
A Tool for Integrating Lisp and Robotics
in AI Agents Courses

Frank Klassner
Department of Computing Sciences

Villanova University

Villanova, PA 19085

610-519-5671

Frank.Klassner@villanova.edu

ABSTRACT
This paper presents the RCXLisp library, an extension to

Common Lisp that allows students to investigate a broad range

of artificial intelligence and computer science topics using the

LEGO MindStorms® platform. The library supports both

remote control and on-board programming of MindStorms

robots. It also supports targeted communication between

multiple LEGO robots and command-center desktops. The

package is the only one to be integrated into most popular

Common Lisp programming environments. This paper also

summarizes student experiences with the package over the

years 2000-2003 in an Artificial Intelligence course.

1. INTRODUCTION
In Fall 1997 the Introduction to Artificial Intelligence (AI)
course at Villanova University was reorganized around the
concept of agent-oriented design [7]. This approach was
augmented in the Fall 1999 offering with LEGO MindStorms
[3] in order to have students explore the relationships among
hardware, environment, and software organization in agent
design. The course traditionally used Common Lisp in its
programming projects, but at the time of MindStorms’
adoption, there was no Common Lisp development
environment for MindStorms. This situation led me to try Not
Quite C (NQC) [1] for team-based robotics projects and
Common Lisp for all individual projects in search, planning,
and abstract machine learning.

Student surveys indicated that the burden of working with two
different languages distracted them from learning the AI
concepts of the course. My students and I also found that the
NQC language was overly limited by the MindStorms firmware
to which it was targeted. We also found it difficult to try to
coordinate several robots in the course’s semester-end contest
in which teams of robots compete against each other in a
20’x9’ arena to capture and defend colored ping-pong balls.

Based on these observations, I decided to develop a Common
Lisp library, RCXLisp, for programming the MindStorms’
platform. This paper describes how the RCXLisp library
augments the MindStorms platform as a tool for agent
pedagogy. Although it is targeted at symbolic-oriented AI,
there is no inherent reason the library cannot support numeric-
level AI projects such as neural networks. The second section
of this paper describes the MindStorms platform’s design
insofar as it affected the design of RCXLisp. The paper’s third
section describes the RCXLisp library and support firmware.
The fourth section presents experiences some projects that
have been written in RCXLisp for the Villanova AI course. The
fifth section discusses student experiences with the package

over the four semesters (2000-2003) that it has been used in
the AI course. The sixth section concludes with plans for
future use and development for RCXLisp.

2. MINDSTORMS BACKGROUND
The RCX is the programmable brick at the heart of the LEGO
MindStorms kit. Figure 1 shows an RCX in a simple robot.

 Figure 1. RCX unit. IR port is “in front,” at lower left. Sensor ports

are gray squares behind the IR port. Output ports are dark squares

located beyond the LCD display.

The RCX has a 16MHz CPU (Hitachi H8/3292 microcontroller),
16KB RAM (and another 16K of ROM routines), and houses an
infrared (IR) transmitter/receiver for sending and receiving
data and commands from a desktop PC or from other RCXs.
The IR transceiver has a range of 15-25 feet, depending on
lighting conditions and reflectivity of walls. Version 1.0 of
the platform used a serial-port IR Tower for broadcasting
messages and software to the RCX from a desktop. Later
versions (the current version is 2.0) replaced the serial device
with a USB Tower whose IR receiving range is more limited: 8-
12 feet. The RCX unit has 3 input ports, 3 output ports
(labeled A, B, and C), and a 5-“digit” LED display. LEGO
markets touch, light, temperature, and rotation sensors that can
be connected to the RCX’s input ports; third-party vendors
offer magnetic compass sensors, ultrasonic distance sensors,
and infrared distance sensors. Motors, LEDs, and infrared
emitters can be attached to the output ports.

The RCX’s replaceable firmware models a primitive virtual
machine. It can be used in autonomous mode (the robot’s
behavior depends only on the program loaded into its
memory) or in direct-control mode (a control program on a
desktop computer broadcasts a series of instructions to the
robot for on-board execution). Educators contemplating the
use of Lego’s Vision Command Camera system should note
that the camera system is not connected directly to the RCX
but relies on direct-control mode to control the RCX based on
what the camera detects. The firmware supports 32 sixteen-bit

global integer registers that can be shared by up to 10 threads.
Each thread can allocate up to 16 private registers. Only
integer arithmetic is supported by the standard firmware.

From the hardware perspective, I do not believe that the
available set of sensors for MindStorms is any more limiting
for AI or robotics work at the collegiate level than that
available at considerable greater cost for other robotics
platforms. However, the RCX’s 16KB of non-upgradeable
onboard RAM does represent a problem for projects involving
large-footprint real-time schedulers and planners.

LEGO firmware uses a broadcast protocol. It does not support
targeted message-passing. If one has three RCXs in the same
vicinity, two of them cannot exchange messages without the
third inadvertently receiving the messages. Furthermore, it i s
not possible to have a desktop application coordinate several
robots of a team without a mechanism to address the robots’
RCXs individually. The firmware’s lack of support for a call
stack limits on-board programs’ use of abstraction because
nested function or procedure calls are not possible. LEGO
firmware does not support dynamic memory allocation.

3. RCXLISP

3.1 Extended Firmware
Both as means of overcoming the problems cited earlier and as
part of a larger project aimed at improving the MindStorms
platform’s usefulness in collegiate computer science curricula,
I have developed the RCXLisp programming libraries. This
package allows one to work with the RCX unit from the LEGO
MindStorms® kit using Common Lisp.

The RCXLisp package is compatible with LEGO’s firmware. It
is, however, designed primarily to work with extended
firmware my student Andrew Chang and I designed that
supports wireless networking and most of the bytecodes from
version 1.0 of LEGO’s firmware. This extended firmware i s
called “Mnet firmware,” and supports directed IR
communication by adding source and target fields to the basic
LEGO protocol and by allowing each RCX to set a 1-byte ID
value for itself. Mnet firmware allows an RCX to restrict from
what other RCXs it will accept messages.

As of version 1.3, Mnet firmware does not support dynamic
memory allocation. Future versions are expected to include
this capability (along with garbage collection) in order to
support a larger subset of Common Lisp’s functionality. I
believe this lack of functionality is mitigated by RCXLisp’s
ability (discussed later) to integrate desktop remote control
with on-board autonomous programs; problems requiring
recursive or nested function calls can be solved on a desktop
Lisp environment and the results can be communicated to the
RCX’s on-board control program.

3.2 Language Design
Moving from hardware-oriented issues, let us now discuss the
design and organization of the RCXLisp language itself.
Specifically, RCXLisp lets one

 remotely control the RCX from a Common Lisp
program running on a desktop computer,

 write RCXLisp programs to run on the RCX,

 create and compile RCXLisp programs for
downloading to RCXs “on the fly,” from within
Common Lisp desktop environments,

 simultaneously control more than one RCX from a
single MindStorms infrared transceiver tower

 set up a network of RCX units that can communicate
with each other in a targeted manner.

The RCX libraries support both the older serial-port infrared
transceivers and the newer USB-port towers that LEGO is
currently shipping. It is also possible to use the libraries to
control more than one tower, opening up the possibility of
extending the remote-control radius of a desktop through
strategic placement of multiple IR towers in one room.

RCXLisp has two components. The first is “Remote RCXLisp,”
which is a collection of macros, variables, and functions for
remotely controlling RCX units from a desktop. The second i s
“RCXLisp” proper, which is a subset of Common Lisp that can
be cross-compiled to run on RCX firmware for autonomous
control of the unit. The next two subsections provide details
on the two parts of the language library, with the goals of
showing the tight integration among Lisp environment, RCX,
and desktop control processes the library makes possible, and
the Common Lisp language features that the library
encourages students to learn about as they set up robotics-
inspired projects.

3.2.1 Remote RCXLisp
Since “Remote RCXLisp” is intended to run within a desktop
Common Lisp environment, the design goal of this language
was to adhere as closely as possible to the Common Lisp
standard in Guy Steele’s text, “Common Lisp: The Language, “
2nd edition (aka “CLTL2”).

The “Remote RCXLisp” library provides users with the with-

open-com-port and with-open-rcx-stream macros to set up
communication environments for contacting the RCX units.
These macros are modeled closely on Common Lisp’s “with-
open-stream” macro. With-open-com-port is used to specify
the communication port (serial or USB) over which an RCX is
to be contacted, and with-open-rcx-stream is used to define the
RCX-unit-specific data stream that will use a port stream. The
code in Figure 2 shows how the macros are used and provides
an example of the functions that can be invoked to control an
RCX from within the macros’ communication environment.
There are 45 functions defined for RCX control. Common Lisp
functions are capitalized for easy readability.

The body of the “full-speed-ahead” function contains the
following examples of “Remote RCXLisp” functions for
controlling an RCX: set-effector-state (for initializing and
controlling motors), set-sensor-state (for initializing how an
input sensor port will be used to gather data), and sensor (for
accessing the current value of a sensor port). The testing
function uses alivep to determine if the RCX is in range and
responding. It is useful to note for later discussion that the
language includes a var function which asynchronously
queries for the value stored in a given variable register.

All “Remote RCXLisp” functions take an optional final stream
argument (“r” in full-speed-ahead, and “rcx10” in testing).
One can forego repetitious typing of the stream argument, by
using the using-rcx macro as in figure 2 to define a default
stream for enclosed RCXLisp functions. This macro is closely

modeled on Common Lisp’s “using-slots” macro for object-
oriented programming. It also serves to define for the
programmer a symbolic environment in which the desktop acts
as a director telling some particular RCX what to do next.

(DEFUN full-speed-ahead (r s dir)

“This will make the rcx in R go at speed S in direction DIR until touch
sensor on its ‘2’ port returns 1.”

(LET ((result 0))

 (set-effector-state ‘(:A :B :C) :power :off r)
 ;in case things are in an inconsistent state,
 ;turn everything off first
 (set-effector-state ‘(:A :C) :speed s r)
 (set-effector-state ‘(:A :C) :direction dir r)
 ; dir is eq to :forward, :backward, or :toggle
 ; no motion will occur until the
 ; next call to set-effector-state
 (set-sensor-state 2 :type :touch :mode :boolean r)
 (set-effector-state ‘(:A :C) :power :on r)
 (LOOP ;this loop will repeat forever until sensor 2 returns a 1
 (SETF result (sensor 2 r))
 (WHEN (AND (NUMBERP result)
 ;needed to keep = from causing error if
 ;sensor function returns nil.
 (= result 1))
 (RETURN)))
 (set-effector-state ‘(:A :C) :power :float r))))

(DEFUN testing ()

(with-open-com-port (port :LEGO-USB-TOWER)

 (with-open-rcx-stream (rcx10 port :timeout-interval 80 :rcx-unit 10)

 ; increase/decrease serial timeout value of 80 ms depending on

 ;environmental factors like ambient light.

 (WHEN (alivep rcx10)

 (full-speed-ahead rcx10 5 :forward)))))

Figure 2. Sample “Remote RCXLisp” code

(DEFUN full-speed-ahead (r s dir)

“This will make the rcx in R go at speed S in direction DIR until touch
sensor on its ‘2’ port returns 1.”

(LET ((result 0))

 (using-rcx r

 (set-effector-state ‘(:A :B :C) :power :off)
 ;in case things are in an inconsistent state,
 ;turn everything off first
 (set-effector-state ‘(:A :C) :speed s)
 (set-effector-state ‘(:A :C) :direction dir)
 ; dir is eq to :forward, :backward, or :toggle
 ; no motion will occur until the
 ; next call to set-effector-state
 (set-sensor-state 2 :type :touch :mode :boolean)
 (set-effector-state ‘(:A :C) :power :on)
 (LOOP ;this loop will repeat forever until sensor 2 returns a 1
 (SETF result (sensor 2))
 (WHEN (AND (NUMBERP result)
 ;needed to keep = from causing error if
 ;sensor function returns nil.
 (= result 1))
 (RETURN)))
 (set-effector-state ‘(:A :C) :power :float))))

Figure 3. Using ‘using-rcx to clean up “Remote RCXLisp” code.

Programs that are intended to be executed on an RCX are first
compiled within the RCXLisp desktop environment and then
downloaded through the IR Tower to the RCX. Firmware is also
loaded from the desktop Lisp environment. These two actions
are accomplished with the download-firmware and rcx-compile-
and-download functions. It is important to note that these
functions are native to the Lisp environment. That is, no non-
Lisp mechanism is needed for these actions. Both LeJOS [6]

(the MindStorms Java virtual machine developed originally
by Jose Solarzano) and Wick et al.’s Lego/Scheme compiler [8]
require a separate command-line system program to download
compiled code or firmware into the RCX. The recursive-
descent parser+compiler in rcx-compile-and-download i s
implemented in Lisp.

3.2.2 “RCXLisp” Proper
RCXLisp is the subset of Common Lisp (with a few non-
standard additions) that can be compiled and downloaded to
run on an RCX unit autonomously. As with “Remote
RCXLisp,” the design goal was to follow CLTL2’s standard as
closely as possible, and to maintain compatibility with Lego
firmware as well as Mnet extended firmware. However, because
even the extended firmware does not yet support indirect
addressing or call stacks, some of the “functional” nature of
Common Lisp is still missing. For example, some RCXLisp
functions cannot accept variable values for some arguments;
they can only accept constants.

For consistency with “Remote RCXLisp,” and to make it more
straightforward to transfer desktop Lisp code to the RCX,
RCXLisp implements all of the RCX-control functions in
“Remote RCXLisp.” In RCXLisp however, control functions
like set-sensor-state do not have an optional final stream
argument since it is assumed that the Lisp code will only be
executed on the RCX unit itself. If an RCX needs to control
the behavior of another RCX unit, it does not download
programs into the other RCX. Instead, it sends integer-valued
messages that the other RCX must interpret to determine what
action to take.

RCXLisp supports analogs to the following subset of
Common Lisp control expressions, along with their standard
semantics defined in CLTL2: DOTIMES, COND, IF, LOOP,
PROGN, RETURN, and WHEN. The RCXLisp language supports
16-bit signed integer arithmetic with the following operators:
+, -, *, and / (integer division). RCXLisp provides the >, >=, <,
<=, =, /=, and EQUAL Common Lisp comparison operators in
their full functionality. Just as Common Lisp allows one to
use comparison invocations such as “(< 2 x 6)” to test for
when the value of x is between 2 and 6, so too does RCXLisp.
It also provides a limited version of the Common Lisp
RANDOM function.

RCXLisp also supports the not, and, and or boolean operators,
along with their CLTL2 semantics (including the “boolean
short-circuit”). RCXLisp does not support floating point
arithmetic, but it does support the boolean data type (i.e. T and
NIL) and certain keyword constants (although new keywords
cannot be defined yet).

Constants are declared in RCXLisp programs with defconstant,
which follows the semantics of the Common Lisp
DEFCONSTANT form, and global variables can be declared
with defvar, whose semantics are only partially the same as
those of the Common Lisp DEFVAR form. Values (signed 16-
bit integers and T and NIL) can be stored into variables using
setq, which is similar to the Common Lisp SETQ form.
Currently there is no analog in RCXLisp to the Common Lisp

SETF macro.

Since general function calls are not supported, RCXLisp does
not have an analog to the Common Lisp DEFUN form. In an
effort to support some kind of code abstraction, the language
design borrows inspiration from NQC’s emphasis on macros

for code abstraction and includes a defmacro form that follows
the complete semantics of Common Lisp’s DEFMACRO form.
RCXLisp also borrows from Rodney Brooks’ much earlier (and
proprietary) “L” language [2] a desire for simplicity (many
advanced Common Lisp functions are not available in that
language) and memory-conservation that is necessary for
squeezing as much programming as possible into the small
memories available on most robot platforms even today.

The language also provides two special-purpose forms that are
neither in the “Remote RCXLisp” language nor the Common
Lisp language. The first form is defregister, which is used to
bind symbolic variable names to particular RCX variable
registers. Defregister allows a programmer to tie a symbolic
variable name to a given register so that a “Remote RCXLisp”
program on a desktop using var to query a register can be
guaranteed to access the intended variable value.

The second non-standard form is defthread, which is used to
define RCX threads to run on an RCX unit. Calling this form
“non-standard,” however, is less of an indictment of RCXLisp
than of the Common Lisp spec itself since as of 2003 no
progress has been made in formalizing threading in the
language!

(defconstant *receiver* 1)
(defregister 4 *LIMIT* 16)

(defthread (signaller) ()
 (loop
 (send-message 78)
 (sleep 15) ;; this is to leave the IR port silent for a
 ;; short time in case a desktop is sending a message.
))

(defthread (alpha :primary t) ()
 (let ((diff1 0)
 (diff2 0))
 (set-sensor-state *receiver* :type :light :mode :raw)
 (setq diff1 (abs (- (sensor *receiver* :raw)
 (sensor *receiver* :raw))))
 (setq diff2 (abs (- (sensor *receiver* :raw)
 (sensor *receiver* :raw))))
 (start-rcx-thread signaller)
 (loop
 (when (>= (abs (- diff1 diff2)) *LIMIT*)
 (play-tone 500 1))
 (setq diff1 diff2)
 (setq diff2 (abs (- (sensor *receiver* :raw)
 (sensor *receiver* :raw)))))))

Figure 4. Multi-threaded RCXLisp Sample Code

Figure 4 shows a sample RCXLisp program that illustrates

many of the features described above. The program will beep
whenever the RCX is carried too close to a reflective object.
This code makes the IR port on an RCX work together with a
light sensor on sensor port 1 to implement a simple proximity
sensor. The “signaler” thread repeatedly sends out an arbitrary
integer message through the RCX’s IR port. When the front of
the RCX gets too close to a tall obstacle, the IR signal from the
IR port will reflect back, and the light sensor will pick this
echo up. As the reflections increase in intensity, the light
sensor’s value will jump more wildly. The value of *LIMIT*
may need to be experimented with. It is declared as a register
variable because this allows it to be modified dynamically by
a "Remote RCXLisp" program on a desktop, by using var to
access and set register 4.

3.3 Platform Support
The RCXLisp libraries are supported on the Allegro (Franz),
MCL (Digitool), and Xanalys Common Lisp environments, on
both Windows (98, 2000, and XP) and Mac OS X.

4. PROJECTS WITH RCXLISP

4.1 MindStorms Equipment
The AI course at Villanova uses RCXLisp and MindStorms in
team-based active-learning projects. Each team’s kit for
constructing LEGO robots contained the following hardware:

(a) 3 Mindstorms Robotic Invention Systems packages

(b) 3 more light sensors beyond the three in (a)

(c) 3 more touch sensors beyond the six in (a)

(d) 3 more motors beyond the six in (a)

(e) 2 LEGO rotation sensors

(f) 2 HITECHNIC magnetic compass sensors

(g) 1 HITECHNIC infrared distance sensor

(h) 2 HI-TECH STUFF limit-switch adapters for motor ports

(i) 24 rechargeable batteries

(j) 1 large lockable toolbox to hold all of the above as well
as a partially-completed robot.

The robotics laboratory also has a few extra sensors such as
two HITECHNIC ultrasound distance sensors and two LEGO
Vision Command cameras for special projects as they arise.
Hitechnic (www.hitechnic.com) has ceased operations, but the

third party manufacturer hi-techstuff (www.hitechstuff.com)

offers many similar sensors except unfortunately for the
compass sensor. We are in negotiations to get a new source of
compass sensors, since we have found them to be very useful
in navigation problems.

4.2 Project Descriptions
The following RCXLisp-based projects have been developed
for the course:

I. Simple-Reflex Robot Design (and RCXLisp Orientation). This
10-day project’s goal was to show students how robots with
simple stimulus-response rules and no model of the
environment could achieve effective behaviors. This project
asked students to design a robot based on a tread-wheeled
“Pathfinder” model described in LEGO’s user manual. Students
were required to start with this basic design in order to reduce
time spent on distracting mechanical engineering issues, but
they were encouraged to mount sensors as needed.

Students first built a robot that used a compass sensor to
maintain a bearing (team 1 goes North, team 2 goes South, etc.)
They next added code to monitor either (a) whether a robot i s
too close to a wall, or (b) whether, via feedback from mounted
light or touch sensors that the robot was about to roll over a
dark tile on the floor. In both cases the robot had to back up
and/or turn to avoid the obstacle for a brief time, then resume
moving ahead on the bearing. This was implemented twice
using RCXLisp and “Remote RCXLisp.”

II. Robot Odometry. This 2-week project’s goal was to help
students understand the major factors that can introduce error
into a robot’s internal representation of where it believes i t
currently located in the world – an important issue in any
navigation process. It also introduced them to the importance
of maintaining a representation of state (the robot’s position).

Each team was required to design and build a robot that would
measure the perimeter of a convex black shape on a light
background on the floor. The reported measurement (over 190
cm) had to be accurate to within +/- 3 cm, and had to be
obtained within 1 minute from the time the robot was started.
The project allowed use of dead-reckoning and landmark-
based navigation techniques. Although all teams succeeded in
this project, all were surprised at how short the 1-minute time
limit soon appeared in light of the accuracy constraint. If
students elected to use a compass sensor to record orientation,
then the shape was allowed to be either convex or concave.

III. Robotic 8-Puzzle Solver. This 2-week project had the goal
of showing students that knowledge representations (data
abstractions) that speed up search-based problem solvers can
produce solution representations that are not easily translated
into control programs for hardware.

The project had two stages. In the first stage students had to
develop a knowledge representation and Lisp search program
to solve the 8-Puzzle. The team developed a set of four
operators that involved conceptually moving the “space” up,
down, left, or right, rather than 32 operators for moving each of
the numbered tiles up, down, left, or right. The students
observed that this design decision dramatically reduced the
branch factor of the search tree (4 vs. 32), leading to a faster
execution time for the game-solver.

The second stage required students to write a “Remote
RCXLisp” program that sent remote-control messages to a
Mindstorms robotic arm mechanism to move pieces in an 8-
Puzzle according to the solution developed by stage 1’s
programming. It was in this stage that students discovered
that the search space reformulation trick ultimately cost them
in the complexity of the translation their second program had
to perform on the “move space” operator list to “move tile at
(2,2) to (2,1)” types of commands.

Figure 5. Capture-the-Balls Competition. Later competitions allow

dangling of RCX IR Towers over the playing field for better remote-

control approaches.

IV. Capture-the-Balls Contest. This final project’s goal was to
help students tie the skills they developed in projects I-III.
Each team was required to design and build a team of two or
three robots each no larger than 1 cubic foot. The robots’ task
was to play in a 20-minute contest against other teams’ robots.
Contestants had to play in a 20x9 sq. ft. walled playing area in
which each team had a 1 sq. ft. nest area, colored dark purple.
All other portions of the playing field were light-yellow

colored. Scattered throughout the field were black, white, and
yellow ping pong balls. For each ball that was in a team’s nest
at the end of the contest, the following points were awarded:
white +1, yellow +5, black –1. The playing field was marked
with a black 1x1-foot grid whose lines were 1 cm wide. Figure
5 shows a view of one such contest layout.

Teams were encouraged to try a wide variety of game strategies,
some of which required landmark-based navigation via the
grid, others of which required state-space hill-climbing, and
still others of which relied on probabilistic observations
about the environment. Teams were also encouraged to make
their use of strategies time-dependent: as the contest
progressed, robots could switch strategies based on their
current state (e.g. estimated score, position on field). Since
robots were permitted to “attack” other nests and scatter or
steal balls, there was a very wide variety of approaches that a
team could explore, minimizing the risk of teams
unintentionally duplicating their efforts.

Students were also encouraged to mix RCXLisp and “Remote
RCXLisp” usage.

5. STUDENT EXPERIENCE WITH RCXLISP

5.1 Student Background
The elective AI course at Villanova has no formal
programming prerequisites. Computer science majors
typically take the course in their fourth year, by which time
most majors have taken a Programming Languages (PL) course
that briefly introduces them to Lisp or Scheme.

The course is also open to cognitive science minors and
computer engineers, who generally have no programming
experience in Lisp and at most one semester of introductory
programming in Java.

5.2 Student Experience Reports
RCXLisp make extensive use of keyword and optional
arguments, as well as streams and macros – concepts not often
explored in depth in Common Lisp in courses like
Programming Languages (PL) and almost never in Lisp-based
AI courses simply because of a lack of motivating material.
Students who I have taught in both courses have commented
on how the RCXLisp environment’s use of extended function
argument capabilities helped them understand the benefits and
pitfalls of these features better than when they briefly
encountered them in the PL course. Several cognitive science
minors have commented on how they felt they could get past
coding details faster in RCXLisp (and Common Lisp) than in
Java because of the Lisps’ lack of typing.

Both my students and I noticed the reduced overhead in
learning how to program the RCXs. Since RCXLisp is just an
extension of the Common Lisp they were already using the AI
and PL courses, they could spend more time on the application
problem rather than on learning yet another language.

The library’s support for “on-the-fly” program generation and
download also helped students appreciate the power of
Common Lisp’s lack of differentiation between code and data.
Since Common Lisp function declarations are themselves

merely formatted linked lists, students could generate plans as
linked lists within a planner and then download the same data
to the RCX as an immediately executable form.

Students have also commented on the immediacy of working
with RCXs via the Common Lisp Listener: simply by invoking
a function in the Listener, an RCX can be made to respond.
This has helped them understand the differences and
similarities between compiled and interpreted code.

The library’s integration with low-level system functions such
as infrared USB communication helps students get past the
uninteresting details of port communication and instead
concentrate on the AI-oriented problems of environmental
noise, sensor sensitivity, and environmental nondeterminism.

6. CONCLUSIONS AND FUTURE WORK
RCXLisp is the first open-source Lisp approach for

programming physical robots that supports both remote

control and on-board programming of robots as well as targeted

communication between multiple robots and command-center

desktops. Coupled with the low cost and adaptability of

MindStorms, RCXLisp should help make it easier for cost-

conscious schools to add robotics-inspired projects to AI and

courses, without having to turn computer science students into

mechanical or computer engineers.

The library has separate standalone API functions for accessing

serial ports generically and USB ports with MindStorms IR

Towers attached, making it a useful basis for designing Lisp

solutions for interfacing with other serial devices, but not for

and USB devices. I have (ambitious?) plans to extend the API

to cover USB generically.

Improvements remain. One important goal is to add call stack

support and memory management support to the Mnet

firmware. This would extend the Lisp functionality of the on-

board language for RCXs (e.g add DEFUN and list-manipulation

functions). Lest the lack of garbage collection seem too

limiting for RCXLisp right now, it should be noted that leJOS

[6] also does not currently implement a garbage collector in an

effort to keep the JVM footprint as small as possible. A related

possibility would be to eliminate firmware and target the H8

processor directly, as LegOS does [5].

Another goal is to integrate the LEGO Vision Command
Camera into the RCXLisp library. This would give students a
low-cost yet powerful tool for exploring machine vision
problems at the undergraduate level.

From the standpoint of courseware improvements, I am
working on a formal integration of RCXLisp with one or more
open-source planners. The goal here would be to define
several primitive action forms using RCXLisp. At issue would
be deciding how low-level the plan operators should be.
Alternatively, one could just supply RCXLisp with a vetted
planner and leave the combination up to the students. This
would most likely make the project too complicated for an
undergraduate AI course, though.

7. ACKNOWLEDGMENTS
LEGO MindStorms and RCX are trademarks of the LEGO
Group, which does not sponsor, authorize, or endorse any of
the third-party work cited in this article. The author of this
article has no financial relationship with the LEGO Group
except for a discount purchase plan for MindStorms
equipment for seminars run under NSF Grant No. 0306096.

I am grateful to Andrew Chang for his graduate independent
study work that led to extending the MindStorms’ firmware.

This material is based upon work supported by the National
Science Foundation under Grant No. 0088884 and Grant No.
0306096. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National
Science Foundation.

8. REFERENCES
[1] Baum, D. Not Quite C (NQC), Sept. 2003,
http://www.baumfamily.com/nqc/
[2] Brooks, R. A. (1993), L: A Subset of Common Lisp,
Technical report, Massachusetts Institute of
TechnologyArtificial Intelligence Lab.
[3] Klassner, F., A Case Study of LEGO Mindstorms'TM

Suitability for Artificial Intelligence and Robotics Courses a t
the College Level, in Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education (2002).
[4] Martin, F., The MIT HandyBoard Project, September 2003.
http://lcs.www.media.mit.edu/groups/el/Projects/handy-board
[5] Noga, M. LegOS, September 2003,
http://www.noga.de/legOS
[6] Solorzano, J. LejOS, Sep 2003, http://lejos.sourceforge.com
[7] Russell, S. and Norvig, P. Artificial Intelligence: A Modern
Approach. 2nd edition, Prentice Hall, 2003.
[8] Wick, A., Klipsch, K., and Wagner, M. LEGO/Scheme
compiler, http://www.cs.indiana.edu/~mtwagner/legoscheme

