Composition for Cardinal Directions by Decomposing Horizontal and Vertical Constraints

Ah Lian Kor and Brandon Bennett
University of Leeds, Leeds, LS2 9JT, UK
e-mail: {lian,brandon}@comp.leeds.ac.uk

Abstract
In this paper, we demonstrate how to group the nine cardinal directions into sets and use them to compute a composition table. Firstly, we define each cardinal direction in terms of a certain set of constraints. This is followed by decomposing the cardinal directions into sets corresponding to the horizontal and vertical constraints. We apply two different techniques to compute the composition of these sets. The first technique is an algebraic computation while the second is the typical technique of reasoning with diagrams. The rationale of applying the latter is for confirmation purposes. The use of typical composition tables for existential inference is rarely demonstrated. Here, we shall demonstrate how to use the composition table to answer queries requiring the common forward reasoning as well as existential inference. Also, we combine mereological and cardinal direction relations to create a hybrid model which is more expressive.

Introduction
Relative positions of objects in large-scale spaces, and particularly in the geographic domain, are often described by relations referring to cardinal directions. These relations specify the direction from one object to another in terms of the familiar compass bearings: north, south, east and west. The intermediate directions north-west, north-east etc. are also often used. Two models for reasoning with cardinal directions are the cone-shaped and projection-based models (A.Frank, 1992). We shall use the latter model in this paper.

Composition tables are widely used for computing inferences involving spatial relations. Much work has been done on the composition of cardinal direction relations for point-like objects (D.Papadias & Theodoridis, 1997; Frank, 1992; Freksa, 1992) which is more suitable for describing positions point-like objects in a map. Using the direction-relation matrix, Goyal & Egenhofer (2000), composes cardinal direction relations for extended objects. Skaidopoulos & Koubarakis (2001) highlight some of the flaws in Goyal’s reasoning system. Consequently, he comes up with a method for correctly computing the cardinal direction relations. However, the set of basic cardinal relations in his model consists of 218 elements which is the set of all disjunctions of the nine cardinal directions.

We shall decompose the cardinal directions into sets corresponding to horizontal and vertical constraints. Computation will be computed for these sets instead of the typical individual cardinal directions. Such a composition offers an alternative yet elegant way of representing the clumsy disjunctive relations. Also, it can be used to answer common queries using forward reasoning as well as queries using existential inference.

Some work has been done on the composition of hybrid models. M.T.Escrig & Toledo (1998) combined qualitative orientation and distance to get positional information while Sharma & Flewelling (1995) infers spatial relations from integrated topological and cardinal direction relations. We shall combine mereological and direction relations to infer the spatial relations between extended regions. Focus will only be on single-pieced regions.

In this paper, we shall firstly define each cardinal direction in terms constraints and group them into sets. This is followed by formally defining ‘part and whole’ cardinal direction relations. The composition table will be computed for each of the sets, using an algebraic method as well as reasoning with diagrams for confirmation purposes. Next, we shall demonstrate how to use the composition table for answering several forms of queries.

Reasoning with Cardinal Directions
According to the projection-based model for cardinal directions (A.Frank, 1992) depicted in Figure 1. The plane is partitioned into nine tiles: North-West(NW), North(N), North-East(NE), West(W), Neutral Zone(O), East(E), South-West(SW), South(S), and South-East(SE). O, is considered a neutral zone because in this tile, the relative cardinal direction between two objects cannot be determined due to their proximity (A.Frank, 1992).

Definitions
A combined algebraic method and the Cartesian co-ordinate system is used to formalise the meaning of directions for an arbitrary single-pieced extended region. The primitives used are:

i. Tile, \(R(\phi)\), which is a tile of the extended region, \(\phi\). The set \(R = \{N(\phi), NE(\phi), NW(\phi), S(\phi), SE(\phi), SW(\phi), O(\phi), E(\phi), W(\phi)\}\)

ii. Boundaries of the minimal bounding box of region \(\phi\), as illustrated in Figure 1. The set \(B = \{X_{min}(\phi), X_{max}(\phi), Y_{min}(\phi), Y_{max}(\phi)\}\)
The composition of two relations, \(R \) and \(S \), is written as \((R \circ S) \). It is defined by the following equivalence:

\[
\forall x z \ [(R \circ S) x z \iff \exists y \ [R x y \land S y z]]
\]

Horizontal and Vertical Constraints

Horizontal Constraints

For the horizontal sets, the range of values for \(y \) remains constant while the values for \(x \) change either in an ascending or descending order. As shown in Figure 2, the three horizontal sets of tiles for the region \(\phi \) are: \((NW(\phi) \cup N(\phi) \cup NE(\phi)) \), \((W(\phi) \cup O(\phi) \cup E(\phi)) \), and \((SW(\phi) \cup S(\phi) \cup SE(\phi)) \).

If there is a referent region \(a \), and another arbitrary region, \(b \), the possible horizontal sets of binary relations and their constraints can be written as follows:

- If \(b \subseteq (NW(a) \cup N(a) \cup NE(a)) \) then \(N_\text{ab} = \{NW(a, b), N(a, b), NE(a, b)\} \), and the constraints are: \(Y_{\text{max}}(a) \leq Y_{\text{min}}(b) \land Y_{\text{max}}(a) < Y_{\text{max}}(b) \).
- If \(b \subseteq (W(a) \cup O(a) \cup E(a)) \) then \(O_\text{ab} = \{O(a, b), E(a, b)\} \), and the constraints are: \(Y_{\text{max}}(a) \leq Y_{\text{min}}(b) \land Y_{\text{max}}(a) < Y_{\text{max}}(b) \).
- If \(b \subseteq (SW(a) \cup S(a) \cup SE(a)) \) then \(S_\text{ab} = \{SW(a, b), S(a, b), SE(a, b)\} \), and the constraints are: \(Y_{\text{min}}(a) \geq Y_{\text{max}}(b) \land Y_{\text{min}}(a) > Y_{\text{min}}(b) \).

Vertical Constraints

As for the vertical sets, the range of values for \(x \) remains constant while the values for \(y \) change either in an ascending or descending order. The vertical sets of tiles for the region \(\phi \) are: \((NE(\phi) \cup E(\phi) \cup SE(\phi)) \), \((N(\phi) \cup O(\phi) \cup S(\phi)) \), and \((SW(\phi) \cup W(\phi) \cup SW(\phi)) \).

The possible vertical sets of binary relations and their constraints can be written as follows:

- If \(b \subseteq (NE(a) \cup E(a) \cup SE(a)) \) then \(E_\text{ab} = \{SE(a, b), O(a, b), SE(a, b)\} \), and the constraints are: \(X_{\text{max}}(a) \leq X_{\text{min}}(b) \land X_{\text{max}}(a) < X_{\text{max}}(b) \).
- If \(b \subseteq (N(a) \cup O(a) \cup S(a)) \) then \(O_\text{ab} = \{O(a, b), E(a, b)\} \), and the constraints are: \(X_{\text{max}}(a) \geq X_{\text{max}}(b) \land X_{\text{max}}(a) > X_{\text{min}}(b) \).
- If \(b \subseteq (NW(a) \cup W(a) \cup SW(a)) \) then \(W_\text{ab} = \{SW(a, b), W(a, b), NW(a, b)\} \), and the constraints are: \(X_{\text{min}}(a) \geq X_{\text{max}}(b) \land X_{\text{min}}(a) > X_{\text{min}}(b) \).
Composed Mereological and Cardinal Direction Relations

In this section, we shall make a distinction between part and whole direction relations between two extended regions. A direction relation $P_R(a, b)$ means that only part of the destination extended region, b, is in tile $R(a)$. The direction relation $A_R(a, b)$ is used when the whole of region, b, is completely within the tile $R(a)$.

For example, if b is completely North of a, this direction relation can be represented as below:

$$A_N(a, b) = P_N(a, b) \land \neg P_{NE}(a, b) \land P_{NW}(a, b) \land \neg P_S(a, b) \land \neg P_{SE}(a, b) \land \neg P_W(a, b) \land \neg P_O(a, b)$$

We shall define the ‘whole’ direction relations in terms of a set of constraints.

- $A_N(a, b) \equiv \overline{ab} \cap \overline{ab}$
 $[Y_{max}(a) \leq Y_{min}(b) \land Y_{max}(a) < Y_{max}(b)] \land
 [X_{max}(a) \geq X_{max}(b) \land X_{min}(a) < X_{max}(b)] \land
 X_{min}(a) \leq X_{min}(b) \land X_{max}(a) > X_{min}(b)]$

- $A_{NE}(a, b) \equiv \overline{ab} \cap \overline{ab}$
 $[Y_{max}(a) \leq Y_{min}(b) \land Y_{max}(a) < Y_{max}(b)] \land
 [X_{max}(a) \geq X_{max}(b) \land X_{min}(a) < X_{max}(b)] \land
 X_{min}(a) \leq X_{min}(b) \land X_{max}(a) > X_{min}(b)]$

- $A_{NW}(a, b) \equiv \overline{ab} \cap \overline{ab}$
 $[Y_{min}(a) \geq Y_{max}(b) \land Y_{min}(a) > Y_{min}(b)] \land
 [X_{max}(a) \geq X_{max}(b) \land X_{min}(a) < X_{max}(b)] \land
 X_{min}(a) \leq X_{min}(b) \land X_{max}(a) > X_{min}(b)]$

- $A_S(a, b) \equiv \overline{ab} \cap \overline{ab}$
 $[Y_{min}(a) \geq Y_{max}(b) \land Y_{min}(a) > Y_{min}(b)] \land
 [X_{max}(a) \geq X_{max}(b) \land X_{min}(a) < X_{max}(b)] \land
 X_{min}(a) \leq X_{min}(b) \land X_{max}(a) > X_{min}(b)]$

- $A_{SE}(a, b) \equiv \overline{ab} \cap \overline{ab}$
 $[Y_{min}(a) \geq Y_{max}(b) \land Y_{min}(a) > Y_{min}(b)] \land
 [X_{max}(a) \geq X_{max}(b) \land X_{min}(a) < X_{max}(b)] \land
 X_{min}(a) \leq X_{min}(b) \land X_{max}(a) > X_{min}(b)]$

- $A_W(a, b) \equiv \overline{ab} \cap \overline{ab}$
 $[Y_{max}(a) \geq Y_{max}(b) \land Y_{max}(a) > Y_{max}(b)] \land
 [X_{max}(a) \geq X_{max}(b) \land X_{min}(a) < X_{max}(b)] \land
 X_{min}(a) \leq X_{min}(b) \land X_{max}(a) > X_{min}(b)]$

- $A_{NW}(a, b) \equiv \overline{ab} \cap \overline{ab}$
 $[Y_{min}(a) \geq Y_{max}(b) \land Y_{min}(a) > Y_{min}(b)] \land
 [X_{max}(a) \geq X_{max}(b) \land X_{min}(a) < X_{max}(b)] \land
 X_{min}(a) \leq X_{min}(b) \land X_{max}(a) > X_{min}(b)]$

- $A_O(a, b) \equiv \overline{ab} \cap \overline{ab}$
 $[Y_{max}(a) \geq Y_{max}(b) \land Y_{min}(a) < Y_{max}(b)] \land
 [Y_{min}(a) \leq Y_{min}(b) \land Y_{max}(a) > Y_{min}(b)] \land
 [X_{max}(a) \geq X_{max}(b) \land X_{min}(a) < X_{max}(b)] \land
 X_{min}(a) \leq X_{min}(b) \land X_{max}(a) > X_{min}(b)]$

Computational of the Composition Table

The outcome of the composition of general ordered binary relations is shown in Table 1.

<table>
<thead>
<tr>
<th>$a < b$</th>
<th>$b = c$</th>
<th>$b > c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a < c$</td>
<td>$a < c$</td>
<td>$a_1 < c$</td>
</tr>
<tr>
<td>$a = c$</td>
<td>$a < c$</td>
<td>$a > c$</td>
</tr>
<tr>
<td>$a > b$</td>
<td>$a_1 < c$</td>
<td>$a > c$</td>
</tr>
</tbody>
</table>

Table 1: Composition of binary ordered relations

The inequalities that can be derived from Figure 3 are as follows:

$$Y_{max}(a) \leq Y_{min}(b) \quad (1)$$

$$Y_{max}(b) \leq Y_{min}(c) \quad (2)$$

By default,

$$Y_{max}(b) > Y_{min}(b) \quad (3)$$

By substituting inequality (3) into inequality (2), we get inequality (4).

$$Y_{min}(b) < Y_{min}(c) \quad (4)$$

By combining inequalities (1) and (4), we get the relation

$$Y_{max}(a) < Y_{min}(c) \quad (5)$$

Substitute this inequality $Y_{max}(a) < Y_{max}(c)$ into inequality (5), and we get another relation,

$$Y_{max}(a) < Y_{max}(c) \quad (6)$$

The solution is:

$$Y_{max}(a) < Y_{min}(c) \land Y_{max}(a) < Y_{max}(c)$$
Technique 2: An algebraic computation

Use the composition table in Table 1 to compute the following composition:

\[R(a, b) \land S(b, c) \]

where \(R(a, b) \in \mathcal{N}ab \), and \(S(b, c) \in \mathcal{N}bc \)

We shall represent the above as:

\[\mathcal{N}ab \land \mathcal{N}bc \]

By using the sets of constraints listed earlier, we transform the composition into the following algebraic expression:

\[(\max Y(a) \leq \min Y(b) \land (\max Y(a) < \max Y(b)) \land \max Y(b) \leq \min Y(c) \land (\max Y(b) < \max Y(c)) \]

Substitute the following into the above composition:

\(Y_{\max}(a) \) with \(a \),
\(Y_{\min}(b) \) with \(b_1 \),
\(Y_{\max}(b) \) with \(b_2 \),
\(Y_{\min}(c) \) with \(c_1 \),
\(Y_{\max}(c) \) with \(c_2 \).

We will now have the form:

\[\left[(a \leq b_1) \land (a < b_2) \right] \land \left[(b_2 \leq c_1) \land (b_2 < c_2) \right] \]

Apply the distributive law and we get the following expression (7).

\[(a \leq b_1) \land ((b_2 \leq c_1) \land (b_2 < c_2)) \land (a < b_2) \land ((b_2 \leq c_1) \land (b_2 < c_2)) \]

Part 1 of inequality (7)

\[(a \leq b_1) \land ((b_2 \leq c_1) \land (b_2 < c_2)) = [(a \leq b_1) \land (b_2 \leq c_1)] \land [(a \leq b_1) \land (b_2 < c_2)] \]

Part 1.1 of inequality (8)

\[(a \leq b_1) \land (b_2 \leq c_1) = (a < b_1) \lor (a = b_1) \land (b_2 < c_1) \lor (b_2 = c_1) \]

Part 2 of the inequality (7)

\[(a < b_2) \land ((b_2 < c_1) \lor (b_2 = c_1)) \land (a < b_2) \land ((b_2 < c_1) \lor (b_2 = c_1)) \]

Part 2 of the inequality (8)

\[(a < b_2) \land (b_2 < c_1) \land (a < b_2) \land (b_2 = c_1) \]

Part 1.2 of inequality (8)

\[(a < b_1) \land (b_2 < c_2) = [(a < b_1) \land (a = b_1)] \land (b_2 < c_2) \]

Substitute inequalities (10) and (12) into inequality (8), and we get

\[(a < c_1) \land (a < c_2) \]

Example 1: Find the composition of \(A_N(a, b) \land A_N(b, c) \).

When represented in sets, the above composition can be rewritten as:

\[\mathcal{N}ac^\ast \land \mathcal{N}bc^\ast \land \mathcal{N}ab^\ast \land \mathcal{N}bc^\ast \]

Use composition tables in Table 2, and 3, we get the following outcome:

\[\mathcal{N}ac^\ast \land \mathcal{N}bc^\ast \land \mathcal{N}ab^\ast \land \mathcal{N}bc^\ast \]

This is equivalent to \(A_N(a, c) \) with region \(c \) disjoint from the boundary \(Y_{\max}(a) \) of the minimum bounding box for \(a \). This means that the extended region \(c \) is disjoint from the extended region \(c \) because the region \(b \) between them is extended as well. The outcome of this composition concurs with the model presented by Skiadopoulos & Koubarakis (2001). However, our result here is more expressive because it gives us some insight into the topological relationship between \(a \) and \(c \) as well.

Example 2: Find the following composition:

\[A_{NE}(a, b) \land A_{SW}(b, c) \]

When represented in sets, the above composition can be rewritten as:

\[\mathcal{N}ab^\ast \land \mathcal{N}bc^\ast \land \mathcal{N}bc^\ast \land \mathcal{N}ab^\ast \land \mathcal{N}bc^\ast \land \mathcal{N}bc^\ast \]

Use composition tables in Table 2, and 3, we get the following outcome:

\[\mathcal{N}ac^\ast \land \mathcal{N}bc^\ast \land \mathcal{N}ab^\ast \land \mathcal{N}bc^\ast \land \mathcal{N}bc^\ast \land \mathcal{N}bc^\ast \]

The above disjunction implies that the outcome of the composition includes all tiles and this result is also consistent with the results presented by Skiadopoulos & Koubarakis (2001).
When represented in sets, the above composition can be rewritten as follows:

\[
\begin{align*}
\mathcal{N}_{ab} & \quad Y_{\max}(a) < Y_{\min}(c) \land Y_{\max}(a) < Y_{\max}(c) \\
\mathcal{F}_{ab} & \quad Y_{\max}(a) \geq Y_{\max}(c) \land Y_{\min}(a) \leq Y_{\max}(c) \land Y_{\min}(a) > Y_{\min}(c) \\
\mathcal{S}_{ab} & \quad Y_{\min}(a) > Y_{\max}(c) \land Y_{\min}(a) > Y_{\min}(c)
\end{align*}
\]

Use composition tables in Tables 2 and 3, we get the following outcome:
\[\neg ac^* \land [\neg ac \lor \neg ac] \]

This means that the outcome of the composition is
\[\{ P_N(a,c) \land P_{NE}(a,c) \} \lor A_N(a,c) \lor A_{NE}(a,c) \]
but once again, with region \(c \) disjoint from the boundary \(\gamma_{max}(a) \) of
the minimum bounding box for \(a \).

Queries for Existential Inference

In this section, we shall demonstrate how the composition tables in Table 2 and 3 can be used to answer queries using existential inference. This section will also show the outcome of existential inference with certainty and uncertainty.

Query 1: \(R(a,b) \land A_R(b,c) = A_R(a,c) \)

If given the constraints for \(A_R(b,c) \) and \(A_R(a,c) \), we have to find what \(R(a,b) \) is.

Example 1: Find \(R(a,b) \) when given \(A_{NW}(b,c) \) and \(A_{NW}(a,c) \).

The sets for the relations \(A_{NW}(b,c) \) are \(\neg bc \) and \(\neg bc \) and \(A_{NW}(a,c) \) can be \(\{ \neg ac, \neg ac^* \} \) and \(\{ \neg ac, \neg ac^* \} \). We shall tabulate the given information in Table 4.

| Table 4: Query for \(A_{NW}(b,c) \) and \(A_{NW}(a,c) \) |
| --- | --- | --- |
| \(R1(a,b) \) | \(R2(b,c) \) | \(R3(a,c) \) |
| ? | \(\neg bc \) | \(\neg ac^* \) |
| ? | \(Wbc \) | \(\neg ac \) |

From Tables 2 and 3

With certainty

\(\neg ab \)	\(\neg bc \)	\(\neg ac^* \)
\(\neg ab \)	\(\neg bc \)	\(\neg ac \)
\(Wab \)	\(Wbc \)	\(\neg ac^* \)
\(Wab \)	\(Wbc \)	\(Wbc \)

With uncertainty

\(Hab \)	\(\neg bc \)	\(\neg ac \lor \neg ac \lor \neg ac \lor \neg ac \)
\(Sab \)	\(\neg bc \)	\(\neg ac \lor \neg ac \lor \neg ac \lor \neg ac \)
\(Vab \)	\(Wbc \)	\(\neg ac \lor \neg ac \lor \neg ac \lor \neg ac \)
\(\neg ab \)	\(Wbc \)	\(\neg ac \lor \neg ac \lor \neg ac \lor \neg ac \)

Based on the results in Table 4, with the given constraints \(A_{NW}(b,c) \) and \(A_{NW}(a,c) \), \(R(a,b) \) is either \(A_{NW}(a,c) \) or
\[\{ P_{NW}(a,c) \land P_{NE}(a,c) \lor P_N(a,c) \lor P_E(a,c) \lor P_O(a,c) \lor P_W(a,c) \lor P_{SE}(a,c) \lor P_S(a,c) \lor P_{SW}(a,c) \} \]. The latter relation is subject to the ‘single-piece’ condition. It is true when the existing parts are connected.

Query 2:

\(R(a,b) \land A_R(b,c) = P_R(a,c) \)

If given the constraints for \(A_R(b,c) \) and \(A_R(a,c) \), we have to find what \(R(a,b) \) is.

Example 2: Find \(R(a,b) \) when given \(A_N(b,c) \) and \(P_N(a,c) \land P_{NE}(a,c) \).

The sets for the relation \(A_N(b,c) \) are \(\neg bc \) and \(\neg bc \). \(P_N(a,c) \) are \(\{ \neg ac, \neg ac^* \} \) and \(\neg ac \). \(P_{NE}(a,c) \) can be \(\{ \neg ac, \neg ac^* \} \) and \(\neg ac \). We shall tabulate the given information in Table 5.

| Table 5: Query \(A_N(b,c) \) and \(P_N(a,c) \land P_{NE}(a,c) \) |
| --- | --- | --- |
| \(R1(a,b) \) | \(R2(b,c) \) | \(R3(a,c) \) |
| ? | \(\neg bc \) | \(\neg ac^* \) |
| ? | \(\neg bc \) | \(\neg ac \) |
| ? | \(\neg bc \) | \(\neg ac \) |

From Tables 2 and 3

With certainty

\(\neg ab \)	\(\neg bc \)	\(\neg ac^* \)
\(\neg ab \)	\(\neg bc \)	\(\neg ac \)
\(Wab \)	\(Wbc \)	\(\neg ac^* \)
\(Wab \)	\(Wbc \)	\(\neg ac \)

With uncertainty

\(Hab \)	\(\neg bc \)	\(\neg ac \lor \neg ac \lor \neg ac \lor \neg ac \)
\(Sab \)	\(\neg bc \)	\(\neg ac \lor \neg ac \lor \neg ac \lor \neg ac \)
\(Vab \)	\(Wbc \)	\(\neg ac \lor \neg ac \lor \neg ac \lor \neg ac \)
\(\neg ab \)	\(Wbc \)	\(\neg ac \lor \neg ac \lor \neg ac \lor \neg ac \)

Based on the results in Table 5, with the given constraints \(A_N(b,c) \) and \(P_N(a,c) \land P_{NE}(a,c) \), the possible outcome for \(R(a,b) \) is either \(\{ P_{NE}(a,b) \land P_N(a,b) \} \) or \(\{ P_{NE}(a,b) \land P_N(a,b) \} \).

Query 3:

\(R(a,b) \land P_R(b,c) = A_R(a,c) \)

If given the constraints for \(P_R(b,c) \) and \(A_R(a,c) \), we have to find what \(R(a,b) \) is.

Example 3: Find \(R(a,b) \) when given \(P_{SW}(b,c) \land P_{SW}(b,c) \land P_{SW}(b,c) \) and \(A_{SW}(a,c) \).

The sets for the relation \(P_{SW}(b,c) \) are \(\neg bc \) and \(\neg bc \). \(P_{SW}(b,c) \) are \(\neg bc \) and \(\neg bc \). As for \(A_{SW}(a,c) \), it is \(\neg ac \) and \(\neg ac \). We shall tabulate the given information in Table 6.

| Table 6: Query \(P_{SW}(b,c) \land P_{SW}(b,c) \land P_{SW}(b,c) \) and \(A_{SW}(a,c) \) |
| --- | --- | --- |
| \(R1(a,b) \) | \(R2(b,c) \) | \(R3(a,c) \) |
| ? | \(\neg bc \) | \(\neg ac^* \) |
| ? | \(\neg bc \) | \(\neg ac \) |
| ? | \(\neg bc \) | \(\neg ac \) |

From Tables 2 and 3

With certainty

\(\neg ab \)	\(\neg bc \)	\(\neg ac^* \)
\(\neg ab \)	\(\neg bc \)	\(\neg ac \)
\(Wab \)	\(Wbc \)	\(\neg ac^* \)
\(Wab \)	\(Wbc \)	\(\neg ac \)
Based on the results in Table 6, with the given constraints $P_W(b, c) \land P_{SW}(b, c) \land P_S(b, c)$ and $A_{SW}(a, c)$, the only possible relation $R(a, b)$ is $A_{SW}(a, b)$.

Example 4: Find $R(a, b)$ when given $P_N(b, c) \land P_{NW}(b, c) \land P_S(b, c)$ and $A_{N}(a, c)$.

The sets for the relation $P_N(b, c)$ are $\mathcal{N}bc$ and $\mathcal{V}bc$, $P_{NW}(b, c)$ are $\mathcal{N}bc$ and $\mathcal{W}bc$, and lastly, $P_{W}(b, c)$ are $\mathcal{H}bc$ and $\mathcal{W}bc$. As for $A_{N}(a, c)$, it is $\mathcal{N}ac$ and $\mathcal{V}ac$. We shall tabulate the given information in Table 7.

Table 7: Query for $P_W(b, c) \land P_{SW}(b, c) \land P_S(b, c)$ and $A_{SW}(a, c)$

<table>
<thead>
<tr>
<th>$R1(a, b)$</th>
<th>$R2(b, c)$</th>
<th>$R3(a, c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>$\mathcal{N}bc$</td>
<td>$\mathcal{N}ac^*$</td>
</tr>
<tr>
<td>?</td>
<td>$\mathcal{H}bc$</td>
<td>$\mathcal{N}ac$</td>
</tr>
<tr>
<td>?</td>
<td>$\mathcal{V}bc$</td>
<td>$\mathcal{V}ac$</td>
</tr>
<tr>
<td>?</td>
<td>$\mathcal{W}bc$</td>
<td></td>
</tr>
</tbody>
</table>

From Tables 2 and 3

With certainty

$\mathcal{N}ab$	$\mathcal{N}bc$	$\mathcal{N}ac^*$
$\mathcal{N}ab$	$\mathcal{H}bc$	$\mathcal{N}ac$
$\mathcal{V}ab$	$\mathcal{V}bc$	$\mathcal{V}ac$

With uncertainty

| $\mathcal{V}ab$ | $\mathcal{W}bc$ | $\mathcal{V}ac \vee \mathcal{W}ac$ |

Based on the results in Table 7, with the given constraints $P_N(b, c) \land P_{NW}(b, c) \land P_S(b, c)$ and $A_{N}(a, c)$, the only possible relation $R(a, b)$ is $A_{N}(a, b)$.

Conclusion

In this paper, we have shown how to decompose the nine cardinal directions into sets corresponding to horizontal and vertical constraints. Using these constraints, we formally define ‘part and whole’ direction relations between extended regions. 3x3 composition tables for sets have been computed using an algebraic method confirmed by a graph. Such composition tables can be used to answer queries using forward reasoning or existential inference.

References

