
Interpreting Schematic Sketches Using Physical Reasoning

Tolga Kurtoglu and Thomas F. Stahovich
Mechanical Engineering Department

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

stahov@andrew.cmu.edu

Abstract

We describe a program that uses both geometric and
physical reasoning to interpret schematic sketches of
physical devices. The program takes freehand sketches
of physical devices as input. It begins by recognizing
the symbols used in the sketch. It then uses geomet-
ric and physics-based reasoning techniques to identify
the meaning of each symbol within the context of the
sketch. The physical reasoning relies on qualitative be-
havior models, simple qualitative models describing en-
ergy flow through physical components. Through the
physical reasoning, the program is able to disambiguate
the meanings of the individual symbols and produce a
natural language (text) description of how the sketched
device would operate.

Introduction
Sketching plays an essential role in the early stages of prod-
uct design, when a product is nothing more than a collection
of abstract ideas. Sketches are used in an iterative manner
to instantiate design ideas and stimulate new ones. In each
cycle, designers express their ideas as sketches, which are
then examined and reinterpreted. This examination may in-
spire new ideas, which are then drawn, reexamined, recon-
ceived, redrawn, and so on (Suwa & Tversky 1997). This
iterative usage of sketching supports the designer’s creativ-
ity and productivity, and increases the quality of the final
product. Sketching is also an essential tool for capturing
and communicating design ideas. Our informal experiments
suggest that describing devices graphically is usually sub-
stantially easier than describing them verbally.

Because sketching is such a useful tool for design, we
would like to develop techniques that enable sketch-based
user interfaces for CAD tools. Traditional CAD software re-
lies on mouse driven graphical user interfaces (GUI’s). Al-
though these interfaces are intended to be user-friendly, of-
ten a considerable amount of training and experience is re-
quired before the tools can be used efficiently. Furthermore,
the overhead of traditional GUI interfaces often interferes
with the designer’s creativity. We believe that sketch-based
interfaces will greatly increase the utility of CAD tools, even
in the earliest conceptual phases of design.

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

There have already been a number of efforts aimed at de-
veloping sketch-based applications. These can be grouped
into two major themes: Systems for creating shapes and sys-
tems for recognizing shapes. Examples of the first group
include (De Bonet 1995), who built a system that recon-
structs rectangular polyhedra from hand drawn wire-frame
sketches. (Shpitalni & Lipson 1996) tackled a similar prob-
lem and constructed a program that converts a sketch of a 3D
wire-frame into a 3D model using 2D edge-vertex graphs.
(Eggli et al. 1997) developed a pen-based tool for 2D and
3D modeling. With this tool, one uses simple pen strokes
to define a model. Exact shapes and geometric relationships
are inferred from the sketch using a graph-based constraint
solver.

Shape recognition approaches include the work of (Ru-
bine 1991) who developed a technique for recognizing pen
strokes. He considered symbols composed of single pen
strokes. His program identifies a symbol by computing vari-
ous geometric properties, such as the total stroke length, and
comparing them to previous examples. (Fonseca & Jorge
2000) developed a similar method for recognizing multi-
stroke shapes. Shapes are characterized by the convex hull
of the pen strokes, and special polygons inscribed in the
convex hull. (Calhoun et al. 2002) have also developed
a trainable recognizer for multi-stroke symbols. They de-
fine a symbol in terms of the constituent geometric primi-
tives, their properties, and the relationships between them.
Because the method considers the constituent parts of the
symbol, rather than aggregate properties, it can distinguish
between similar shapes and can also identify the individual
parts of a symbol.

In our research, we are attempting to recognize schematic
sketches of mechanical devices like the example shown in
Figure 1. Our work has something in common with shape
recognition, because as a first step, we must recognize the
individual symbols in the sketch. (We employ the trainable
symbol recognizer described in (Calhoun et al. 2002).) The
difficulty is that symbols frequently have multiple meanings.
For example, the symbol commonly used to represent an
electrical resistor is the same as the one used to represent a
spring. Determining which meaning is intended requires un-
derstanding the overall context of the sketch. To understand
context, we have developed an approach based on qualita-
tive physical reasoning. Thus our sketch system uses both

From: AAAI Technical Report SS-02-08. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



Figure 1: A sketch taken from a system dynamics textbook
(Platin, Caliskan, & Ozguven 1991).

geometric reasoning and physical reasoning to interpret a
sketch.

A primary application for our techniques is as a user inter-
face for analysis tools. Many types of analyses begin with
schematics. For example, schematics are common in ther-
modynamics, system dynamics, controls, and electrical en-
gineering. In fact, the sketch in Figure 1 is taken directly
from a textbook on system dynamics (Platin, Caliskan, &
Ozguven 1991). The techniques we are developing will en-
able analysis tools to work directly from the types of simple
schematic sketches engineers already commonly draw. Such
tools will allow the user to focus on the analysis itself, rather
than on how to operate the analysis tool. Furthermore, soft-
ware capable of working from quickly drawn sketches will
be of particular use in the early creative phases of design,
when many ideas are explored at a shallow level, and many
of the details have yet to be determined.

Our work is related to that of (Narayanan, Suwa, & Mo-
toda 1994), who use a diagram of a device to reason about its
behavior. They start with a pre-parsed description of the be-
haviors of each component. They then use a grid-based de-
scription of the sketch to perform geometric calculations re-
quired for computing a qualitative simulation. In effect, they
use the sketch as a tool for simulating devices with known
behavioral models. By contrast, we use behavioral reason-
ing, including qualitative simulation, as a tool for identifying
the behaviors of the various symbols in a sketch. An inter-
esting distinction is that, in some sense, they reason “with”
the sketch while we reason “about” it.

Our work is complementary to Stahovich’s SketchIT sys-
tem (Stahovich, Davis, & Shrobe 1998), which can trans-
form a rough sketch of a mechanical device into multiple
families of new designs. SketchIT is concerned with de-
vices composed of rigid bodies and springs. By contrast,
the current system is concerned with devices composed of
a variety of components such as motors, heaters, pulleys,
wheels, etc. SketchIT uses behavioral reasoning to identify
geometric constraints that ensure that an assembly of rigid
bodies and springs will produce an intended behavior. The
system described here uses behavioral reasoning to identify
the intended meaning of each of the symbols in a schematic.

Our physical reasoning techniques are related to work

in compositional modeling (Falkenhainer & Forbus 1991;
Mashburn & Anderson 1994; Nayak, Joskowicz, & Addanki
1992). These techniques automatically construct a model
for a system by selecting appropriate model fragments for
each of the components. Typically, the process is driven by
a user query about a causal relationship between two state
variables. Our task is similar in that sometimes we use
sketched annotations of the intended behavior to guide the
interpretation process. However, our approach can work in
the absence of such annotations. Our task is to identify what
kind of component each symbol in the sketch represents. By
contrast, compositional modeling begins with a description
of what each component is, and then selects the appropriate
behavioral model for each component in order to answer a
user query. The two tasks are analogous, addressing similar
problems, but at different levels of detail.

Our qualitative simulation technique is similar to tradi-
tional qualitative techniques such as (de Kleer 1979) and
(Williams 1984). Those techniques operate by propagat-
ing changes in the magnitudes of physical quantities. Our
technique reasons about the propagation of nominal signals
through a device.

Hardware
Our sketching system is implemented on a rear projection
electronic whiteboard as shown in Figure 2. The data pro-
jector inside the whiteboard projects the computer desktop
(screen image) onto the full area of the whiteboard. Our soft-
ware is window-based, with a drawing area and button bar
at the top of the window. We run the software in full screen
mode, so that it occupies the entire whiteboard. To draw,
one uses inkless pens (or a finger tip) on the touch sensitive
drawing surface of the whiteboard. The software projects
virtual ink as each pen stroke is made. After drawing each
symbol, the user presses the pen to the “interpret” button
in the tool bar, indicating that the symbol should be recog-
nized. After recognizing the symbol, the software replaces
the original pen strokes with “beautified” strokes. Once the
entire sketch has been drawn, pressing another button initi-
ates the interpretation process, resulting in a description of
the behavior of each individual component and the device
as a whole. The software is designed to work with a vari-
ety of hardware environments. For example, it can be used
on a standard computer with a mouse or digitizing pad and
stylus.

The Approach
Figure 3c shows a simple example of the kind of sketches
one might find in an engineering document. In examining
the sketch, we identify several primitive drawing entities that
we will call symbols. There are three symbols in the current
example: The symbol with a vertical line and crosshatching
labeled S1, the symbol with a set of angled line segments
labeled S2, and the square symbol labeled S3.

These symbols are familiar to most engineers, and one
would easily identify Figure 3c as a mass-spring oscillator.
However, the problem is more interesting if the symbols are
considered individually. The single symbol in Figure 3a,



Figure 2: Sketching environment: rear projection white-
board.

for example, could have multiple interpretations. To a me-
chanical engineer this might represent the rack of a rack and
pinion assembly, or it might be a spring. To an electrical en-
gineer, this same symbol is an electrical resistor. Adding a
second symbol, as in Figure 3b, adds more information, but
there are still multiple interpretations: This could be a spring
with one end fixed to the frame, or it could be an electrically
grounded resistor, for example. It is not until all three sym-
bols are present, that we can reliably identify the sketch as a
spring connected between a rigid frame and a mass.

As this example illustrates, with schematic sketches there
are often multiple ways of interpreting the meanings of the
symbols. The same symbols are often used to represent very
different physical components. Figure 4 shows more exam-
ples of this. Notice that the symbol representing a battery in
the conveyor system (Figure 4a) is used to represent a bear-
ing in the piston-cylinder system (Figure 4b). Similarly the
symbol representing a heater in the piston-cylinder system
(Figure 4b) represents a spring in the oscillator (Figure 4c).
Likewise, the rectangular geometry representing a shaft in
the conveyor system (Figure 4a) represents a rigid body in
the piston-cylinder system (Figure 4b).

Unambiguously interpreting the meanings of such sym-
bols would be straightforward if there were a one-to-one
mapping between them and the physical components they
represent. The problem would reduce to implementing an
efficient symbol recognition algorithm to identify the indi-
vidual pieces of the sketch. However, because the same sym-
bols are used to represent different physical components, the
problem becomes more than shape recognition.

Returning to the sketch in Figure 3, what allowed us to
uniquely identify the meaning of each symbol was the con-
text provided by the complete set of symbols in the sketch,
taken as a whole. The correct interpretation for each sym-
bol was the one that was consistent with the interpretations
of all of the other symbols in the sketch. The problem is,

s1 s3

s2

Figure 3: Various pieces of a schematic sketch.

wire
b
a
tt
e
ry

rigid body

belt
pulley

wire

h
e
a
te

r

rigid body

wheel

spring

rigid body

shaft

m
o
to

r

be
ar

in
g

frame

Figure 4: (a) A motor driven conveyor system. (b) A piston-
cylinder system. The heater causes the gas to expand and
move the piston. (c) A mass-spring oscillator with wheels.



in essence, a constraint satisfaction problem (CSP). The first
step in the solution of the problem is to enumerate all possi-
ble interpretations of the individual symbols. For each sym-
bol, we then filter out the interpretations that are inconsis-
tent with the interpretations of the other symbols to which
it is connected. (This requires both local and global consis-
tency checks as described in Section “Physical Compatibil-
ity.”) For example, in Figure 3 we can eliminate the resistor
interpretation for symbol S2 because it is inconsistent with
the rigid body interpretation of symbol S3. This in turn al-
lows us to filter out the electrical ground interpretation of
symbol S1, because symbol S2 no longer has the possibility
of being a resistor.

After all of the inconsistencies have been filtered out us-
ing both local and global analysis, sometimes there are still
multiple globally consistent interpretations for a sketch. Our
approach relies on qualitative simulation to identify the in-
tended interpretation in that case. The user sketches special
symbols indicating that particular parts in the sketch are sup-
posed to rotate or translate. The program selects the global
interpretation that could cause the specified motion to occur.
An additional benefit of this simulation capability is that it
allows the program to generate a natural language (text) de-
scription of how the sketched device would operate.

Symbols
We reviewed various engineering textbooks to collect a list
of commonly occurring symbols and cataloged their possi-
ble interpretations. To simplify the symbol recognition task
(i.e., the first step in the interpretation process), we simpli-
fied some of the symbols by replacing isometric geometries
with simpler 2D geometries. For example, as a simplifica-
tion, we draw shafts as simple bars like the one in Figure 4a.

Physical components are often designed to have a set of
terminals or ports through which they connect to one an-
other. Components designed in this way interact with other
components only through connected terminals. Our ap-
proach makes use of this fact to simplify the task of iden-
tifying component interactions. Included with the library
definition of each symbol is the set of terminals that the cor-
responding physical component possesses. Each terminal
has both a geometric type and a physical type. The geomet-
ric type describes the shape of the terminal: a point, a line,
an arc, or an area (region). There are five physical types:
translational mechanical, rotational mechanical, electrical,
toothed mechanical, and fluidic. The geometric type of a
terminal is used when performing proximity checks to deter-
mine if two terminals are close enough to be connected. The
physical type is used to determine if a connection is physi-
cally possible: For the connection between a pair of termi-
nals to be valid, the physical types of the terminals must be
the same.

Figure 5 shows an example of our representation of a sym-
bol. The symbol shown has two interpretations: It could be
either a bearing or a battery. Viewed as a bearing, there are
three terminals. Terminals 1 and 3 are point terminals whose
physical type is translational mechanical. Terminal 2, which
is shown as a shaded region, is an area terminal. The extents
of this terminal are defined by the two parallel, horizontal

Terminal 1

T

Terminal 3

erminal 2

Terminal 1 2 3

Geometric type Point Area Point

Bearing

Physical type Trans. Mech. Rot. Mech. Trans. Mech.

Battery

Physical type Electrical Electrical

Figure 5: Terminals for the symbol that represents bearings
and batteries. The point terminals are exaggerated for clar-
ity.

line segments. The physical type of this terminal is rota-
tional mechanical. Viewed as a battery, only the two point
terminals are relevant, and their physical type is electrical.

Symbol recognition
Our program uses a trainable recognition system to recog-
nize the individual symbols in a sketch. To train this system,
which is described in detail in (Calhoun et al. 2002), one
provides a few examples of each symbol. The terminals are
then manually defined by mapping them onto the geometric
primitives (points, lines, arcs, etc.) in the learned symbol
definitions.

When creating a sketch, the user draws symbols one at a
time. After each symbol, the user touches the pen to a “but-
ton” on the drawing surface to indicate that the symbol has
been completed and should be identified. (As an alternative
to requiring a button press, the software could detect pauses
in the sketching process.) Once a symbol has been identi-
fied, the locations of its terminals are obtained by extracting
the locations of the corresponding geometric primitives.

Connectivity
We assume that symbols interact only through connected ter-
minals. Thus, prior to reasoning about component interac-
tions, we must determine which terminals are connected. To
reduce computation, our program first employs a bounding
box test. If the bounding boxes of two symbols do not in-
tersect, it is not possible for their terminals to be connected,
and no further analysis is necessary.

If the bounding boxes do intersect, each terminal of the
first symbol is checked for proximity to each terminal of the
second symbol. Note that at this point, no interpretation has
been selected for the symbols. Thus, the program considers
the union of the terminal sets for all of the interpretations of
a symbol. Irrelevant connections will be discarded later. For
example, if the symbol is the one in Figure 5, the program
will consider possible connections to all three terminals. If



the symbol later turns out to be a battery, connections to
terminal 2 will be ignored.

The program identifies connected terminals by applying
simple proximity tests. One test is defined for each combi-
nation of geometric terminal types. The tests employ tol-
erances to handle cases in which terminals were intended to
be connected, but because of a slightly misplaced pen stroke,
they are not. The complete set of tests is:

• Point - point proximity: True if the distance between the
two points is less than a tolerance.

• Point - line proximity: True if the point is “between” the
end points of the line segment and the minimum distance
from the point to the line segment is less than a tolerance.
A point is between the end points of a line segment if a
perpendicular from the point to the extended line segment
intersects the segment between its end points.

• Point - arc proximity: True if the minimum distance from
the point to the arc segment is less than a tolerance.

• Point - area proximity: True if the point is inside the poly-
gon defining the area. If a random ray extended from the
point intersects the polygon an odd number of times, the
point is inside.

• Line - line proximity: True if the two line segments are
parallel within a tolerance, the minimum distance be-
tween the lines is less than a tolerance, and at least one of
the endpoints of the shorter line segment lies “between”
the endpoints of the longer line segment. (See point - line
proximity.)

• Line - arc proximity: True if the minimum distance from
the line segment to the arc segment is less than a toler-
ance and the line is tangent to the arc. The line is tangent
if a line perpendicular to the extended line segment and
passing through the center of the arc, intersects the line
segment itself.

• Line - area proximity: True if at least one endpoint of the
line segment lies inside the polygon defining the area.

• Arc - arc proximity: True either if the distance between
the centers of the two arc segments, minus the sum of
their radii, is less than a tolerance. Also true if the two arc
segments are concentric and have the same radius (within
tolerance).

• Arc - area proximity: True if an endpoint of the arc seg-
ment is inside the area. (See point - area proximity.) For
a full circle, this is true if the circle intersects at least one
of the line segments defining the area.

• Area - area proximity: True if at least one of the line seg-
ments defining one of the areas intersects at least one of
the line segments defining the other area.

Physical Compatibility
After identifying which terminals are connected, the next
step is to determine which symbol interpretations would re-
sult in those connections being physically meaningful. This
problem is a classical constraint satisfaction problem, or
CSP. Each symbol has a finite set of possible interpretations.

The connections between the terminals act as constraints on
the legal interpretations of the symbols. (Recall that two ter-
minals can be connected only if their physical types are the
same.)

One could conceive of solving this problem with brute-
force search, by enumerating all possible combinations of
interpretations and filtering out those with invalid terminal
connections. Doing so, however, would be expensive. In-
stead, we use more efficient techniques that preprocess the
search space and eliminate any local inconsistencies before
searching for globally consistent solutions (see (Waltz 1975;
Mackworth 1977)). The particular technique we use is sim-
ilar to that used in QSIM (Kuipers 1994) to identify consis-
tent values for the qualitative state variables when comput-
ing a step of qualitative simulation.

We use two preprocessing steps. The first step is called
node consistency. Each pair of symbols connected by one
or more pairs of terminals is represented by a node in the
constraint graph. A node is initialized by enumerating all
possible pairs of interpretations for the two symbols. The
node consistency filter eliminates all inconsistent interpreta-
tion pairs from each node. An interpretation pair is inconsis-
tent if any pair of connected terminals has differing physical
types.

Figure 6 shows an example of the node consistency fil-
ter. The example considers three symbols from the conveyor
system of Figure 4a. Proximity analysis reveals that one
point terminal on symbol 1 is connected to one point ter-
minal on symbol 2. The other point terminal on symbol 2
is connected to a line terminal on symbol 3. The initial lists
of interpretation pairs for the two nodes are shown Figure 6.
Applying the node consistency filter to the first node, the
one for symbols 1 and 2, prunes the first and fourth inter-
pretation pairs because they would result in a translational
mechanical terminal being connected to an electrical one. In
the node for symbols 2 and 3, only the first interpretation
pair survives the filtering.

After performing node consistency, we begin the second
step, called arc consistency. Here we consider pairs of nodes
having a symbol in common. Such pairs are said to be con-
nected by an arc in the constraint graph. The arc consistency
filter is applied to each arc. It eliminates any interpretation
pair form one node that has no match in the other node. For
example, in Figure 6, the two nodes have symbol 2 in com-
mon. For node 1, symbol 2 can be either a wire or a mechan-
ical connector, but for node 2 it can be only a wire. Thus,
we can filter from node 1 the interpretation as a mechani-
cal connector. Thus, after node and arc consistency filtering,
each of these two nodes has only one remaining interpreta-
tion pair.

The arc consistency filter is applied iteratively. In each
iteration, the filter is applied to every pair of nodes with a
common symbol. If any interpretation pairs are eliminated
during an iteration, another iteration must be performed. It-
erations must continue until there is a complete iteration
with no eliminations. To see why the iterations must run
to quiescence, consider node 1 in Figure 6. Imagine that the
arc consistency filter had already been applied to an arc be-
tween node 1 and some other node. Further, imagine that



symbol 1

symbol 2

symbol 3

Symbol 1 Symbol 2 Symbol 2 Symbol 3

1 Bearing Wire 1 Wire Motor

2 Battery Wire 2 Wire Pump

3 Bearing Mech. Conn. 3 Mech. Conn. Motor

4 Battery Mech. Conn. 4 Mech. Conn. Pump

Node 1 Node 2

Figure 6: Three symbols from the conveyor system. Point terminals are exaggerated for clarity. The first table is the node
describing the connection between symbols 1 and 2. The second is the node describing the connection between symbols 2 and
3. The tables show the possible interpretation pairs. The pairs crossed out with a solid line are removed by node consistency.
The pair crossed out with a dotted line is removed by arc consistency.

some interpretation pair from that other node survived be-
cause of interpretation pair 3 in node 1. When interpretation
pair 3 is later eliminated from node 1, the other node must
be revisited. Changes to that other node may then propagate
to yet other nodes that are connected by other arcs. Iterating
until quiescence ensures that all of the consequences of the
elimination of an interpretation pair have been considered.

If each node contains a single interpretation pair at the
conclusion of node and arc consistency filtering, a unique,
globally consistent solution has been identified. If multiple
interpretation pairs remain in any node, it is necessary to
perform search to identity any globally consistent solutions.
We use exhaustive depth-first search for this purpose. To
minimize cost, partial solutions with inconsistent interpre-
tation pairs are pruned without need of further exploration.
At each step in the search process, a choice of interpreta-
tion is selected for a symbol, from those choices remaining
after filtering. Once a selection is made, every pair of con-
nected terminals is checked for inconsistency. If a terminal
belongs to a symbol that has not yet been interpreted, the
consistency test succeeds, at least temporarily. If two sym-
bols have been interpreted, any connections between them
must have the same physical type, otherwise the solution is
inconsistent. If any inconsistencies are detected, the partial
solution is pruned, and no further expansions of the solu-
tion are considered. If all symbols have been interpreted and
there are no inconsistencies, the solution is globally consis-
tent and is saved. It is possible for there to be more than one
globally consistent solution. If so, the program identifies
them all.

Figure 7 shows the efficiency of the approach. The sec-
ond column in the table contains the number of combina-
tions of symbol interpretations. This is the product of the
number of interpretations for each individual symbol. The
third column is the product of the number of interpretation
pairs for each pair of connected symbols. (An interpretation
pair is one choice of interpretation for each symbol in a pair
of connected symbols.) This value is typically much larger
than the value in the previous column, because many combi-
nations of interpretation pairs would result in a given com-

ponent having multiple interpretations. For example, from
the perspective of one pair of components, a particular com-
ponent might be a wire, while from the perspective of some
other pair, it might be a mechanical connector. (These kinds
of inconsistencies are eliminated by arc consistency filter-
ing.)

Initially, there are 2,304 possible combinations of in-
terpretations and 3,538,944 combinations of interpretation
pairs. After applying the node consistency filter, these num-
bers are reduced substantially to 144 and 1,296. Finally, af-
ter applying the arc consistency filter, both of these numbers
are further reduced to 1. Thus, there is no need to use depth-
first search in this case. The final, unique interpretation is
shown in Figure 7.

The results of this example are typical. Although the num-
ber of possible interpretations for a sketch is exponential in
the number of symbols, node and arc consistency filtering
typical reduce the problem to a very manageable size.

Qualitative Simulation
In the example of Figure 7 there was a single, globally con-
sistent interpretation for the sketch. Sometimes, however,
there are multiple such solutions. When this occurs, our pro-
gram uses qualitative simulation to identify which interpre-
tation was the intended one. The user annotates the sketch to
indicate the intended behavior of a symbol. A simple quali-
tative simulator is then used to determine which of the global
interpretations is capable of producing the indicated behav-
ior. Currently, the annotations are limited to arrows indicat-
ing motion. A straight arrow is used to indicate translation,
while a curved one is used to indicate rotation. To annotate
a particular symbol, an arrow is drawn so as to intersect that
symbol. Each arrow annotates a single symbol.

Each interpretation of a symbol has one or more quali-
tative models. These models consist of simple qualitative
influences between the input terminals and the output termi-
nals. The influences describe how energy flows through a
physical component. Figure 8 shows examples of two mod-
els. The first is a model of a pulley. Terminal 2 is the input
and terminal 1 is the output. The model states that if rotation



Wire
Mech. Conn.

Rigid body

Pipe
Pulley

Shaft

Rigid body
Motor

Gear

Wheel
Pulley

Rigid Body
BeltMotor

Pump

Bearing
Battery

Wire
Mech. Conn.

Combinations of Combinations of

Interpretations Interp. Pairs

Initial 2,304 3,538,944

After node 144 1,296

consistency

After arc 1 1

consistency

Figure 7: Physical compatibility analysis of a conveyor sys-
tem. All possible choices of interpretation are listed for each
symbol, with the actual interpretations shown in bold.

Pulley

Terminal 2
(area)

Terminal 1
(arc)

Motor
Terminals 1 - 4
(line)

Terminal 5 - 8
(line)

Terminal 9
(area)

(defrule sym4_pulley_1
(is_a ?x symbol4)
(interp ?x pulley)
(flow T2 ?x rot)
=>
(assert (flow T1 ?x trans))

(defrule sym13_motor_1
(is_a ?x symbol13)
(interp ?x motor)
(flow ?ta ?x elec)
(flow ?tb&~?ta ?x elec)
=>
(assert (flow T9 ?x rot))

Figure 8: Examples of qualitative behavior models.

is applied to terminal 2, terminal 1 will produce translation.
This model describes behavior in which rotation of the pul-
ley causes a belt or rope to translate. There is also a model
describing the converse behavior in which pulling a rope or
moving a belt causes the pulley to rotate. The second model
shown in the figure is that of an electric motor. It states that
if electricity is applied to two different input terminals, the
output of terminal 9 will be rotation.

The simulation is implemented with CLIPS, a forward
chaining rule-based system (Giarratano 1998). Each qual-
itative model is a CLIPS rule. The simulation begins at
an energy source. Possible energy sources include batter-
ies and springs. These sources produce output without re-
quiring any input. At the start of a simulation, one or more
energy sources is selected as active. If a battery is active,
assertions are made indicating that its output terminals pro-
vide electricity. Similarly, if a spring is active, assertions are
made indicating that its output terminals produce translation.
Once the initial assertions are made, forward rule chaining is
used to continue the simulation. If a flow of electricity, trans-
lational motion, or rotational motion is present at a terminal,
rules propagate that flow to any other terminals connected
to it. Once there are flows at all of the input terminals of
a component, a simulation rule fires, producing flows at the
output terminals. The process continues in this fashion until
no more rules can be triggered, at which point the simulation
is complete.

Note that each component can have multiple alternative
simulation rules, each describing a different type of behav-
ior. For example, a pulley has one rule describing the be-
havior in which rotation of the pulley causes translation of a
rope, and a second rule describing the converse behavior in
which translation of a rope causes the pulley to rotate. The
propagation of flows by the rule chainer naturally selects the
correct rule for each component.

Our simulator is simple. For example, it does not distin-
guish between directions of motion, directions of forces, and
signs of voltages. We have found that even this simple form
of simulation is often adequate for our purposes. Our task
is not to predict the detailed behavior, but to decide which
of the consistent interpretations best matches the behaviors
indicated by the user. For the types of schematic sketches
we are considering, selecting the correct interpretation often
reduces to selecting the correct type of component behav-
ior from grossly different choices. For example, the ques-
tion might be whether a particular component is acting as a
motor or as a generator. Distinguishing between these two
choices requires determining if electricity causes motion or
vice versa. This sort of question can often be resolved with-
out considering the direction of motion or the magnitude of
the voltage.

Each simulation rule generates a description of the behav-
ior it represents. As rules fire, their descriptions are concate-
nated to produce an explanation of how the device works.
Because the descriptions are produced in parallel with the
simulation, the device behavior is explained in the order de-
termined by the flow of energy in the device. Figure 9 shows
a typical explanation from the program.



Battery
Wire

Motor.
Motor Shaft.
Shaft Pulley.

Pulley
Rigid body

produces voltage.
transmits voltage.

Voltage applied to
rotates

rotates
translates Belt.

translates.

Figure 9: Computer generated explanation of the conveyor
system sketch.

Conclusion

We have described an approach for interpreting schematic
sketches of physical devices. The approach relies on both
geometric and physical reasoning. A symbol recognizer (ge-
ometric reasoner) is used to recognize the individual sym-
bols in a sketch. Physical reasoning is then used to identify
the meaning of each of the symbols. Part of the reason-
ing involves identifying which interpretations of the sym-
bols would produce physically meaningful connections be-
tween the symbols. For example, it makes sense for a motor
to be connected to a shaft but not to a pipe. We treat this
compatibility problem as a constraint satisfaction problem
(CSP). The number of potential interpretations of a sketch
is exponential in the number of interpretations. This num-
ber is reduced to a very tractable size by the use of node
and arc consistency filters. If the solution of the CSP reveals
multiple globally consistent interpretations, qualitative sim-
ulation is used to identify the intended one. The sketch is
annotated to indicate the intended behavior of one or more
components, and the simulation identifies the interpretation
that could produce that behavior.

Freehand sketches, by their very nature, contain a vari-
ety of inaccuracies and ambiguities. This work has demon-
strated that these defects can often be overcome by reason-
ing about the overall context of the sketch, rather than ex-
amining each individual part of the sketch in isolation. This
work has also demonstrated that for schematic sketches of
physical devices, even simple physical reasoning is adequate
for understanding the context and overcoming ambiguities.

References

Calhoun, C.; Stahovich, T. F.; Kurtoglu, T.; and Kara, L. B.
2002. Recognizing multi-stroke symbols. In AAAI 2002
Spring Symposium Series, Sketch Understanding.

De Bonet, J. S. 1995. Reconstructing rect-
angular polyhedra from hand-drawn sketches.
http://www.ai.mit.edu/˜jsd/Projects/
SketchReconstruction/sketch.html.

de Kleer, J. 1979. Causal and Teleological Reasoning
in Circuit Recognition. Ph.D. Dissertation, Massachusetts
Institute of Technology.

Eggli, L.; Hsu, C.; Elber, G.; and Bruderlin, B. 1997. In-
ferring 3D models from freehand sketches and constraints.
Computer Aided Design 29(2):101–112.
Falkenhainer, B., and Forbus, K. D. 1991. Compositional
modeling: Finding the right model for the job. Artificial
Intelligence 51:95–143.
Fonseca, M. J., and Jorge, J. A. 2000. Using Fuzzy Logic to
Recognize Geometric Shapes Interactively. In Proceedings
of the 9th Int. Conference on Fuzzy Systems (FUZZ-IEEE
2000).
Giarratano, J. C. 1998. CLIPS user’s guide.
http://www.ghg.net/clips/CLIPS.html.
Kuipers, B. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. MIT Press.
Mackworth, A. K. 1977. Consistency in networks of rela-
tions. Artificial Intelligence 8(1):99–118.
Mashburn, T. A., and Anderson, D. C. 1994. Automatically
deriving behavior constraints for performance variables in
mechanical design. Research in Engineering Design 6:85–
102.
Narayanan, N. H.; Suwa, M.; and Motoda, H. 1994. How
things appear to work: Predicting behaviors from device
diagrams. In 1994 International Joint Conference on Arti-
ficial Intelligence, 1161–1167.
Nayak, P. P.; Joskowicz, L.; and Addanki, S. 1992. Auto-
mated model selection using context-dependent behaviors.
In Proceedings AAAI-92, 710–716.
Platin, B. E.; Caliskan, M.; and Ozguven, H. N. 1991.
Dynamics of Engineering Systems, Lecture Notes. Ankara,
Turkey: Middle East Technical University, Mechanical En-
gineering Department Publications.
Rubine, D. 1991. Specifying gestures by example. Com-
puter Graphics 25:329–337.
Shpitalni, M., and Lipson, H. 1996. Identification of
faces in a 2D line drawing projection of a wireframe ob-
ject. IEEE Transactions on Pattern Analysis and Machine
Intelligence 18(10):1000–1012.
Stahovich, T. F.; Davis, R.; and Shrobe, H. 1998. Gener-
ating multiple new designs from a sketch. Artificial Intelli-
gence 104(1–2):211–264.
Suwa, M., and Tversky, B. 1997. What architects and stu-
dents perceive in their sketches: A protocol analysis. De-
sign Studies 18:385–403.
Waltz, D. 1975. Understanding line drawings of scenes
with shadows. In Winston, P. H., ed., Psychology of Com-
puter Vision. Cambridge, MA: MIT Press.
Williams, B. C. 1984. Qualitative analysis of mos circuits.
Artificial Intelligence 24(1–3):281–346.


