] as well as some control of
regional light sources. From a global perspective, the
model must be able to determine how to control global
light sources, in order to maximize the efficiency of energy
consumption. Other over-riding global decisions might
include emergency lighting or preparation for voluntary
black outs.

A brief summary of the influence diagram nodes and
influences we use in our model follows. An influence
diagram is an acyclic directed network with nodes
representing variables critical to the problem and the arcs
representing their interrelationships. The general influence
diagram model consists of five kinds of nodes: state,
sensor, deterministic, decision/control and value nodes.

State Nodes : Any state in the system can be represented
by a state node, graphically shown as a circle or ellipse. In
our model, the state nodes are the features of the state of
light intensity in a region of the room (e.g., spatial
distribution and average light), the occupancy in the room

(Boolean or spatial distribution), along with the states of
the sensors. Specialized forms of state nodes are sensor and
deterministic nodes.

(a) (b) (c) (d) (e)

Fig. 3: Nodes (a) state, (b) sensor, (c) deterministic, (d)
decision/control and (e) value.

Sensor Nodes :  A sensor node represents a measurement
sensor that could be directly ‘read’ by an operator or
controlling system. It might also represent a physical state
of the system that is immediately obvious to the operator
by means of human sensory capabilities, such as sight,
hearing or smell.  All of our Smart Dust motes are modeled
using the sensor icon (Fig. 3b) in our model. In our lighting
model, we have segmented the influence diagram into

Ambient
Light

Region 1 Region 2 3 4

5 5 6

Local Level
• Sensor Validation
• Lighting Control

Regional Level
• Sensor Validation
• Sensor Fusion
• Regional Decisions

Global Level
•  Date/Time
• Global Decisions

Local Light
Control

Smart
Dust Motes

Fig. 2: Hierarchical Levels of the Influence Diagram: Local, Regional and Global.
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room regions using an “i” sub/super-script. We consider a
system with the set of Ni non-sensor state variables
representing the features of  light intensity in each region i,
denoted by Xi = {xi1, x i2 . . . x iN

i}. and a set of Mi sensors
or observables Si = {Si1, S i2 . . . S iM

i} for each region i.
We assume that we sense the occupancy within the regions
through a set of specialized Boolean trigger sensors T=
{t1, t2, . . .tk } , such as motion sensors. A high density

network of motion sensors could also be used to determine
the spatial distribution of occupancy as well.

Deterministic Nodes: A deterministic node is one in that
performs a deterministic or algorithmic operation on
information fed into it. The output of a deterministic node
need not be deterministic if the inputs are probabilistic or
fuzzy. In our model, the sensor validation and fusion
algorithms are modeled as deterministic nodes. Sensor
validation occurs  at the local and regional levels, but
sensor fusion occurs only at regional and global level.

Decision/Control Nodes: A decision or control node
represents decision options in an influence diagram. Arcs
going into a decision node represent information available
to the decision maker or controller at the time the decision
is to be made. In our model, the decisions are to turn on/off
lights or increase/decrease the lighting to a continuous
value of intensity. Although control options are available at
all three hierarchical levels, the decisions are made in
consideration of the value at the regional and global levels
only. For example, even though it is possible to control
each light source independently, our lighting model makes
decisions based on those sensor readings and values first at
the regional level and then at the global level.

Value Node: The value node represents the value or cost
function associated with the problem being model. In our
case, the value function should drive the decisions to
improved efficiency and could be represented as a cost
function minimizing the predicted cost of energy in dollars
over the time period being considered.  The value node
only operates at the regional and global levels. Micro-
decisions at the component level are not considered.

The interpretation of the relationships represented by the
arcs in an influence diagram depends on the type of the
nodes they connect. Arcs going into state nodes represent
conditional influences as shown in Fig. 4 a,b&d. Formal

calculi have been developed for both probabilistic
relationships (using Bayesian [22] or fuzzy probabilities
[15]) and fuzzy functions [13].

Arcs between state nodes can be reversed through legal
transformations on the diagram, providing a cycle is not
introduced, using Bayes’ rule for probabilistic models [29]
and abduction rules for fuzzy influence diagrams [13].
Arcs to and from decision nodes serve a different function
and can not be reversed without changing the basic
structure of the decision model. An influence arc from a
decision node to a state node (Fig. 4d) indicates causality
in the sense that each decision option restricts the event
space of the state variable.  Arcs going into decision nodes
are informational and show which variables will be known
at the time a decision is made (Figs. 4c). No-forgetting arcs
are placed between decision nodes to signify that decisions
are sequential in time and the value of past decisions is
remembered (Fig. 4e). Arcs into the single value node
signify which nodes directly influence the goal (Fig. 4f).
Again, a probabilistic influence diagram without decision
nodes is equivalent to a Bayes’ belief network [29].

The lack of an arc is a stronger statement of the modeler’s
knowledge of the system than the existence of an arc. The
presence of an arc indicates that a possible dependency
exists, while the lack of an arc states strongly that no
dependency exists. A variable is said to influence a state
node y if information about x gives new information about
y, given any other conditioning information.

3.2 Regional Validation, Fusion and Decision
Model

The diagram in Fig. 5 illustrates our proposed hierarchical
layout of sensors within the room being conditioned for the
lighting problem.  The reasoning that led to the inclusion
or omission of dependencies within the diagram is as
follows. Clearly, the actual presence of humans in the
room should influence what the motion detector reads –
thus the arc from the “people?” state node to the motion
detector sensor. Similarly, true light intensity influences
what the light sensor reads. As most of the regions are not
separated by walls, the true light intensity in one region
will be influenced by the true light intensity in neighboring
regions – thus the arc from the light state node in region 1

Probabilistic 

 

Fuzzy 

 

Informational

Causal 

 

No-Forgetting 

 

Value Influence  

a. 
 
 
b. 
 
 
c.

d. 
 
 
e. 
 
 
f .

Fig. 4:  Six Roles for Arcs in an Influence Diagram.
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to the corresponding node in region 2. The actual presence
of humans in the room would influences the actual state of
the lighting if the human has direct control over the
lighting in the time period under evaluation – thus the arc
from “people?” to “light” in each region. For a first order
approximation, we have not included the influence of
human occupancy in region 1 on actual lighting in region
2. The influence of actual human presence on the reading
of the light sensor, conditioned on the true intensity of the
light (i.e., given the arc from the true light state to the light
sensor), has also been determined to be secondary, and has
been omitted in this version.

The date and time of day is information that is considered
to be universally available to all sensing motes. It is a
straightforward conclusion that the time of day influences
the true state of human presence in  each region, as well as
the true state of light intensity in the region. The date and
time of day also influences the cost of electricity and
assumed to be known at the time of any regional or global
decision.

Date/
Time

Region 1

Validate
& Fuse

Lighting
Control1

Value/
Cost1

Motion1

Light1

Light1

People
 ?

1

Motion2

Light2

Light1

Validate
& Fuse

Lighting
Control2

People
?

2

Value/
Cost2

Region 2

Energy
Costs

Fig. 5: Influence Diagrams of Two Contiguous Regions
for the Lighting Problem.

3.3 The Decision Problem

The decision problem at hand is how to most efficiently
light, ventilate and heat the space under consideration. One
aspect of efficiency, that of limiting total electrical
demand, is met through the intelligent real-time
determination of how best to combine the artificial
resources with one another, or with sunlight. However,
another aspect of efficiency is that of limiting the total cost
of conditioning the space in question. Limiting peak
demand is further related to the cost of conditioning the
space in that it is critical to reducing the wholesale prices
of electricity [4].

Decisions arrived at within the model depend on the value
function. The value function attempts to minimize overall
average energy consumption and peak energy
consumption, and to maximize human satisfaction. The
cost of electricity is included in the model as a dynamic
variable in order to incorporate the elevated cost of
electricity during periods of peak demand. The Center for
the Built Environment [3,5], has developed an “occupant
satisfaction survey” and metrics for “benchmarking
building quality” and has conducted numerous studies on
both objective measures and human subjective perceptions
of indoor environmental quality. As we learn more from
experts from this center, the human satisfaction parameters
may be further developed and separated out from the value
function into their own state nodes.

4. Future Research

This paper describes work in progress aimed at developing
an influence diagram model that identifies the key features,
influences and decision options associated with sensor
validation and sensor fusion of Smart Dust motes for
enabling efficient energy use, starting with the lighting
problem.  Refinement of the influence diagram used to
model the problem is part of the research that we have
planned for the immediate future. Within this framework
we are evaluating research in sensor monitoring,
validation, fusion, and fault detection along with current
work in computer-aided MEMS design [8,36] to evaluate a
range of fuzzy [e.g., 14], probabilistic [e.g., 2,6,17,28,34]
or hybrid [e.g., 12,23] algorithms for appropriateness to
this problem. One key issue in this evaluation will be the
ability to mange the temporal aspects of the problem. Our
influence diagram model can be made dynamic by
updating and linking influences over periodic time
segments [1,27]. Which states should be monitored on a
periodic basis? Which sensors and decisions should only
be considered after a trigger event or threshold is reached?
What are appropriate response times that balance energy
efficiency and human factors? What is the optimal density
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of Smart Dust motes and what algorithms meet the
associated scalability needs? [9,16,18,19,20].

Based on our evaluation of suitability, the most promising
algorithms will be tested on data from a network of Smart
Dust motes currently being used to monitor occupancy,
temperature and ambient conditions in Cory Hall at UC
Berkeley [25]. Using these data, we will also characterize
sensor noise and failure models for the temperature and
light sensors used in Smart Dust motes [33]. These
characterizations will then be incorporated into a group of
proposed methods for integrating monitoring, validation,
fusion and diagnosis techniques into Smart Dust mote
infrastructures.

Long-term research efforts will be aimed toward
developing the methodology presented within this paper
for application to the other types of sensors used in Smart
Dust motes. The methodology can be assessed for efficacy,
and altered for improvement, with the end goal of
extending and re-applying it to the design of future
generations of Smart Dust motes and their energy-related
applications.
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